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Key points 12 

• We develop a fault-stress model of earthquake sources that provides a new paradigm 13 

comparing with the kinematic slip model. 14 

• We present an inversion method based on the fault-stress model to invert for dynamic 15 

stress evolution directly from seismic data. 16 

• Tests on a synthetic model, a checkerboard model and the 2016 Cushing earthquake 17 

show the dynamic stress inversion method works well.  18 



Abstract 19 

Dynamic stress evolution during earthquake rupture contains information of fault frictional 20 

behavior that governs dynamic rupture propagation. Most of earthquake stress drop and 21 

evolution studies are based on kinematic slip inversions. Several dynamic inversion 22 

methods in the literature require dynamic rupture modeling that makes them cumbersome 23 

with limited applicability. In this study, we develop a fault-stress model of earthquake 24 

sources in the framework of the representation theorem. We then propose a dynamic stress 25 

inversion method based on the fault-stress model to directly invert for dynamic stress 26 

evolution process on the fault plane by fitting seismic data. In this inversion method, we 27 

calculate numerical Green’s function once only, using an explicit finite element method 28 

EQdyna with a unit change of shear or normal stress on each subfault patch. A linear least-29 

squares procedure is used to invert for stress evolution history on the fault. To stabilize the 30 

inversion process, we apply several constraints including zero normal slip (no separation 31 

or penetration of the fault), non-negative shear slip, and moment constraint. The method 32 

performs well and reliably on a synthetic model, a checkerboard model and the 2016 Mw 33 

5.0 Cushing (Oklahoma) earthquake. The proposed fault-stress model of earthquake 34 

sources with inversion techniques such as one presented in this study provides a new 35 

paradigm for earthquake source studies using seismic data, with a potential of deciphering 36 

more physics from seismic recordings of earthquakes.   37 

 38 

Plain Language Summary 39 

Scientists have been fitting seismic recordings to obtain slip (relative motion between two 40 

sides of a geology fault that causes earthquakes) and slip evolution to understand what 41 



happen during an earthquake. This is the fault-slip (or kinematic) model of earthquake 42 

sources that have been in dominance in the literature and scientific community. To 43 

understand why earthquakes happen in ways observed in past earthquakes, scientists 44 

further calculate stress changes and stress evolution, which control earthquake rupture 45 

processes, from the above slip distribution and slip evolution with some assumptions. In 46 

this study, we propose a fault-stress model of earthquake sources and present an inversion 47 

method based on this model to directly obtain stress change and evolution during an 48 

earthquake from seismic recordings. Tests on a couple of hypothetical models and the 2016 49 

Mw 5.0 Cushing (Oklahoma) earthquake show the fault-stress model and the inversion 50 

method perform well. The proposed fault-stress model with inversion techniques such as 51 

one presented in this study provides a new paradigm for scientists to study earthquake 52 

sources from seismic recordings, potentially advancing our understanding of earthquake 53 

physics and improving our ability for seismic hazard analysis and reduction greatly. 54 
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1. Introduction 61 

Kinematic slip inversions have been the primary approach for the scientific community to 62 

understand sources of earthquakes, such as the 1979 Mw 6.5 Imperial Valley (California) 63 

(Olson and Apsel, 1982; Hartzell and Heaton, 1983), 1984 Mw 6.2 Morgan Hill (California) 64 



(Hartzell and Heaton, 1986; Beroza and Spudich, 1988), 1992 Mw 7.3 Landers (California) 65 

(Wald and Heaton, 1994; Wang et al., 2022), 1999 Mw 7.6 Chi-Chi (Taiwan) (Ma et al., 66 

2000; Ji et al., 2003), 2004 Mw 9.1 Sumatra (Indonesia) (Ammon et al., 2005; Yoshimoto 67 

and Yamanaka, 2014), 2011 Mw 9.0 Tohoku (Japan) (Yue and Lay, 2011; Yamazaki et al., 68 

2011), and 2016 Mw 7.8 Kaikoura (New Zealand) (Zhang et al., 2017; Wang et al., 2018) 69 

earthquakes, among many others. By inverting seismic and/or geodetic data, one can obtain 70 

slip distribution and/or spatiotemporal slip evolution on the causal fault of an earthquake. 71 

Slip distribution shows where and how much slip occurs on the fault in an earthquake. 72 

Spatiotemporal slip evolution reveals how rupture propagates along the fault, such as 73 

rupture velocity, direction, and slip rise time. These results from slip inversions have 74 

provided majority of understanding of past earthquakes from a kinematic point of view. 75 

To gain further knowledge of physics of earthquake sources from earthquakes, several 76 

lines of efforts have been made in the literature to obtain dynamic parameters and/or 77 

models of past earthquakes. One line of efforts is to obtain static stress changes from slip 78 

distributions. Andrews (1980) developed a formulation that relates the slip-parallel shear 79 

stress change to the slip distribution in the wavenumber domain. Ripperger and Mai (2004) 80 

extended Andrews’ formation for fast computation of the shear stress drop distribution on 81 

a fault from the slip distribution of a kinematic inversion. This method has been used in 82 

other studies. For example, Luttrel et al. (2011) estimated the coseismic stress drop from 83 

the slip distribution of the 2010 Mw 8.8 Maule (Chile) earthquake using the method. Okada 84 

(1992)’s analytical expressions allow one to calculate static stress (tensor) changes in an 85 

elastic homogeneous half space from a given final fault slip distribution. The analytical 86 

solutions have been adopted in widely used Coulomb stress change calculations (King et 87 



al., 1994; Lin and Stein, 2004). One limitation of these methods in calculating either static 88 

shear stress drops or static stress tensor changes from slip distributions is that the fault is 89 

assumed to be embedded in a homogeneous medium. In addition, Ripperger and Mai’s 90 

method and Andrews’s formulation further assumes the fault is embedded in a full space. 91 

In addition, the accuracy of these static stress calculations is strongly dependent on the 92 

quality of kinematic slip inversion results.  93 

The second line of efforts is to compute dynamic stress changes (i.e., stress evolution 94 

during the coseismic dynamic rupture process) of an earthquake from its kinematically-95 

determined spatiotemporal slip evolution. Quin (1990) used a trial-and-error method to 96 

obtain a dynamic rupture model to fit the kinematic inversion results of the 1979 Imperial 97 

Valley earthquake. Miyatake (1992) proposed a similar method to reconstruct dynamic 98 

rupture process of an earthquake from kinematic constraints. In both studies, the frictional 99 

coefficient is assumed to drop from the static level to the dynamic level instantaneously at 100 

failure, which results in nonphysical stress and slip-rate singularities at the crack tip. In 101 

addition, they did not calculate the theoretical waveforms based on their dynamic rupture 102 

parameters, which makes it difficult to evaluate the degree of fit of these dynamic models 103 

to the recorded seismograms. Fukuyama and Mikumo (1993) developed an iterative 104 

method of a kinematic slip inversion and a crack inversion to estimate dynamic rupture 105 

properties of an earthquake, including dynamic stress drop and shear strength excess, by 106 

fitting near-field seismograms. Bouchon (1997) developed an approach to directly derive 107 

the spatiotemporal stress evolution on the fault from the kinematic slip evolution of an 108 

earthquake, by using the expressions linking the P-wave scalar potential and S-wave vector 109 

potential in the medium with the seismic moments of the fault points. The method was used 110 



to compute stress drop (both static and dynamic) and strength excess distributions on the 111 

faults for the 1979 Imperial Valley, 1984 Morgan Hill, 1989 Loma Prieta, and 1994 112 

