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Text S1.

Simulation of stress distribution and microcracks growth. The Grain-Based Discrete
Element Modelling (GB-DEM) method [1] was used to simulate the initiation and growth
of microcracks in the process of loading the diorite specimen to failure by using the
programs PFC2D. First, as shown in Fig. S5a, the initial two-dimensional grain structure
model was created according to the contents and sizes of four main minerals embedded
in diorite specimen (Fig. S1, Table S2), and the generated disks has been divided into
four groups accordingly. By connecting the centers of the disks that share the same
contact points, multiple convex polygons are formed correspondingly (black solid lines).
Second, the centroids of convex polygons were calculated and illustrated by the red dots
in Fig. S5b. Third, by connecting the red dots of polygons that share the same edge (blue
solid lines in Fig. S5c), a new polygonal mesh was formed (yellow solid lines). Then, all of
the original disks in the initial model were deleted and the remaining convex polygons
corresponds to the mineral grains (Fig. S5d). Lastly, each newly formed convex polygon
was filled with new disks, of which the scale is much smaller than that of polygon;
thereby, the geometric model with polygon grain structure reflects the distributions of
different mineral crystals (Fig. S5e and 5f). There are no gaps between polygons - each
polygon edge is either internal (adjacent to two polygons) or external (adjacent to one
polygon) such that each polygon and internal edge correspond with a grain and a grain-
grain interface, respectively.

Based on the modulus and Poisson's ratio of minerals given in Table S1, “trial and
error” method was used for calibrating the mechanical parameters of the filled small
disks in Fig. S5e, such that the established numerical model matches the macroscopic
response and most of the mechanisms that occur during compression test on diorite
specimen. Besides, material properties are associated with the grains and the interfaces
such that both entities are deformable and capable of fracturing. The calibrated results
are listed in Table S3. The overall macro-properties of simulations and experiments are
well agreed.

Type or paste text here. This should be additional explanatory text, such as:
extended descriptions of results, full details of models, extended lists of
acknowledgements etc. It should not be additional discussion, analysis, interpretation or
critique. It should not be an additional scientific experiment or paper.
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Figure S1. Preparation of rock specimen. (a) thin section of diorite with cross light (b) bar-
shaped diorite specimen with a conical head (c) the strain gauges pasted on the specimen
surface, CH2 and CH3 are pasted on side surface, CH4 and CH5 are pasted on underside
surface. (d) the stress-strain curves of specimen in process of axially loading to failure.
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Figure S2. Detected PSRC and AE signals of diorite specimens S2 - S7, corresponding (a)
- (f) respectively.
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Figure S3. PSRC variations during several seconds prior to the rock failure for specimens
S2-S7, corresponding (a) - (e) respectively.
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Figure S5. Construction process of grain-based discrete element method (GB-DEM). a.
initial disk packing showing disks and contacts, where Am, Px, Pl and Bt represent four
main minerals in diorite specimen that illustrated in Fig. S1. b. filled dots (red) at internal-
void centroids. ¢. grain structure consisting of polygons, one for each internal disk, with
nodes at internal-void centroids. d. generated polygon mesh. e. two-dimensional
numerical model of diorite specimen in our experiment. f, enlarged polygon mesh with
filled particles.
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Figure S6. Results of numerical simulation (with particle flow model) for the distribution
of stresses in the loaded diorite specimen. (a) the stress distribution at x direction; (b) the
stress distribution at y direction.
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Figure S7. Results of numerical simulation (with particle flow model) for growth and
propagation of microcracks in process of loading specimen to failure. o represents the

failure strength
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Figure S8. The schematic for illustrating the influences of growth of microcracks on the

bending and breaking of proxy bond.
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Specimen o (MPa) R AC, (nA) AC; . (nA) Tp — T, (S)

S1 128.27 91.6% +4.1 +114 0.48
S2 138.99 90.3% +3 +53 0.78
S3 145.54 89.1% +3 +96 0.89
S4 147.32 98.7% +3.4 +115 1.1
S5 135.12 83.7% +3.5 +199 0.64
S6 132.14 91.9% +3.1 +682 0.61
S7 115.48 96.9% +3.5 +203 0.95

R represents the strength ratio at which the PSRC of each specimen began to rise in a step-like
way, AC, represents the increment amplitude of step-like rise in PSRC, AC;, represents the
increment amplitude of first positive fluctuations in PSRC prior to specimen failure, T, represents
the time of the specimen failure, T, represents the time of the first positive fluctuation in PSRC prior
to specimen failure.

Table S1. The detected PSRC variations in experiments.



Plagioclase Hornblende Pyroxene Biotite

Physical properties

Volume composite  Vy4ti0 60% 20% 10% 10%
Density p (kg/m?3) 2620 3124 3260 3050
Modulus E (GPa) 37.5 87 94.1 51
Poisson’s ratio u 0.32 0.29 0.25 0.27
Sizes

Minimum grain size d,,;;, (mm) 4.0 2.2 2.0 14
Maximum/Minimum d,,,,./dmin 1.4 1.27 1.2 1.14

Table S2. Physical properties and size of particles for different mineral materials.



Plagioclase =~ Hornblende Pyroxene Biotite

Balls
Minimum radius Rin (MM) 0.25
Radius ratio Rinax/Rmin 1.66
Density p (kg/m?3) 2620 3124 3260 3050
Young Modulus Epau (GPa) 33.5 68.0 78.0 56.0
Stiffness ratio k,/ks 2.3 1.9 1.4 1.8
Friction coefficient u 0.5 0.5 0.5 0.5
Transgranular contacts
Young Modulus Ef-. (GPa) 33.5 68.0 78.0 56.0
Stiffness ratio kire/ktra 2.3 1.9 1.4 1.8
Friction angle Pire. (degree) 10.0 15.0 15.0 10.0
Cohesion strength ¢, (MPa) 100.0 80.0 110.0 50.0
Tension strength otra (MPa) 70.0 60.0 80.0 40.0
Intergranular contacts
Linear Young Modulus  Ef,, (GPa) 20.0
Linear stiffness ratio k' /it 2.9
Parallel Young Modulus E, (GPa) 20.0
Parallel stiffness ratio k' /kint 2.9
Friction angle Qine. (degree) 40.0
Cohesion strength Ctrq. (MPa) 35.0
Tension strength o™ (MPa) 30.0

Table S3. Calibrated parameters for different mineral materials in GB-DEM.
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