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Introduction

Here we provide additional figures aimed at validating the processing, inversion and

interpolation steps described in the main manuscript. We specifically give more details

about the seismic acquisition, the SRT and MASW workflows, and give a complete de-

scription of the petrophysical model and its calibration procedure. We finally describe the

average kriging procedure used to interpolate weathering front and water table depths.

S1. Seismic Data Acquisition

For both acquisition campaigns, we used 14-Hz vertical-component geophones, spaced

at 4 m in 2016, and at 2 m in 2019. Shots were recorded every 10 m with a 5.4-kg

sledgehammer swung onto a hard plate. For each shot, the sampling rate was 0.125 ms

and the recording time was 850 ms in order to include the full seismic wavefield. Start

and end points of each profile were recorded with a handheld GPS and relative elevations

at each geophone location were measured using a laser rangefinder.

S2. Seismic Refraction Tomography

Tomographic inversions are performed in pyGIMLi (Rücker et al., 2017), where the

inversion domain is parameterized with a 2D mesh of constant velocity tetrahedrons.

Rays are traced through the mesh using a shortest path algorithm (Dijkstra, 1959; Moser,

1991) and updates are found by solving a regularized, linear inverse problem. We used

144 combinations of starting models and regularization parameters (Table S1) in order to

explore the non-uniqueness of the inversion and estimate the uncertainty of the velocity

distribution along each profile. A selection is then applied to keep only the inversions

performed with a set of parameters that obtained a root mean square error < 2.5 ms and
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a χ2 < 2 for all the profiles. The selected models are then merged to create an average

velocity model and its associated uncertainty. Models are masked at depth below the

lowest raypath (Figure S1). The standard deviations along each profile are computed to

estimate how the velocity likelihood varies laterally and at depth (Figure S2).

S3. Multichannel Analysis of Surface-wave

The seismic data were processed to perform surface-wave dispersion inversion and pro-

filing (Pasquet & Bodet, 2017) using the SWIP software package (available at https://

github.com/SWIPdev/SWIP/releases). SWIP uses windowing and stacking techniques

(Neducza, 2007; O’Neill et al., 2003) to take advantage of redundant seismic data and

retrieve a 2D model of VS from a succession of 1D inversions. Dispersion images were

extracted every 2 m along each profile with the novel multiwindow weighted stacking

of surface-wave procedure (Pasquet et al., 2020), using a set of 6 windows with evenly

spaced apertures ranging between 14 m and 94 m. For each window along the profile,

dispersion images were computed for each aperture using all shots located between 4 and

20 m away from the windowed data subset. All 6 individual dispersion images were then

stacked as one final image with increased signal to noise ratio, doing so every 2 m along

the seismic profile. Dispersion curves are eventually identified and picked on each of the

stacked images to characterize the lateral variability of the phase velocity vs frequency

relationship.

Dispersion curves are then inverted with the neighborhood algorithm (NA) developed

in (Sambridge, 1999) and implemented for subsurface applications within the open soft-

ware package Geopsy (Wathelet et al., 2004). The NA carries out a random search
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within a pre-defined parameter space, i.e. VP , VS, density and thickness of each layer.

In Geopsy, theoretical dispersion curves are computed from the elastic parameters us-

ing the Thomson-Haskell matrix propagator technique (Haskell, 1953; Thomson, 1950)

as implemented in (Dunkin, 1965). We set the inversion parameterization as a stack of

ten layers overlaying a half-space in order to correctly describe smooth velocity gradients

encountered in such weathered materials. The thickness of each layer was set to be bound

between 0.5 and 1.5 m in the upper layer, these limits then exponentially increasing in

the following layers until reaching 1.5 and 6 m in the deepest layer. The valid parameter

range for sampling velocity models was 10 to 2500 m/s for VS, with velocities constrained

to only increase with depth, while VP was automatically parameterized from SRT results.