Northridge earthquakes (all in California) (Bouchon, 1997), to gain insights into the state 113 

of stress before the earthquakes and heterogeneous distributions of stress drop and strength 114 

excess. The method was also used to study the complex rupture in the 1992 Landers 115 

(California) earthquake, revealing the important role of large dynamic stress perturbations 116 

in the earthquake (Bouchon et al., 1998). Ide and Takeo (1997) proposed to solve 117 

elastodynamic equations with a finite difference method to determine fault stress evolution 118 

using fault slip evolution from a kinematic waveform inversion as a boundary condition. 119 

They applied the method to the 1995 Ms 6.8 Kobe (Japan) earthquake and examined 120 

constitutive relations of fault slip, such as slip and/or slip-rate dependence of fault friction. 121 

They found clear slip-weakening relations on the fault while no clear slip-rate dependence. 122 

They analyzed the slip-weakening behavior and found a depth dependence of the critical 123 

slip distance D0 in the widely used slip-weakening law (Ida, 1972; Andrews, 1976; Day, 124 

1982; Okubo and Dieterich, 1984; Ohnaka et al., 1987). Seismologically determined D0 125 

from this study is about 1 m or more in the shallow depth, while the upper limit is about 126 

0.5 m or smaller in the deeper part of the fault. This method has also been used in later 127 

studies, such as Piatanesi et al. (2004) and Ma (2021) for the 1999 Chi-Chi earthquake. In 128 

this method, the absolute displacement of each wall of the fault interface, rather than the 129 

slip (the relative displacement between the two walls), should be assigned as the boundary 130 

conditions to calculate stresses. Ide and Takeo (1997) assume symmetry in displacement 131 

between two walls and thus assign half of the slip to each wall. This assumption may be 132 

largely valid for a vertical strike-slip fault. But it does not hold for dip-slip faults, in 133 



particular shallow-dipping thrust faults, as the displacement of the hanging wall can be 134 

significantly larger than that of the footwall because of broken symmetry (Oglesby et al., 135 

1998; Oglesby et al., 2000).  136 

The third line of efforts is so called “fully dynamic inversions”. Peyrat and Olsen (2004) 137 

used dynamic rupture simulations and neighborhood algorithm (NA) to invert for stress 138 

drops for the 2000 Western Tottori earthquake (Mw6.6). In the dynamic inversion, stress 139 

drops are inverted on a number of rectangular patches over the fault plane, while assuming 140 

constant yield stress Tu and slip weakening distance D0 over the fault plane. Di Carli et al. 141 

(2010) used low frequency strong motion data to do a nonlinear kinematic and dynamic 142 

inversion using NA for the 2000 Tottori earthquake. Both inversions are based on the 143 

elliptical subfault approximation to reduce model parameters. The kinematic inversion is 144 

used to establish a prior information to reduce parameters and define the parameter range 145 

for dynamic inversion. In the dynamic inversion, a strong prior constraint is applied by 146 

fixing the peak stress level Tu, initial stress field Te and slip weakening distance D0. The 147 

inverted parameters are the geometries of two elliptical rupture patches. Ruiz and 148 

Madariaga (2011) proposed a dynamic inversion method for a moderate size of earthquake 149 

(Mw 6.7) in Chile. They assume a simple elliptical shape rupture patch and uniform stress 150 

and friction within the patch, and invert for eleven parameters in total, including five 151 

parameters for geometry, location, and orientation of the elliptical patch, two parameters 152 

for rupture initiation radius and (shear) stress level, four parameters for D0, static strength 153 

Tu in the slip-weakening law, and initial (shear) stress levels inside and outside the patch. 154 

They perform forward dynamic rupture simulations by a finite different method and use a 155 

NA and Monte Carlo (MC) technique for the inversion. The method was used in later 156 



studies for other intermediate sizes of earthquakes (Ruiz and Madariaga, 2013; Ruiz et al., 157 

2017; Herrera et al., 2017). Overall, they need dynamic rupture simulations in their 158 

inversions with NA, and the number of dynamic rupture simulations are not fixed 159 

depending on the convergence speed in NA.  160 

More recently, Xie and Cai (2018) proposed an earthquake stress model and applied it 161 

to invert for coseismic static stress changes on the shallow-dipping fault plane (including 162 

both fault shear and normal stresses) of the 2011 Mw 9.0 Tohoku (Japan) earthquake. They 163 

obtained the fault shear and normal stresses changes due to the earthquake directly from 164 

GPS data of the coseismic deformation, without the need of slip inversion as in Okada’s 165 

method or Rapperger and Mai’s method. In addition, they can obtain fault normal stress 166 

changes, which are absent in the Rapperger and Mai’s method but can be significant in dip-167 

slip faulting earthquakes such as the Tohoku earthquake. They further applied the method 168 

to invert for fault stress accumulations (both shear and normal stresses) directly from GPS 169 

data before the Tohoku earthquake, revealing large shear stress accumulations and normal 170 

stress variations in the Tohoku coseismic rupture areas (Xie et al., 2019). 171 

In this study, we extend Xie and Cai’s earthquake stress model to the dynamic process 172 

and present a fault-stress model of earthquake sources in the framework of the 173 

representation theorem, in comparison with the kinematic slip model of earthquake sources 174 

(i.e., the fault-slip model) that has been dominantly used in the community. We then 175 

develop a dynamic stress inversion method based on the fault-stress model to directly invert 176 

seismic waveform recordings for the coseismic fault stress evolution (both shear and 177 

normal stresses). Compared with the second line of efforts reviewed above, the method 178 

eliminates the need of the slip evolution inversion and avoids problematic assumptions 179 



such as symmetric displacements between the two walls of a fault interface. Compared 180 

with the third line of efforts discussed above, the method does not need to perform 181 

spontaneously dynamic rupture modeling. Involvement of dynamic rupture modeling in 182 

these previous dynamic inversion methods makes them cumbersome and/or mainly 183 

applicable for intermedium sizes of earthquakes. In contrast, dynamic stress inversion 184 

methods based on the fault-stress model such as one proposed in this study can be 185 

standardized in a way similar to kinematic slip inversions that have been developed for 186 

many decades. The method can be used for small earthquakes to megathrust earthquakes. 187 

We test the method on a synthetic model and perform a resolution analysis with a 188 

checkerboard test. Finally, we apply it to the 2016 Mw 5.0 Cushing (Oklahoma) earthquake 189 

to show its validity. The fault-stress model and associated inversion methods such as one 190 

presented in this study open a door to decipher fault friction behavior and parameters such 191 

as D0 directly from seismic recordings. 192 

 193 

2. The fault-stress model of earthquake sources 194 

2.1 The faulting theory of earthquakes and the fault-slip model 195 

The faulting theory of earthquakes was established from observations of the extensive 196 

rupturing of the San Andreas fault during the 1906 San Francisco earthquake (Reid, 1910). 197 

In this theory, earthquakes are the results of dynamic faulting. This theory was proven to 198 

be valid for most shallow tectonic earthquakes by seismological and geodetic observations. 199 

The theory gained widespread acceptance since the early 1960s with the installation of the 200 

