loading page

Dynamic evolution of flow structures and viscosity during basaltic magma emplacement and crystallization in an upper-crustal sill
  • +2
  • LeeAnn Srogi,
  • Arianna Soldati,
  • Tim Lutz,
  • Nikolas Watson,
  • Meagen Pollock
LeeAnn Srogi
West Chester University of Pennsylvania, West Chester University of Pennsylvania

Corresponding Author:[email protected]

Author Profile
Arianna Soldati
North Carolina State University
Author Profile
Tim Lutz
West Chester University of Pennsylvania
Author Profile
Nikolas Watson
West Chester University of Pennsylvania
Author Profile
Meagen Pollock
College of Wooster
Author Profile

Abstract

An upper-crustal intrusive network in the 201.5 Ma, rift-related Central Atlantic Magmatic Province is exposed in the western Newark basin (PA, USA). Alpha-MELTS modeling was used to track magma evolution starting with initial pyroxene crystallization at depth (1000-500 MPa); plagioclase crystallized during ascent in the upper crust. For magma emplaced at 5-6 km depth (170 MPa), six MELTS models were generated to bracket different composition, H2O (1-3 wt.%), and crystallinity (28-49 vol.%). Corresponding magma viscosities evolved from 3 to 1624 Pa-sec (predicted using Giordano et. al 2008; Moitra and Gonnermann 2014). Detailed crystal mush structures in a diabase sill are revealed in a dimension stone quarry. Ubiquitous asymmetric modal layers a few mm thick comprising plag-rich layers (PRL, 75% modal plag) overlying more pyx-rich layers outline the tops of hundreds of dm-m scale flow lobes in the quarry. Tabular plag in PRL show shape-preferred orientations, tiling, and pressure shadows around larger pyx that resemble analog experiments on particle slurries and indicate flow with limited mechanical compaction. During magma emplacement, recursive interactions of propagation, sorting, and crystallization self-organized as flow lobes with plag entrained and aligned along lobe tops. Our calculations show plag separation can reduce bimodal suspension viscosity; a positive feedback likely enhanced by shear thinning and crystal alignments. EDS analyses and X-ray maps show that plag has oscillatory-zoned cores (An82-67) with patchy-zoned mantles (An67) filled in by An66-63. In PRL, plag are cemented together by An62-55; Na-rich rims occur next to qtz-Kspar pockets. By the end of cementation, PRL liquid volume was significantly reduced to 11-18% compared with 28-45% in overall magma based on MELTS models for An62-55 plag. Diabase suspension viscosity increased to >6000 Pa-sec; PRL viscosity cannot be modeled by equations based on random packing. PRL with aligned interlocking crystals were more rigid and less permeable than surrounding diabase. Upward flow of magma after modal layer development was channelized into pipes truncated and deflected by PRL. Thus, lateral flow during emplacement developed sub-vertical heterogeneities that exemplify complex mush rheology over m-scale distances.