For each 1D inversion, models matching the observed data within the error bars are

selected to build a misfit-weighted final model. After checking phase velocity residuals

(Figure S3), the depth of investigation (DOI) is estimated from the standard deviation

of all selected models, using a threshold of 15% on the standard deviation to determine

the DOI and limit the extent of the VS model (Figure S4). Each 1D VS model is finally

represented at its corresponding extraction position to create a 2D VS section. We even-

tually compared observed and calculated phase velocity for each window position, and

computed their residuals to check the quality of the inversion.

S4. Petrophysical inversion

In order to estimate porosity and saturation from VP and VS, we used a petrophysical

model based on the Hertz-Mindlin contact theory. We followed the strategy presented by

(Pasquet et al., 2016) and applied in an hydrothermal system in Yellowstone. The model
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is used to calculate bulk elastic parameters of the medium so as to simulate realistic

values of VP and VS that can be compared to those measured with SRT and MASW.

With this model, we represent the medium as an aggregate of randomly packed spheres

and simulate their bulk elastic properties (i.e. bulk and shear modulus) as functions

of the elastic properties of constituent minerals, porosity, saturation, and several model

parameters.

We assumed a unique mineralogical composition in the grain following the description by

Buss et al. (2010) (66% clay, 28% hydroxides and 6% quartz). For each mineral compound,

we use the elastic parameters found in the literature and summarized in Table S2. The

elastic parameters (Kg and Gg) of the grains are then computed from this mineralogical

composition with the Voigt-Reuss-Hill average (Hill, 1952; Mavko et al., 2003):

(Kg, Gg) =
1

2

 m∑
i=1

fi(Ki, Gi) +

(
m∑
i=1

fi
(Ki, Gi)

)−1
 , (1)

where m is the number of mineral constituents, fi is the volumetric fraction of the i-th

constituent of the solid phase, and Ki and Gi are the bulk and shear moduli of the i-th

constituent, respectively. From Kg and Gg, we can compute the Poisson’s ratio νg of the

grains:

νg =
1

2

(
3Kg − 2Gg

3Kg +Gg

)
, (2)

while their density ρg is calculated following:

ρg =
m∑
i=1

fiρi. (3)
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The bulk density of the medium (ρb) can then be calculated for different combinations

of porosity (Φ) and saturation (W ) with the following equation:

ρb = Φ(Wρw + (1−W )ρa) + (1− Φ)ρg, (4)

where ρw and ρa are the densities of water and air, respectively.

At this point we can compute the bulk elastic parameters of the dry rock frame made

of a random pack of identical spherical grains subject to a hydrostatic pressure Peff . The

bulk modulus KHM is computed as follow:

KHM =

[
n2(1− Φc)

2G2
g

18π2(1− νg)2
Peff

] 1
3

, (5)

where n is the average number of contacts between grains and Φc a critical porosity

over which the medium changes from a suspension to a grain-supported material. As

recommended by Nur, Mavko, Dvorkin, and Galmudi (1998), we used a critical porosity

of 0.36. Since the traditional Hertz-Mindlin formulation tends to overestimate shear-

wave velocities in unconsolidated media (Bachrach & Avseth, 2008), we use the approach

proposed by Mavko et al. (2003) to calculate the shear modulus (GHM). This approach

allows a fraction f of the grain contacts to be frictionless, the rest having perfect adhesion:

GHM =
2 + 3f − (1 + 3f)νg

5(2− νg)

[
3n2(1− Φc)

2G2
g

2π2(1− νg)2
Peff

] 1
3

, (6)

In the case of full saturation, Peff is calculated as follow:

Peff = (ρb − ρw)gD, (7)

where g is the gravitational acceleration and D is the depth below ground level. In

partially saturated media, Peff is calculated as:

Peff = ρbgD. (8)
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For porosity Φ higher than Φc, the effective bulk (Kdry) and shear (Gdry) moduli of

the dry frame are calculated with the modified upper Hashin-Shtrikman (H-S) bound