Worldwide Standardized Seismic Network (Scholz, 2002). 201 



A faulting source of earthquakes has classically been characterized as slip across a fault 202 

plane, i.e., a discontinuity in tangential displacement. This is termed as the fault-slip model 203 

of earthquake sources in this study, in comparison with the fault-stress model to be 204 

developed. The fault-slip model has been the basis for kinematic slip inversions of seismic 205 

data in the literature. As shown in Figure 1, an internal interface (a fault plane)  with unit 206 

normal vector n (pointing from the - side to the + side) is embedded in a volume V 207 

enclosed by surface S. The representation theorem gives the displacement u(x, t) at a 208 

general point x in the volume V at time t due to the sum of the contributions from slip 209 

history [𝒖(𝝃, 𝜏)] of points on the fault plane  in the Cartesian component form as (Aki 210 

and Richards, 1980, Eq. 3.2) 211 

𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏 ∬ [𝑢𝑖(𝝃, 𝜏)]𝑐𝑖𝑗𝑝𝑞𝑛𝑗𝜕𝐺𝑚𝑝(𝒙, 𝑡 − 𝜏; 𝝃, 0)/𝜕𝜉𝑞𝑑Σ
Σ

∞

−∞
      (1). 212 

Here,  is the general position on the fault plane , 𝑐𝑖𝑗𝑝𝑞  are elastic constants, 𝑛𝑗 is the 213 

jth component of the unit normal vector n of , Gmp is Green’s function, and the Einstein’s 214 

summation convention applies in the equation. Green’s function 𝐺𝑚𝑝(𝒙, 𝑡;  𝝃, 𝜏) gives the 215 

mth component of displacement at a general point x within V and time t due to unit slip in 216 

the p-direction at x = 𝝃 on the fault  and t = .  217 

Using the delta function derivative 𝜕𝛿(𝜼 − 𝝃)/𝜕𝜂𝑞   to localize points of  within V, Eq 218 

(1) may be written as 219 

𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏 ∭ {− ∬ [𝑢𝑖(𝝃, 𝜏)]𝑐𝑖𝑗𝑝𝑞𝑛𝑗𝜕𝛿(𝜼 − 𝝃)/𝜕𝜂𝑞𝑑Σ
Σ

} 𝐺𝑚𝑝(𝒙, 𝑡 −
𝑉

∞

−∞
220 

𝜏; 𝜼, 0)𝑑𝑉 (2). 221 

The term within {} in Eq (2) is the body-force equivalent of fault slip on . Therefore, the 222 

seismic waves within V excited by fault slip are the same as those excited by a distribution 223 



on the fault of certain body forces canceling moment, among which a surface distribution 224 

of double couples can always be chosen in an isotropic medium (Aki and Richards, 1980, 225 

Sec 3.2).  226 

 227 

2.2 The fault-stress model of earthquake sources  228 

Reid’s (1910) seminal work led to the elastic rebound theory of tectonic earthquakes, in 229 

which stress accumulation before an earthquake and stress drop (release) during an 230 

earthquake are the key features of earthquake cycles. When shear stress increases to the 231 

frictional strength level of a fault due to tectonic movement, the fault ruptures, releasing 232 

the accumulated shear stress and generating fault slip and seismic waves. Therefore, in 233 

principle a faulting source of earthquakes can also be characterized by shear stress drop, 234 

more generally stress change, on the ruptured fault, in addition to slip across the fault plane. 235 

But this concept had not been utilized until the recent study by Xie and Cai (2018), in 236 

which they propose an earthquake stress model to study static stress changes of earthquakes. 237 

Here, we extend their static earthquake stress model to the dynamic evolution of fault stress 238 

during earthquakes. We term the model as the fault-stress model of earthquake sources, in 239 

comparison with the fault-slip model reviewed above. Furthermore, we place this model in 240 

the context of the representation theorem in seismology. 241 

As shown in Figure 1, we consider the traction change T on the ruptured fault, instead 242 

of fault slip, as the source of seismic waves. Here, we may consider two adjacent internal 243 

surfaces, labeled - and +, which are opposite faces of the fault plane . The traction 244 

change T can be defined as the change in the traction T, which is applied on - by the 245 

material on the + side. Then -T, which is same in magnitude but opposite in direction 246 



with T, is the change in the traction -T that is applied on + by the material on the - side. 247 

With this characterization of earthquake sources, we may write the representation of 248 

displacement at a general point x in volume V at time t due to the traction change on the 249 

ruptured fault as (i.e., the representation theorem for the new model) 250 

𝑢𝑚(𝒙, 𝑡) = ∫ 𝑑𝜏 ∬ ∆𝑇𝑝(𝝃, 𝜏)𝐺𝑚𝑝(𝒙, 𝑡 − 𝜏; 𝝃, 0)𝑑Σ
Σ

∞

−∞
   (3). 251 

Here, Green’s function 𝐺𝑚𝑝(𝒙, 𝑡;  𝝃, 𝜏) gives the mth component of displacement at a 252 

general point x within V and time t due to unit traction change in the p-direction at x = 𝝃 253 

on the fault  and t = . With this representation, we can invert for traction changes on the 254 

ruptured fault directly from seismic recordings, after Green’s functions are calculated. As 255 

discussed above, this model is termed as the fault-stress model of earthquake sources in 256 

this study, which is the basis for a dynamic stress inversion method we develop below. 257 

Notice that T is a vector that generally does not lie within the fault plane , i.e., non-zero 258 

values in both shear and normal components. Therefore, dynamic stress inversions based 259 

on this model can invert for both fault shear and normal stress changes of earthquakes from 260 

seismic recordings. 261 

We remark that this new model, the fault-stress model of earthquake sources, is different 262 

from both double couples of earthquake sources and dynamic rupture models. Double 263 

couples are essentially a body-force equivalent of the fault-slip model, and fault slip is 264 

represented by a surface distribution of double couples. In the fault-stress model, the 265 

traction is surface force applied on the fault plane, not body force. Dynamic rupture models 266 

require friction laws, and rupture propagation is governed by these laws and stress and 267 

strength evolutions on the fault. Therefore, dynamic inversion procedures based on 268 

dynamic rupture models in the literature as reviewed above are cumbersome as they need 269 



to handle rupture propagation and are limited in rupture geometry and earthquake sizes. In 270 

contrast, the fault-stress model developed here does not consider spontaneous rupture 271 

propagation. Instead, it only considers traction changes (i.e., fault shear and normal stress 272 

changes). Therefore, standard inversion procedures for dynamic stress evolutions can be 273 

developed relatively easily. For example, most techniques used in kinematic slip inversions 274 

over many decades can be readily adopted in dynamic stress inversion methods based on 275 

the fault-stress model, such as the one developed in the next section. 276 

 277 

3. A dynamic stress inversion method 278 

Based on the fault-stress model of earthquake sources, we develop a dynamic stress 279 

inversion method, which includes two major parts. The first part is to calculate the Green’s 280 

functions at seismic stations due to unit stress changes over a finite time interval on 281 

individual fault patches (i.e., subfaults). We use an explicit finite element method (FEM) 282 

EQdyna (Duan and Oglesby, 2006; Duan and Day, 2008; Duan, 2010, 2012; Luo and Duan, 283 

2018; Liu et al., 2018) to numerically calculate the Green’s functions. The second part is 284 

to invert seismic waveforms directly for stress evolutions on all subfaults. We use a least-285 

squares method with multiple physical constraints to perform the inversion. 286 

 287 

3.1. Numerical Green’s Function Calculations  288 

To calculate numerical Green’s functions at seismic stations, we divide the fault interface 289 

into many subfaults and apply unit stress changes (1MPa) on subfaults over a time interval 290 

along the fault strike, dip and normal directions, shown in Figure 2a. The model top 291 

boundary is set as free surface and other boundaries fixed. Perfectly matched layers (PML) 292 



are used to absorb seismic wave reflection from truncated model boundaries (Liu and Duan, 293 

