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Introduction  

This file contains supporting information describing data sources, data processing steps, and 
theoretical background, as well as supplemental figures. The data quality control, gap-filling, and 
Matlab (MathWorks, 2020b) analyses code used for this study is available at 
https://doi.org/10.5281/zenodo.5671739 and the datasets that support this work are archived at 
https://doi.org/10.5281/zenodo.5634172 and https://doi.org/10.5281/zenodo.4268710. These 
datasets consist of modern and historical meteorological and groundwater measurements.  

  

https://doi.org/10.5281/zenodo.5671739
https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.4268710
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Supporting Information 

Text S1. Meteorological Data 

Meteorological measurements and products are archived at 
https://doi.org/10.5281/zenodo.5634172. The data quality control, gap-filling, and Matlab 
(MathWorks, 2020b) analyses code used for this study are archived at 
https://doi.org/10.5281/zenodo.5671739.  

Meteorological measurements and surface observations 

Historical meteorological measurements from the Bonneville Salt Flats and the surrounding area 
were reported by Lines (1979) and Mason and Kipp (1998). Additional measurements from 
Wendover, Utah, were collected from the National Oceanic and Atmospheric Administration 
(NOAA) Climate Data Online Portal. Weather station data at BSF was collected from the MesoWest 
weather station data repository (https://mesowest.utah.edu/, station ID: BFLAT) (Horel et al., 2002).  

These measurements were used to examine the spatial and temporal heterogeneity of precipitation 
and evaporation in the area surrounding BSF (Figure S2). Precipitation in 2020 was four times lower 
than the preceding years of 2017 to 2019. The year of 2019 was 40% wetter than the next wettest 
year during the study period of 2016 to 2021.  

Eddy-Covariance Data and Aerodynamic Roughness 

The eddy-covariance equipment was oriented to the northwest and installed at the height of 2.57 
m from May to August 2018. Eddy-covariance data available at 
https://doi.org/10.5281/zenodo.5634172 and the code used to determine the aerodynamic 
roughness length is available at https://doi.org/10.5281/zenodo.5671739. 

The aerodynamic roughness length (𝑍𝑍𝑜𝑜) (meters) was determined with sonic anemometer data 
collected from May to August 2018 with equation S1-1. Equation S1-1 is rearranged to solve for Zo 
in equation S1-2; the data is filtered where L is > 100 m, such that 𝛹𝛹𝑚𝑚(𝑍𝑍

𝐿𝐿
) approaches zero (Stull, 

2012).  

𝑚𝑚
𝑢𝑢∗
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𝑍𝑍𝑜𝑜
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𝐿𝐿
�)        (S1-1) 

𝑍𝑍𝑜𝑜 = 𝑍𝑍/exp (𝐾𝐾 𝑚𝑚
𝑢𝑢∗

)         (S1-2) 

Where 𝑚𝑚 is wind speed (m/s) filtered to only include wind speeds between 2-6 m/s, µ* is the friction 
velocity (m/s), K is the von Karman Constant (0.4), Z is the measurement height (m), 𝛹𝛹𝑚𝑚  is the 
stability function, and L is the Monin-Obukhov length scale. The median value of 𝑍𝑍𝑜𝑜  at BSF was 
5.4*10-4 m. 

Meteorological data gap filling  

Outgoing and net longwave radiometer measurements from November 24, 2019 to March 2, 2020 
were removed from the dataset for quality control. Longwave radiation measurements were not 
available prior to the installation of the longwave radiometers on June 6, 2017. An artificial neural 
network was shown to estimate radiation effectively by Kelley (2020). The neural network (using 
the methods outlined in Text S3, and with the training inputs of air temperature, relative humidity, 
wind speed, incoming and outgoing shortwave radiation, and time of day) was used to fill data 

https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
https://mesowest.utah.edu/
https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
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gaps. The artificial neural network was more effective at estimating net longwave radiation than 
incoming longwave radiation (Figure S3). Incoming longwave radiation was calculated by 
subtracting the outgoing radiation from net longwave radiation. 

From June 9 to 11, 2019, the weather station did not log meteorological measurements. 
Temperature, humidity, air pressure, and incoming shortwave radiation measurement from this 
period were replaced with measurements made by the nearby DPG17 weather station 
(https://mesowest.utah.edu/, station ID: DPG17). Outgoing shortwave radiation and incoming and 
outgoing longwave radiation during this period were replaced with measured mean BSF radiation 
measurements from the preceding and proceeding days. 