(Dvorkin et al., 1999):

Kdry =

 1−Φ
1−Φc

KHM + 4
3
GHM

+
Φ−Φc

1−Φc

4
3
GHM

−1

− 4

3
GHM , (9)

Gdry =

 1−Φ
1−Φc

GHM + Z
+

Φ−Φc

1−Φc

Z

−1

− Z. (10)

For porosity Φ lower than Φc, Kdry and Gdry are calculated with the modified lower H-S

bound:

Kdry =

 Φ
Φc

KHM + 4
3
GHM

+
1− Φ

Φc

Kg +
4
3
GHM

−1

− 4

3
GHM , (11)

Gdry =

 Φ
Φc

GHM + Z
+

1− Φ
Φc

Gg + Z

−1

− Z. (12)

In both cases, Z is defined as follow:

Z =
GHM

6

(
9KHM + 8GHM

KHM + 2GHM

)
. (13)

We then use Gassmann fluid substitution equations (Gassmann, 1951; Mavko et al.,

2003) to estimate the effective bulk (Ksat) modulus in partial saturation conditions:

Ksat = KG

ΦKdry − (1 + Φ)
KflKdry

KG
+Kfl

(1− Φ)Kfl + ΦKG − KflKdry

KG

, (14)

where Kfl is the effective bulk modulus of the fluid and is defined with the Brie’s fluid

mixing equation (Brie et al., 1995; Wollner & Dvorkin, 2018):

Kfl = W e(Kw −Ka) +Ka. (15)
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The empirical constant e can range between 1 and ∞. In full or partial saturation

conditions, the effective shear modulus Gsat is identical to the dry effective shear modulus

Gdry.

Once the effective elastic moduli and density in partial saturation conditions are known,

the elastic wave velocities can be calculated as follow:

VP =

√√√√Ksat +
4
3
Gsat

ρb
(16)

VS =

√
Gsat

ρb
(17)

We performed a preliminary grid search to find the best set of model parameters n, f

and e. n ranged between 5 and 20 with steps of 1, f between 0 and 1 with steps of 0.1, and

e between 1 and 40 with steps of 1. We minimized a misfit function that incorporates both

density and saturation constraints in control points along profile P5. On the one hand,

we compare the estimated bulk density in the upper 10 m at the end of P5 (X = 170 m;

green star in Figure 2 in the main manuscript) with the average density (1000 kg/m3)

measured in a direct sample nearby (Buss et al., 2010). On the other hand, we compare

the saturation value estimated in the stream along P5 close to the surface to its expected

value W = 1 (we expect full saturation there since water was flowing in the stream at

the time of the measurements). By minimizing both density and saturation differences,

we were eventually able to define the best parameters as n = 17, f = 0.9 and e = 24

(Figure S5) and used them to estimate porosity and saturation along all profiles.

The grid search inversion was then performed on each geophysical profile on cells con-

taining both VP and VS information. Porosity and saturation ranged from 0 to 1, with
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100 samples following a logarithmic distribution to better sample the strong velocity gra-

dient at high saturation and low porosity. The root-mean-square errors of each profile

are summarized in Figure S6. Water saturation uncertainties estimated with the grid

search inversions (Figure S8) are low (¡5%), especially in the water-saturated areas of the

subsurface, thus reinforcing our confidence in the interpreted water table levels. Porosity

uncertainties Figure S8) are also high (about 8% on average), yet they still allow to draw

valid interpretations about porosity variations between the main areas of the catchment.

S5. Kriging interpolation

Kriging consists of estimating the unknown value of a variable (i.e., the depth or the

elevation) at any point in space using a weighted average of all available observations.