2018). The initial-boundary value problem for such a numerical Green’s function is 294 

governed by the following equations 295 

𝜌∆𝑢̈𝑖 = ∆𝜎𝑖𝑗,𝑗 ,                                                  (4) 296 

∆𝜎𝑖𝑗 = 𝜆∆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇∆𝜀𝑖𝑗 ,                           (5) 297 

∆𝜀𝑖𝑗 = (∆𝑢𝑖,𝑗 + ∆𝑢𝑗,𝑖)/2,                             (6) 298 

∆𝜎𝑖𝑗𝑛𝑗|Γ𝑠𝑢𝑏𝑓𝑎𝑢𝑙𝑡 = ∆𝑇𝑖 ,                                 (7) 299 

∆𝜎𝑖𝑗𝑛𝑗|Γ𝑓𝑟𝑒𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0,                              (8) 300 

∆𝑢𝑖𝑛𝑖|Γ𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
= 0,                             (9) 301 

∆𝑢𝑖 = 0 , (𝑡 = 0)                                           (10) 302 

∆𝑢̇𝑖 = 0 , (𝑡 = 0)  (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧).              (11) 303 

where ∆𝑢𝑖 , ∆𝑢̇𝑖 , ∆𝑢̈𝑖 , ∆𝜎𝑖𝑗  and ∆𝜀𝑖𝑗  are changes in displacement, velocity, 304 

acceleration, stress and strain in the medium induced by a unit stress change applied to a 305 

subfault, respectively. 𝜆 and 𝜇 are Lame constants. 𝑛𝑖 is the unit normal vector to the 306 

fault surface or a model boundary. ∆𝑇𝑖 is the applied unit stress change along 𝑖 direction 307 

on a subfault. Γ𝑠𝑢𝑏𝑓𝑎𝑢𝑙𝑡  stands for the subfault interface and   Γ𝑓𝑟𝑒𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒  stands for the 308 

free surface of the model. 𝛿𝑖𝑗  is the Kronecker delta and the Einstein’s summation 309 

convection implies in the equations.  310 

We solve the boundary value problem using EQdyna. The fault interface is modeled by 311 

the traction-at-split-nodes technique ( Day et al., 2005; Duan, 2010). At each fault node 312 

location, the technique splits a fault node into two halves that share the same spatial 313 

location but can move relative to each other. The two halves of a split node interact only 314 

through a traction acting on the interface between them. Figure 2a schematically shows an 315 



example that applies an along-strike unit stress change (∆𝑇𝑥) on a subfault of a strike-slip 316 

fault interface with two walls (Fault Wall A and B). The same concept applies to Green’s 317 

functions for other subfault patches, arbitrary fault geometries, and unit stress changes 318 

along fault dip or fault normal directions. Notice that a subfault comprises two adjacent 319 

surfaces, on which stress changes are opposite in sign but same in magnitude. The unit 320 

stress change is applied over the first time-step in the dynamic simulation in Green’s 321 

function calculations. The element size of a model is limited by the Courant-Friedrich-322 

Lewy (CFL) condition (Courant et al., 1967) for the explicit time integration rule and by 323 

the need of frequency contents generated in the model. As a result, the dimension of a 324 

subfault is typically much larger than the element size to make model parameters in the 325 

inversion problem at a reasonable number relative to the number of available seismic 326 

recordings. Each subfault may contains tens of element facets, shown in Figure 2b. We 327 

apply a unit stress change uniformly on all the element facets within the subfault over the 328 

first time step. Then the resultant slip on all subfaults (three directions) and synthetic 329 

Green’s functions on all available seismic stations (three directions) are stored for use in 330 

the inversion stage. This kind of computations is performed once before inversion for each 331 

subfault and for each stress change direction (strike, dip and normal), with the total number 332 

of calculations equal to the number of subfaults multiplied by three. The calculated Green’s 333 

functions of seismic waves on available stations are used for dynamic stress inversion. The 334 

Green’s functions of resultant slip on subfaults are used to apply constraints during the 335 

inversion and to recover the stress versus slip relation on each subfault after the inversion.    336 

 337 

3.2 The Least-Squares Inversion with Constraints 338 



We utilize the observed seismograms recorded by local stations to invert for the coseismic 339 

dynamic stress change history on each subfault and in each direction. For the inversion, the 340 

fault plane is divided into multiple subfaults (Figure 2b). On each subfault, the source time 341 

function (STF) is parameterized by several narrow stress change rectangles of the same 342 

duration and each rectangle offset by its duration, and the amplitudes of these stress change 343 

rectangles should be inverted (Figure 2c). On each subfault, we define a new local 344 

coordinate system to invert stress changes in three directions: D1, D2 and Dn, shown in 345 

Figure 2b. The D1 and D2 are within the fault plane, with D1 as 45 degrees counterclockwise 346 

from the rake angle (rake-45) and D2 as 45 degrees clockwise from the rake angle (rake+45), 347 

while the Dn is perpendicular to the fault plane. In this way, the inverted stress changes of 348 

∆T1 and ∆T2 (along D1 and D2 directions) are comparable in magnitude, which makes the 349 

inversion results more stable. The inverted ∆T1 and ∆T2 may be different, so that the rake 350 

angle of the resultant stress change vector (parallel with the fault plane) on each specific 351 

subfault may vary from the average rake angle (within 45 degrees). 352 

To further stabilize inversion results, we also apply a smoothing constraint and a normal 353 

displacement continuity constraint in Eq (12), a non-negative slip constraint in Eq (13) and 354 

a moment constraint in Eq (14), as described below. The MATLAB routine lsqlin, which 355 

is a linear least-squares solver with bounds or linear constraints, is used to solve Equations 356 

(12)-(14). 357 

 358 

[
𝐆
𝜆𝐋

𝛽𝐖
] ∆T = [

𝒅
𝟎
𝟎

]              (12) 359 

 360 



 [
𝐒𝟏

𝐒𝟐
] ∆T >= [

𝟎
𝟎

]               (13) 361 

  362 

 [
𝐌𝟏

𝐌𝟐
] ∆T = [

√2

2
m0

√2

2
m0

]            (14) 363 

 364 

In above equations, ∆T is the stress change vector to be inverted in the dynamic stress 365 

inversion, including stress changes on each subfault, each rectangle in source time function 366 

along each direction (D1, D2 and Dn), as shown in Figure 2bc. In Eq (12), matrix G stores 367 

the Green’s functions of three component seismic waves on available stations calculated 368 

by the FEM, which are generated by 1MPa stress change on each grid, each rectangle in 369 

source time function along each direction. Then the Green’s functions in G matrix need to 370 

be convolved with a rectangle box function as designed in the STF. The vector d stores 371 

observed three component seismic waveforms at stations. Matrix 𝜆𝐋 functions to apply a 372 

Laplacian regularization (Hartzell and Heaton, 1983; Yue and Lay, 2013), which constrains 373 

temporal and spatial smoothing of the inverted stress change STF. The optimal degree of 374 

smoothing is determined by iterative modeling of seismic waveforms using a range of 375 

smoothing factors 𝜆. Matrix 𝛽𝐖 functions to apply the normal displacement continuity 376 

constraint with factor 𝛽. 𝛽𝐖 is equal to 𝛽(𝐒𝐧
𝐀 − 𝐒𝐧

𝐁) with 𝐒𝐧
𝐀

 and 𝐒𝐧
𝐁

 representing the 377 

normal displacement on all subfaults on Fault Wall A and Fault Wall B. In Eq (13), matrix 378 

𝐒𝟏 stores Green’s functions of fault slip in the D1 direction on all subfaults, generated by 379 

1 MPa stress change on each subfault, each rectangle in source time function and along 380 

each direction. Matrix 𝐒𝟐 is similar to 𝐒𝟏, representing the fault slip in the D2 direction. 381 