Imagery 

The saline pan's surface properties and surface features changed over time with evaporite growth, 
dissolution, and alteration. Time-lapse imagery from the BFLAT weather station is available at 
http://home.chpc.utah.edu/~u0790486/wxinfo/cgi-bin/uunet_camera_explorer.cgi Camera: 
Bonneville Salt Flats, and, along with imagery from other locations at 
https://doi.org/10.5281/zenodo.4171331 (Bernau & Bowen, 2021). There are some gaps within the 
weather station-collected imagery because of equipment malfunctions. The camera view was 
shifted downward from April 7 to 11, 2018. The camera was non-functioning from February 7 to 
May 18, 2020. 
 
 

Text S2. Estimated Evaporation Models 
Estimated evaporation model results are available at https://doi.org/10.5281/zenodo.5634172 and 
code is available at https://doi.org/10.5281/zenodo.5671739. 

Potential evaporation-based models 

Water Activity 

The water activity of BSF brines was estimated with geochemical modeling and previously derived 
empirical relationships between brine density and water activity for BSF brines (Turk, 1973). Water 
samples from BSF (Kipnis et al., 2020) were equilibrated with halite using the React module in 
Geochemist’s Workbench (Bethke, 2013). The phrqpitz thermodynamic dataset was used. The 
water activity of brine equilibrated with halite was then calculated with the SpecE8 module. The 
mean calculated water activity in Geochemist’s Workbench was 0.75 with a standard deviation 
<0.01.  

The density of natural and anthropogenic BSF surface brines was used as an input for an equation 
derived from Turk’s (1973) measurements of BSF brines. The average water activity calculated with 
method was 0.73 (standard deviation of 0.04). The maximum calculated water activity was 0.86. 
These results indicate that sustained surface brines at BSF have water activities between 0.73 to 
0.75. A constant water activity of 0.74 was used in this research. Immediately after meteoric 
precipitation, BSF brine water activity is likely >0.74. Changes in water activity are buffered by 
dissolution of surface halite. 

https://mesowest.utah.edu/
http://home.chpc.utah.edu/%7Eu0790486/wxinfo/cgi-bin/uunet_camera_explorer.cgi
https://doi.org/10.5281/zenodo.4171331
https://doi.org/10.5281/zenodo.5634172
https://doi.org/10.5281/zenodo.5671739
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Penman equation evaporation 

The potential evaporation calculated with the Penman equation (PE) and with the Calder and Neal 
(1984) water-activity corrected adaptation of the Penman equation (PE CN) are similar. The PE CN 
evaporation values were slightly lower (>20% less) than evaporation calculated with the unaltered 
Penman equation. The water activity corrected evaporation was used to create albedo-calibrated 
estimated evaporation values. The scaling correction values that are dependent on albedo and are 
used in the EeHigh and EeLow models are summarized in the table below.  

Inputs used for albedo-calibrated estimated evaporation (EeHigh and EeLow) models 

Albedo Evaporation estimation equation Kc (scaling value) 

>0.37 (EeHigh and EeLow) Ee = Kc1(PE CN)/albedo Kc1 = 0.0788 

<0.37 (EeHigh) Ee = Kc2(PE CN)/albedo Kc2 = 0.0570 

<0.37 (EeLow) Ee = Kc3(PE CN) Kc3 = 0.0351 

 

Artificial neural network models 

The MATLAB Deep Learning Toolbox (MathWorks, 2020a) was used to implement the artificial 
neural network used to estimate evaporation. The artificial neural network is structured such that 
each period is evaluated independently of the proceeding and preceding measurements. The 
artificial neural network consisted of two layers (a hidden training layer with 10 nodes and a single 
node output layer). It was trained using the Bayesian regularization backpropagation algorithm. 
This algorithm is implemented with the Levenberg-Marquardt optimization. The data was split 
randomly such that 70% of the dataset was used for training, and 30% was used for validation. 
Following Kelley and Pardyjak’s (2019) methods, the 30-minute average values of weather station 
measurements were used as input values. These data were trained to replicate evaporation 
measured by the eddy-covariance method.  

Different training inputs were used to test what inputs enhanced or decreased the quality of the 
artificial neural network model, as compared to the albedo-calibrated evaporation models (Figures 
S4 and S5). Using longwave radiation as an input improved artificial neural network evaporation 
outputs by making them more similar to the EeLow model during known dry periods. 