The weights given to each data points are based on the spatial correlations and trends

that exist within the data set, and also depend on the distance from data points. We

first computed an experimental variogram of the data which represents the semivariance

(i.e., the average difference of all pairs of data points separated by the same distance)

as a function of the distance between these points. A theoretical variogram was then

adjusted to fit the experimental variogram in order to describe the data semivariance with

a mathematical expression for any distance between points. A more detailed description

of the kriging method can be found in Oliver and Webster (2014) and in geostatistics

textbooks (e.g., Chilès & Delfiner, 2009).

We followed a four-step procedure to interpolate elevation data of both the water table

and the weathering front. This procedure consists in: (i) removing the quadratic trend

of the elevation data, (ii) compute the experimental variogram, (iii) test several theo-
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retical variograms, and (iv) apply the best fitting variogram (Oliver & Webster, 2014).

We eventually used the super-spherical model (Matern, 1986) as it provided the best fit

with experimental variograms of elevation data for both weathering front and water table

interpolations (Figure S9). A similar procedure was used to interpolate depth data, with

a first step consisting in converting elevation data into depth data by substracting weath-

ering front and water table elevation to the landscape surface topography extracted from

the digital elevation model (DEM). We then used ordinary kriging to estimate detrended

elevations and depths of both the weathering front and the water table along a regular

grid of 10x10 m cells covering the entire watershed. We eventually added the quadratic

trend back to the kriged elevations, and the surface elevations back to the kriged depths,

so as to obtain two distinct elevation interpolations for both the weathering front and the

water table. Following the average kriging methodology proposed by Snyder (2008), we

then averaged the results of both interpolations to produce reliable estimates of weather-

ing front and water table elevations in the Quiock watershed (Figure S10). We eventually

computed the depth of each interface by removing the landscape surface topography to

the interpolated elevations.
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Table S1. Regularization parameters for seismic refraction tomography inversions.

Vtop (m/s) Vbottom (m/s) zweight lambda
250 2000 0.25 2
500 3000 0.5 20
750 4000 0.75 200

5000 1

Table S2. Elastic parameters for the different minerals found in the regolith

Kmineral (GPa) Gmineral (GPa) ρmineral (kg/m
3)

Clays (Mavko et al., 2003) 1.5 1.4 1580
Hydroxides (Chicot et al., 2011) 200 50 5000
Quartz (Mavko et al., 2003) 37 44 2650
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Figure S1. Left column: Raypath distribution for each seismic profile used to mask final

VP models. Right column: Observed vs Calculated traveltimes. The colorscale in both columns

corresponds to traveltime residuals (in %).
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Figure S2. Standard deviation of VP (in %) computed for each profile from the results of 144

inversions. The white dashed line corresponds to the DOI, estimated from the maximum depth

of raypaths (cf Figure S1).
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Figure S3. Left column: Phase velocity residuals for each seismic profile. Right column:

Observed vs Calculated phase velocities. The colorscale in both columns corresponds to phase

velocity residuals (in %).
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Figure S4. Standard deviation of VS (in %) computed for each profile from the results of NA

inversions. The white dashed line corresponds to the DOI, estimated with a threshold of 15% on

the standard deviation.

Figure S5. Results of the grid search inversion to determine best parameters for n, f and e.
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Figure S6. Velocity residuals after the grid search inversion.
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Figure S7. Porosity cross-sections obtained after the grid search inversion.
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Figure S8. Porosity and saturation uncertainties estimated with the grid search inversion.
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Figure S9. Experimental and theoretical variograms used for interpolating the water table

(a) elevation and (b) depth. Experimental and theoretical variograms used for interpolating the

weathering front (c) elevation and (d) depth.
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Figure S10. (a) Estimated weathering front (WF) elevation. (b) Estimated water table (WT)

elevation. a-b are overlaid with 5-m elevation/depth contours. The extent of the catchment and

the seismic lines are shown in black, and the hydrological network in blue. Estimated water table

elevations (c) are compared with the mean values observed in the piezometric wells (light blue

dots in b) during the geophysical campaign.
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Figure S11. Water table elevation and depth obtained by interpolating detrended water table

elevation only (top) and water table depth only (bottom).
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