The non-negative slip constraint in Eq (13) regulates that final slip vector 𝐒𝟏∆T along D1 382 



and 𝐒𝟐∆T along D2 should be equal or larger than zero, so that the direction of final fault 383 

slip on each subfault should be within 45 degrees from the earthquake rake angle, which is 384 

realistic and further stabilizes the dynamic stress inversion results. In Eq (14), matrices 𝐌𝟏 385 

and 𝐌𝟐 store Green’s functions of cumulative moment on the whole fault in the D1 and 386 

D2 directions, generated by 1MPa stress change on each subfault, each rectangle in source 387 

time function and along each direction. The vector on the right of Eq (14) is composed of 388 

two values, each equal to (√2/2)m0, with scalar value m0 equal to the moment of the target 389 

earthquake. The moment constraint in Eq (14) regulates that the total moment in the 390 

direction of rake angle is approximately equal to m0 , to avoid an anomalous inverted 391 

moment. 392 

 393 

4. A synthetic model test 394 

4.1 Forward modeling of the synthetic model A 395 

We build a synthetic strike-slip model A based on the fault geometry and 1D seismic 396 

velocity structure of the 2016 Mw 5.0 Cushing earthquake (Meng et al., 2021) to test the 397 

dynamic stress inversion method. The fault of the 2016 Cushing earthquake is a vertical 398 

NEE strike-slip fault with its surface trace shown in Figure 3, and the 1D velocity structure 399 

is given in Table 1.  400 

The synthetic strike-slip model A, shown in Figure 4, is generated using EQdyna. Model 401 

A has a strike-slip source patch in size of about 4.5 km by 4.5 km as shown in Figure 4ad, 402 

with the rupture starting at x = 4.0 km and z = -3.4 km and a fixed rupture velocity of ~3 403 

km/s. The fault is governed by the time weakening friction law (Andrews, 2004) where the 404 

static friction coefficient fs drops linearly to the dynamic friction coefficient fd over 0.2 405 



s. The time step is 0.01 s in the simulation. Within the source patch, static friction is fs =406 

0.4 and dynamic friction is fd = 0.3 in the center (2.5 km by 2.5 km) and linearly 407 

increases to    fd = fs = 0.4 over 1km to the boundaries. Outside of the source patch 408 

fs = fd = 0.4. The initial normal and shear stress on the fault plane is set as -100 MPa 409 

(negative compressional) and 35 MPa, respectively, thus the source patch tends to yield 410 

stress drop (along strike) of about 6 MPa, and areas surrounding the stress drop zone have 411 

stress increase due to the termination of slip (Figure 4a). The stress increase zone is very 412 

narrow with the maximum stress increase about 7 MPa (Figure 4a). For a strike-slip model, 413 

the stress change amplitude is much smaller along the dip and normal directions, Figure 414 

4bc. In addition to synthetic stress change model (Figure 4abc), the dynamic simulation 415 

generates synthetic slip distribution on fault interface (Figure 4def) and synthetic seismic 416 

waveforms at selected stations. The maximum synthetic slip along strike direction is about 417 

0.4 m distributing within the source patch (Figure 4d), while the slip in the dip and normal 418 

directions are very small compared to the strike direction, Figure 4ef. From synthetic model 419 

A, we generate synthetic seismic waveforms on eight virtual stations evenly distributed on 420 

two sides of the fault trace (Figure 3a), and also on five virtual stations (Figure 3b), for the 421 

synthetic test.  422 

 423 

4.2 Green’s function generation 424 

To calculate the numerical Green’s functions for this synthetic model test, the following 425 

checkerboard test and the Cushing earthquake source inversion, we set a finite element 426 

model in size of 60 km by 60 km by 30 km along x, y, z directions, with element size of 427 

100 m. We utilize an 1D velocity structure from the kinematic source inversion study of 428 



the Cushing earthquake (Meng et al., 2021) and the P-wave velocity, S-wave velocity and 429 

density of different layers are presented in Table 1. Given the minimum S-wave velocity 430 

of 1.5 km/s in the top layer and assuming that we need at least 5 elements to resolve a 431 

wavelength, the highest frequency contents in the numerical Green’s functions is 2.9 Hz. 432 

The total fault interface is 9 km by 6.5 km, in the x-z plane. We divide the fault interface 433 

into 18 by 13 subfaults along x and z directions, respectively, with each subfault in size of 434 

500 m by 500 m. Given the element size of 100 m, each subfault comprises 5 × 5 435 

quadrilateral element facets. Time step is calculated as dt =  αdx/Vp according to the 436 

CFL condition (Courant et al., 1967). We choose dt = 0.01 s with α = 0.5. The unit 437 

stress change of 1 MPa is applied at each subfault uniformly over the first time step, along 438 

fault normal, strike and dip directions, respectively. There are in total 18 × 13 × 3 = 702 439 

Green’s functions computed on each of eight virtual stations (Figure 3a) for the synthetic 440 

model test and checkerboard test, and on each of five real stations (Figure 3b) for the 441 

synthetic model test, checkerboard test and the Cushing earthquake source inversion. 442 

 443 

4.3 Inversion for the synthetic model A  444 

Utilizing the synthetic seismic waveforms on eight virtual stations (Figure 3a), we apply 445 

the dynamic stress inversion method to invert model A as a benchmark test, using synthetic 446 

seismic waves generated in model A as virtual observations (d vector in Eq. 12). In the 447 

inversion, we adopt the same hypocenter location at x = 4.0 km and z = -3.4 km and the 448 

same rupture velocity of 3 km/s as in the synthetic forward modeling in model A. The stress 449 

change source time function at each subfault is parameterized by four rectangles, each 450 

rectangle lasting for 0.2 s and offset by 0.2 s, with total duration of 0.8 s. We invert for the 451 



amplitude of each rectangle to get the stress change history for each subfault along each 452 

direction. The total moment m0 in model A is utilized for the moment constraint during the 453 

inversion (Eq. 14). Before inversion, both the Green’s functions in matrix G and the virtual 454 

observed seismic waves in d are band-pass filtered between 0.5 - 2 Hz. During inversion, 455 

we use a range of smoothing factor 𝜆 to get the relationship between 𝜆 and the waveform 456 

matching misfit, as shown in Figure 5a, where the optimal 𝜆 is around 5*e-4. The 𝛽 457 

factor vs misfit is shown Figure 5b, while using 𝜆=5*e-4. Unlike the thrust fault situation 458 

in Xie and Cai (2018), the 𝛽 factor has very small effect on the misfit for a strike-slip fault 459 

in this test, because the misfit only increases by 0.002 when 𝛽 factor increases by several 460 

orders. Applying the 𝜆 factor of 5*e-4 and 𝛽 factor of 1.5*e-6, the inverted result INV1 461 

is shown Figure 6.         462 

   The inverted stress changes and associated fault slip along the strike, dip and normal 463 

directions  (Figure 6) are close to those of the synthetic model A (Figure 4). The inverted 464 

result INV1 shows a maximum stress drop about -5.9 MPa and stress increase about 465 

1.6MPa along strike direction (Figure 6a), compared with the maximum stress drop of -466 

6MPa and stress increase about 7 MPa in the synthetic model (Figure 4a and Figure 7). 467 

The maximum inverted stress increase along strike is much lower than that in the synthetic 468 

model because the inverted stress change is an average value over a subfault with a size of 469 