The generalizability of artificial neural network models to periods that were outside of training 
conditions was investigated by iteratively removing periods with low temperatures and high 
humidity values from the training dataset and comparing the model outputs (Figure S5). Removing 
lower temperatures from the training dataset led to higher evaporation estimates. This result 
indicates that the artificial neural network overestimated winter evaporation. This was 
corroborated by the difference between potential evaporation-based models of winter evaporation 
and the much higher winter evaporation estimates of the artificial neural network.  
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Text S3. Groundwater Data 
Recent and historical measurements of groundwater levels, temperatures, water chemistry, 
anthropogenic brine fluxes, and well meta-data compiled from published data, the United States 
Geological Survey’s national water information system (NWIS), and the Water Quality Portal are 
available at https://doi.org/10.5281/zenodo.4268710 (Bernau & Bowen, 2021; Kipnis & Bowen, 
2018; Lines, 1978, 1979; Mason et al., 1995; Mason & Kipp, 1998; Read et al., 2017; Turk, 1973). The 
wells referred to in the main text as the 0.8 m and 3.5 m deep wells are identified as BLM-93C and 
BLM-93, respectively, in past publications. Supplemental figures incorporating current and 
historical groundwater data include Figures S2 and S6 to S9.  

Continuous water levels from 2017 to 2021 were measured with non-vented pressure transducers. 
There were some data gaps from repositioning data loggers or loggers reaching data storage 
capacity. Groundwater levels were calculated by subtracting atmosphere pressure from the 
transducer-measured pressure. Where possible, groundwater measurements were corrected to be 
equivalent heads of a halite-saturated water column and were corrected for barometric efficiency. 
The effect of daily to seasonal temperature changes on groundwater level was quantified. 
Furthermore, the apparent specific yield of near surface sediments was estimated. The code used to 
perform these analyses is available at https://doi.org/10.5281/zenodo.5671739. 

Equivalent head calculation 

For flow calculations, head values for waters of differing density are often converted into 
equivalent heads of freshwater (Post et al., 2007). The water table at BSF’s center is in direct contact 
with the evaporite crust, and is therefore halite-saturated. Therefore, to better estimate water table 
levels, head is estimated here by converting the measured head to an equivalent head of halite-
saturated brine. The density for the 0.8 and 3.5-m deep wells was calculated using the equations’ of 
state for these brines (Bernau & Bowen, 2021) with the soil temperature at 10 cm used as the 
temperature input (Figure S6). Calculated densities strongly reflected measured densities. 

Although groundwater density changed throughout the year in both wells because of temperature 
and salinity changes, the equivalent head, when a constant density throughout the year was 
assumed, differed from the variable density equivalent head model by 0.5 to 1.2 cm (Figure S6). 
Because of this minor difference between methodologies, and the limited ground temperature and 
brine density measurements for many sites, groundwater density in each well was assumed to be 
constant when determining the equivalent head. When available, the well’s brine’s equation of 
state and a temperature range throughout the year was used to determine a representative 
average brine density; otherwise, the average measured density of the groundwater from a well 
was used.  

Barometric efficiency correction 

Air-pressure changes and other external forces impact water levels in wells (McMillan et al., 2019). 
There is differential loading of barometric pressure between the exposed well water and the 
aquifer’s matrix and pore water in confined aquifers. This difference leads to an inverse relationship 
between barometric pressure and groundwater levels. The effect of air pressure on water level is 
quantified by a well’s barometric efficiency (equation S3-1). 

𝐵𝐵𝐵𝐵 = 1 −  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≈ 1 −  𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

         (S3-1) 

https://doi.org/10.5281/zenodo.4268710
https://doi.org/10.5281/zenodo.5671739
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where barometric efficiency (BE) is equal to 1 minus the change in groundwater pressure (dw) 
relative to the change in barometric pressure (db). For the Bonneville Salt Flats, barometric pressure 
units were converted into an equivalent column of halite-saturated water. The water column 
measurements, reported as an equivalent head of halite-saturated brine, were then used as inputs 
to calculate barometric efficiency.  