500 m, not to mention that a smoothing factor is also applied during the inversion, further 470 

averaging a sharp stress increase. For example, we compare the original stress change in 471 

model A with those after averaging over 500m and 1000 m along strike in Figure 7. After 472 

applying smoothing over 1000m, the maximum stress increase drops to about 2 MPa while 473 

the maximum stress drop stays unchanged in the center of the slip patch. The maximum 474 



inverted fault slip along strike is around 0.33 m (Figure 6d), close to but smaller than that 475 

in the synthetic model A. In INV1, the inverted normal stress and slip are both near zero 476 

values, consistent with those in the synthetic model A due to a proper usage of constraint 477 

factor 𝛽. In addition, we use a pair of smaller parameters of λ=1.5*e-4 and β=1.5*e-7 to 478 

get the inverted result INV2 as a comparison with INV1, shown Figure 8. In INV2, the 479 

maximum inverted stress drop and increase are -7.3 MPa and 2.2 MPa. The maximum 480 

inverted slip along strike is around 0.38 m, closer to the maximum slip in synthetic model 481 

A than INV1. For two inverted results, the inverted slip patch size is slightly larger and 482 

maximum slip is slightly smaller compared to the synthetic model A, which may relate to 483 

the application of the smoothing factor. Generally, we need to utilize a smoothing factor 484 

closer to the optimal value, in order to avoid oversmoothing or undersmoothing by using a 485 

too large or too small 𝜆, according to Xie and Cai (2018). The smoothing factors used in 486 

INV1 and INV2 are close to the optimal value, and the inverted results recover well the 487 

source features in the synthetic model. In INV2, the inverted normal stress and slip is larger 488 

due to a weaker normal slip continuity constraint when using a smaller 𝛽 factor in INV2 489 

than in INV1.  490 

The two inversion cases INV1 and INV2 are both conducted under the condition of 491 

utilizing virtual seismic data on eight close stations, as shown in Figure 3a. We also conduct 492 

an inversion INV3 using virtual seismic data on five stations as shown in Figure 3b. The 493 

relative locations of five stations to the fault is set up based on the 2016 M 5 Cushing 494 

earthquake and its adjacent seismic stations, that we will present in later sections. In INV3 495 

(Figure 9), we find that the inverted final stress change and resultant final fault slip is 496 

generally similar to those in INV1 and INV2. In addition, an artificial stress drop and slip 497 



area occurs near the bottom of the fault zone, which is likely due to the lack of station 498 

coverage compared to INV1 and INV2. It implies an important role of the dense 499 

seismometer array for improving the resolution of dynamic stress inversions. Notice that 500 

the stress change inversion involves three traction components, while kinematic slip 501 

inversions only involve two slip components within the fault plane. Inversion for more 502 

parameters in the stress change inversion may require more high-quality observed data to 503 

get stable and reliable results. 504 

4.3.1 Deciphering D0    505 

The dynamic stress inversion allows us to obtain the distribution of the critical slip 506 

distance D0 in the slip-weakening law on the fault plane directly from seismic recordings. 507 

In Figure 10, we plot the stress versus slip curves from INV2 and compare them with those 508 

from the synthetic model A. We remark that in the synthetic model A, D0 (turning point of 509 

the stress vs slip curve) varies on the fault plane with a smaller value (~0.05 m) near the 510 

hypocenter and larger values further away from the hypocenter (>0.1 m), because a time-511 

weakening friction law (e.g., Andrews, 2004) is used in the synthetic forward modeling. 512 

The comparison shows that the dynamic stress inversion method can invert for D0 values 513 

well, in particular near the hypocenter. It can also recover the spatial variation of D0 on the 514 

fault plane. We notice that some subfaults further away from the hypocenter may have 515 

smaller inverted final stress drop values compared with the synthetic values, which may 516 

relate to the smoothing effect in the inversion. At the stress drop under-estimated points or 517 

some other stress drop over-estimated points, the turning point of D0 gets blurred to some 518 

extent, compared with the synthetic model A. 519 

 520 



5. Resolution analysis: A checkerboard test 521 

To check the resolution of the dynamic stress inversion method, we conduct a checkerboard 522 

test with the same fault geometry and velocity structure as the above section. We first 523 

perform a dynamic rupture simulation using EQdyna to obtain the forward checkerboard 524 

source model and virtual waveforms at two sets of seismic stations (eight stations and five 525 

stations shown in Figure 3) . Then we utilize the Green’s functions and apply the dynamic 526 

stress inversion method to obtain the inverted source model by matching the virtual 527 

waveforms.  528 

  The forward checkerboard model has a source composed of nine 2 km×2 km patches as 529 

shown in Figure 11ab. Similar to model A, the fault is governed by the time weakening 530 

friction law (Andrews, 2004) where the static friction coefficient fs drops linearly to the 531 

dynamic friction coefficient fd over 0.2 s, with time steps of 0.01 s. Five shaded patches 532 

out of nine have fs = 0.4 and fd = 0.3, while the other four have fs = fd = 0.4. Given a 533 

uniform initial normal and shear stress of -100 MPa (negative compressional) and 35 MPa, 534 

respectively, the five shaded patches yield stress drops of about 5 MPa, while outside of 535 

them stress increases sharply. The rupture is set to start at x = 4.0 km and z = -3.4 km with 536 

a fixed rupture velocity of 3 km/s. The shear stress change and associated slip distributions 537 

of the checkerboard model are shown in Figure 11ab. Uniform stress drops occur on the 538 

five shaded patches with sharp stress increases in the narrow zones immediately outside of 539 

the four outer patches. The associated slip distribution is heterogeneous with slip 540 

concentrated within the five shaded patches and larger slip at shallower depths. 541 

  Using the Green’s functions calculated earlier (section 4.2) and the virtual seismic 542 

waveforms generated by the forward checkerboard model above, we invert for the stress 543 



changes directly and calculate fault slip associated with the stress changes. The hypocenter 544 

and rupture velocity are set to be the same as the checkerboard forward model. The 545 

parameterization of the stress-change source time function and the bandpass filter applied 546 

to seismic waveforms are the same as those in the inversion of model A. When using eight 547 

stations, the patches and amplitudes of the stress drop are well recovered as shown in Figure 548 

11c. The patches of slip are well recovered (Figure 11d), though inverted slip amplitudes 549 

are smaller than the synthetic values (Figure 11b) . With five stations, the stress drop and 550 

slip patches are less well recovered (Figure 11ef) because of fewer stations and poor station 551 

coverage. Generally, the shallower three patches are recovered while the two deeper 552 

patches suffer a low resolution.  553 

 554 

6. Application to the 2016 Mw 5.0 Cushing (Oklahoma) earthquake 555 

We apply the dynamic stress inversion method to the 2016 M 5 Cushing earthquake. The 556 

M5 Cushing earthquake occurred on November 7th, 2016, near the city of Cushing in 557 

Oklahoma, which is the largest crude oil storage site in the USA, and also close to 558 

numerous water disposal wells. There are many nearby stations for this event, but only 5 559 

stations are within epicentral distance of 10 miles. We use seismic recordings at these 5 560 

stations to perform the dynamic stress inversion with Green’s functions calculated in 561 

Section 4.2. The fault geometry (strike/dip/rake 60°/90°/0°), hypocenter location (3.4 km 562 

depth) and rupture speed (3km/s) are consistent with the previous kinematic study of this 563 

event (Meng et al., 2021). Total fault dimension is of 6.5×6.5 km, with each subfault size 564 

of 0.5×0.5 km. On each subfault, the STF is composed by four 0.2 s rectangles. The 565 

inverted final shear stress change and associated fault slip from the dynamic inversion are 566 



shown in Figure 12ab. There are two separate stress drop (and slip) patches on the fault 567 

plane: one near the hypocenter and the other to the north (right) of the first patch, reflecting 568 

a complex rupture pattern even for a M 5 event. From the stress vs slip curves near the 569 

centers of two slip patches, we find the stress drop and slip weakening distance D0 are 570 

larger near the hypocenter (Figure 12c) than in the second slip patch (Figure 12d).   571 

For the 2016 Cushing earthquake, Meng et al. (2021) inverted a kinematic slip model. 572 

They further calculated the static stress change using the Coulomb3 software (Toda et al., 573 

2011) based on the inverted slip on each subfault. Comparing results from two methods, 574 

they both obtain two main slip/stress-drop patches with similar relative locations. The 575 

inverted slip patches from the dynamic stress change inversion are slightly larger than those 576 

from the kinematic slip inversion, and the maximum value of the stress drop and slip is 577 

lower in the dynamic stress change inversion result. This difference may be related to more 578 

model parameters in the dynamic stress inversion, for the given available data. In addition, 579 

we do not capture frequency contents higher than 3 Hz in the numerical Green’s function 580 

calculations in order to reduce computational costs, and the bandpass filtering applied for 581 

both observation and Green’s function waveforms is 0.2-2 Hz for the dynamic stress 582 

inversion. For the kinematic slip inversion, the Green’s functions, calculated based on a 583 

semi-analytical method (Zhu and Rivera, 2022), can carry very high frequency signal and 584 

both observation and Green’s function waveforms are bandpass filtered to higher frequency 585 

band (0.2-3Hz) for the Cushing earthquake (Meng et al., 2021).  586 

7. Discussion 587 

Compared with other fully dynamic inversions (the third line of efforts in Introduction), 588 

which need to run dynamic rupture simulations many times during the inversion process, 589 



we only need to calculate numerical Green’s functions, the most time-consuming part, once 590 

through the whole inversion process. Because the forward numerical modeling is separated 591 

from the inversion part, similar to the kinematic inversion, we don’t need to make priori 592 

assumptions, for example the yield strength, stress drop or friction parameters, to reduce 593 

inversion parameters or narrow down the parameter space. In addition, we invert not only 594 

for shear stress change but also for normal stress change, which could be significant in 595 

megathrust events (Xie and Cai, 2018). 596 

Compared with the static and dynamic stress inversion methods based on kinematic 597 

inversion results (the first and second lines of efforts in Introduction), we utilize physics-598 

based models to calculate stress change Green’s functions and directly fit the seismic data 599 

instead of fitting preexisting kinematic slip models. If utilizing fault slip as input, the 600 

uncertainties in slip from kinematic inversions will map into stress results. Furthermore, 601 

some methods (e.g. Ide and Takeo, 1997) must split fault slip onto the two sides of the fault 602 

to solve for the stress change, which may be very difficult (or not valid) for dip-slip faulting 603 

earthquakes such as megathrust events, in which the hanging wall has much larger 604 

displacement than the footwall. In addition, our finite element models for Green’s function 605 

calculations can capture complex geometry of earthquake faults and use heterogeneous 606 

velocity structures, unlike some analytical methods that require a homogeneous medium 607 

and/or simple fault geometry.      608 

We remark that we need to find a balance between the computation efficiency and 609 

inversion resolution in the dynamic stress inversion. In the dynamic inversion, the source 610 

time function needs to convolve with the stress change Green’s function to fit the recorded 611 

seismograms. For Green’s function calculations with the FEM, finer element sizes are 612 



needed for higher frequency contents, which could be computationally demanding. In 613 

addition, we parameterize the source time function by several consecutive nonoverlapping 614 

rectangles in this study. This represents a piecewise linear stress evolution over each 615 

rectangle duration (for example 0.2 s in this study). It would be interesting to test other 616 

types of source time function in future studies, such as trapezoid for nonlinear stress 617 

evolution. Finally, during Green’s function calculations a unit stress change of 1 MPa is 618 

applied at each subfault uniformly over the first time step, under assumption that a small 619 

subfault can be regarded as moving simultaneously. In the future, if we study large 620 

megathrust earthquakes with much larger subfault dimension, e.g. 10 by 10 km in size, we 621 

need to consider the rupture prorogation effect when calculating Green’s functions on each 622 

subfault.  623 

One important contribution of the fault-stress model and the dynamic stress inversion 624 

method developed in this study is to open a door for the scientific community to study fault 625 

friction behaviors directly from seismic recordings, in addition to dominantly laboratory 626 

studies of fault friction in the literature. As shown in the synthetic and the real case 627 

(Cushing) tests above, we can recover the slip-weakening process and the associate 628 

parameter value (the critical slip distance D0) well. With more studies in the future, we may 629 

be able to examine rate- and state-dependence of fault friction directly from seismic 630 

observations, paving a way for finding parameter values of fault friction that are directly 631 

applicable to natural earthquakes, instead of extrapolating laboratory experiment results on 632 

small rock samples to natural earthquakes, which is a challenging and classical scaling 633 

problem in geoscience. 634 



The dynamic stress inversion method developed in this study shares common techniques 635 

with classical kinematic slip inversion methods. In principle, techniques for kinematic slip 636 

inversions that have been developed over many decades in the community can be readily 637 

used for a dynamic stress inversion based on the fault-stress model presented in Section 2. 638 

The dynamic inversion method we develop in this study and its tests on the synthetic, 639 

checkerboard models and the Cushing earthquake show that the fault-stress model works 640 

well. We encourage many colleagues in seismology to apply their kinematic slip inversion 641 

methods and techniques they develop over years to perform dynamic stress inversions of 642 

recent earthquakes, based on the fault-stress model presented in this study, to decipher 643 

more physics from past earthquakes. It is our hope that this study provides a new paradigm 644 

for the scientific community to perform seismic source inversions and study earthquake 645 

source physics. 646 

    647 

8. Conclusions 648 

In this study, we present a fault-stress model of earthquake sources, in comparison with the 649 

fault-slip model that dominates in earthquake source studies. Based on the fault-stress 650 

model, we develop a dynamic stress inversion method to invert for the coseismic stress 651 

evolution on the fault directly from seismic recordings. In this method, numerical Green’s 652 

functions at seismic stations are calculated by an explicit finite element method EQdyna 653 

for a unit change of shear or normal stress on each sub-fault patch. Although 654 

computationally demanding, they can be computed efficiently with high-performance 655 

supercomputers and require only one time calculation. We apply several constraints, 656 

including zero normal slip (no separation or penetration of the fault), non-negative shear 657 



slip (positive or zero shear slip), and moment constraints to invert for the dynamic stress 658 

evolution with a least-squares method. Tests on a synthetic model, a checkerboard model 659 

and the real dataset from the 2016 M 5 Cushing (Oklahoma) earthquake, show that the 660 

method recovers well the dynamic stress changes during an earthquake with reliable 661 

performance. We expect that the fault-stress model and associated dynamic stress inversion 662 

methods such as one developed in this study will improve seismic source inversions 663 

significantly from a dynamic point of view. They provide the scientific community with a 664 

new paradigm to study fault frictional behaviors, which govern dynamic rupture 665 

propagation, directly from seismic recordings. In addition to recovering the critical slip 666 

distance D0 in the slip-weakening friction law as shown in this study, we may be able to 667 

decipher rate- and state- dependence of fault friction and corresponding parameter values 668 

that are applicable to natural earthquakes directly from seismic data in the future. 669 
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Tables and Figures 848 

 849 

Table 1. 1D Velocity Structure used in this study, based on the case for the 2016 M 5 850 

Cushing earthquake.  851 

 852 

Depth 

(km) 

Thickness 

(km) 

Vp 

(km/s) 

Vs 

(km/s) 

Density 

(g/cm^3) 

0.20 0.20 3.10 1.50 2.30 

0.40 0.20 3.30 1.68 2.35 

0.60 0.20 3.50 1.86 2.38 

0.80 0.20 3.70 2.04 2.41 

1.00 0.20 4.00 2.31 2.46 

1.20 0.20 4.34 2.53 2.51 

1.40 0.20 4.69 2.75 2.56 

1.60 0.20 5.03 2.96 2.61 

1.80 0.20 5.38 3.18 2.65 

4.73 2.93 5.72 3.40 2.60 

10.73 6.00 6.18 3.62 2.80 

14.73 4.00 6.32 3.67 2.80 

24.73 20.00 6.60 3.70 2.90 

35.73 11.00 7.30 4.00 3.10 

—— —— 8.20 4.70 3.40 

 853 



 854 

 855 

Figure 1. Schematic diagram for the fault-slip model and the fault-stress model of 856 

earthquake sources. A fault plane , an internal surface with a unit normal vector n pointing 857 

from the – side (-) to the + side (+), is embedded within volume V that is enclosed by 858 

surface S. Dynamic faulting on  causes an earthquake, setting up seismic waves that 859 

propagate within V and can be recorded at a general point x within V (e.g., displacement 860 

u(x,t)). The fault-slip model of dynamic faulting characterizes the earthquake source as slip 861 

[u], i.e., the differential displacement between the two sides of the fault. The fault-stress 862 

model characterizes the earthquake source as traction change T. Slip and traction change 863 

at a general point  on  are illustrated in the diagram. 864 

 865 

 866 

 867 

 868 



 869 

Figure 2. (a) A schematic diagram of the model for numerical Green’s functions, which are 870 

calculated by applying unit stress changes on subfaults. The two fault walls, which are 871 

separated for a better visualization, are connected by tractions on the fault interface. The 872 

shaded patches show the two surfaces of a subfault with a unit of stress change ∆𝑇𝑥 along 873 

the x direction applied. The unit stress change of  ∆𝑇𝑥 on fault wall B is in the opposite 874 

sign to that on the fault wall A. Triangles on the free surface indicate stations recording 875 



seismograms. The coordinate system of the finite element model is shown. (b) A detailed 876 

sketch of the fault interface on fault wall B. In the schematic case, the fault is divided into 877 

5 by 8 subfaults. A unit stress change along the x direction ∆𝑇𝑥 is applied to the shaded 878 

subfault. The shaded subfault consists of 9 elements. The coordinate system of the finite 879 

element model is shown by x, y, z. A local coordinate system is defined by D1, D2 and Dn, 880 

where D1 is 45 degrees counterclockwise with the earthquake rake angle (rake-45), D2 is 881 

45 degrees clockwise to the earthquake rake angle (rake+45) and Dn is normal to the fault 882 

plane, parallel with y direction in this diagram. (c) A schematic diagram of the stress change 883 

source time functions, to be inverted, each composed of four rectangles, along three 884 

directions (D1, D2 and Dn) on one subfualt interface on fault wall B. In this schematic case, 885 

blue rectangles represent stress drops and red rectangles represent stress increases. 886 

Direction Dn is perpendicular to the fault plane (into the paper). 887 

 888 

Figure 3. Surface trace of the vertical strike-slip fault (green circle chains) responsible for 889 

the 2016 M 5 Cushing (Oklahoma) earthquake with (a) eight virtual seismic stations 890 

distributed on two sides of the fault trace, and (b) five actual seismic stations that records 891 

the 2016 Cushing earthquake. 892 



 893 

 894 

Figure 4.  Final stress changes along (a) strike, (c) dip and (e) normal directions of the 895 

synthetic rupture model A generate by FEM and associated fault slip in (b) strike, (d) dip 896 

and (f) normal directions. The maximum slip is ~0.4 m and event magnitude is  ~Mw 5.31. 897 

The black dots shown in (a) and (d) represent the rupture initiation point in model A. The 898 

shear stress profile shown by the dashed line in (a) is displayed in Fig. 7. 899 

 900 



 901 

Figure 5. (a) Relationship of smoothing factor λ vs misfit (for waveforms on eight virtual 902 

stations), while using nine different β  factors shown in (b). The β  factor value has a 903 

neglectable effect on misfit change, thus nine lines overlap with each other and seem like 904 

one curve. The red dot represents  λ =1.5*e-4 and the green dot represents λ= 5*e-4 .(b) 905 

The relationship of β factor vs misfit, using the smoothing factor λ=1.5e-4. The red dot 906 

represents β=1.5*e-7 and the green dot represents β=1.5*e-6. 907 

 908 



 909 

Figure 6. Inverted results INV1 for the synthetic rupture model A shown in Fig. 4, using 910 

λ=5e−4 and β =1.5e−6 shown with green dots in Fig. 5 and using seismic data from eight 911 

stations shown in Fig. 3a. (a)(c)(e) The inverted stress change on strike, dip and normal 912 

directions. (b)(d)(f) The inverted slip along strike, dip and normal directions. The red dots 913 

represent the hypocenter location.  914 



 915 

 916 

Figure 7 The stress change (blue line) along strike direction at depth of 3.5 km for the 917 

synthetic model A, shown by dashed line in Fig. 4a. The stress change is then smoothed 918 

over 500 m (one subfault) shown in yellow line and 1000 m (two subfault sizes) shown in 919 

orange line. 920 

 921 



922 

Figure 8. Inverted results INV2 for the synthetic rupture model A shown in Fig. 4, using 923 

λ=1.5e−4 and β =1.5e−7 shown with red dots in Fig. 5 and using seismic data from eight 924 

stations shown in Fig. 3a. (a)(c)(e) are inverted stress change in strike, dip and normal 925 

directions. (b)(d)(f) are associated slip along strike, dip and normal directions. The red dots 926 

represent the hypocenter location. 927 



 928 

 929 

Figure 9. Inverted results INV3 for the synthetic rupture model A shown in Fig. 4, using 930 

λ=1.5e−4 and β =1.5e−7 shown with red dots in Fig. 5 and five seismic stations shown 931 

in Figure 3b. (a) is the inverted stress change in strike direction and (b) is the associated 932 

slip in strike direction. 933 

 934 

 935 

 936 



 937 

Figure 10. Slip vs stress curves for the forward model A (red lines) compared with slip vs 938 

stress curves for the inverted result INV2 (blue lines), on grids located within the slip zone 939 

outlined by white rectangles in Fig. 8ad. The top right panel represents slip-stress history 940 

for near the hypocenter. 941 
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 943 

Figure 11. Checkerboard test results. (a)(b) The checkerboard model of stress changes and 944 

associated fault slip along strike direction. The black dot represents the rupture initiation 945 

point in the model.  (c)(d) The inverted result for stress changes and fault slip along strike 946 

direction, using eight stations for inversion as shown in Fig. 3a. (e)(f) The inverted result 947 

for stress changes and fault slip along strike direction, using five stations for inversion as 948 

shown in Fig. 3b. 949 



 950 

 951 

Figure 12. Comparison of the inverted stress change (a)(e) and resultant final slip  (b)(f) 952 

between the dynamic stress inversion method (top) the kinematic slip inversion method 953 

(bottom).  Slip-stress evolution history for the hypocenter (central point of the left slip 954 

patch in (a)) is shown in (c) and for the central point in another slip patch in (a) is shown 955 

in (d). 956 