The median-of-ratios and linear regression time domain-based methods (as described in Turnadge 
et al., 2019) were used to determine the barometric efficiency BSF wells. The median-of-ratios was 
calculated by taking the median value of the ratio of the change in water level to the change in 
barometric pressure over a time period (Gonthier, 2007). The linear regression method determines 
the coefficient of the linear function where water level changes because of barometric pressure 
changes (Robinson & Bell, 1971). The time periods of change of one hour and one day were selected 
to test the impact of changing time period on the results.  

Once the barometric efficiency was calculated it was applied to the dataset to determine what the 
water level would be without changes in barometric efficiency (Equations S3-2 and S3-3). The 
original water level and barometric efficiency corrected water level were then graphically assessed. 
If the application of barometric efficiency increased variability in measured water level, it was 
increased, in some cases to 1.  

𝛥𝛥𝛥𝛥𝑏𝑏 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐((( 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑏𝑏)) ∗ (1 − 𝐵𝐵𝐵𝐵))       (S3-2) 

where 𝛥𝛥𝛥𝛥𝑏𝑏  is the change in water level originating from air pressure over the study interval relative 
to its starting point, 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑏𝑏) is the change in air pressure (in units of an equivalent column of halite-

saturated water) per unit time interval and BE is the barometric efficiency. The cumulative sum of 
this is calculated to determine how waster levels would change over time for changes in air 
pressure. 

𝑤𝑤𝐵𝐵𝐵𝐵 =  𝑤𝑤 − 𝛥𝛥𝛥𝛥𝑏𝑏 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛥𝛥𝛥𝛥𝑏𝑏)/2       (S3-3) 

where 𝑤𝑤𝐵𝐵𝐵𝐵  is the water level with the barometric efficiency signal removed, w is the original water 
level (as expressed in equivalent head of halite-saturated water). The effect air pressure on the 
water level at each moment is subtracted from the measured water level, because this would cause 
an offset in reported water elevation the mean value of the cumulative sum of water level change 
column is calculated and divided by two to determine the proper offset, which is added then added 
to the calculated water level at any moment. This methodology assumes that the barometric 
efficiency is invariable over time, which may not be the case for wells in unconfined aquifers. 

For the 3.5 m well, the barometric efficiencies determined by the median-of-ratios and linear 
regression methods and with different time intervals were similar (0.59-0.61). The 0.8 m well’s 
barometric efficiency value differed depending on if the one hour or one day time interval was used 
(from 0.51 to 0.86). Visual analysis of the barometric-corrected data for the 0.8 m well showed that 
water level data was more variable when a barometric efficiency <1 was considered; because of 
this, a barometric efficiency of 1 was assumed. If temperature was known to impact diurnal water 
levels fluctuations then only intervals of one day were used to determine well’s barometric 
efficiency. The barometric efficiency of other BSF wells varied between 0.54 and 1. Wells screened 
within lacustrine sediments near BSF’s center had barometric efficiencies between 0.54 and 0.60.  

When the barometric correction was applied to the 3.5 m well, the resulting water level changes 
were similar to those observed in the 0.8 m well (Figure S6). The 3.5 m well’s low barometric 
efficiency indicates that the lacustrine sediment-hosted aquifer in contact with the well has low 
permeability and poor connection with the atmosphere. 
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Thermal efficiency calculation and correction 

Meyer (1960) first described the effect of temperature on water levels. Turk (1973) first described this 
effect at BSF. This effect is quantified and modeled here to identify intervals during which non-
thermal processes impact water levels from seasonal to daily timescales (Figure S2). 

Methodology 

This methodology makes several simplifying assumptions about water levels at BSF. It assumes 
that the sediment column is uniform in porosity, so water level change scale linearly with 
temperature changes at all depths. It also assumes that temperature fluctuations are the primary 
control on water level changes, namely that there is no water movement in or out of the system. 
The effect of air pressure has also been removed by correcting for barometric efficiency. The dataset 
is limited to intervals that these assumptions hold. Finally, temperatures from a 10-cm depth soil 
probe were used as the input for these analyses to increase comparability between wells. The code 
used to perform these analyses is available at https://doi.org/10.5281/zenodo.5671739. 

The thermal efficiency, TE (equation S3-4), was calculated by adapting the analytical framework for 
barometric efficiency (see prior section). The median-of-ratios was calculated by taking the median 
value of the ratio of the change in water level to the change in soil temperature over some time. The 
linear regression method determined the coefficient of the linear function where the water level 
changes as a function of temperature changes.  

𝑇𝑇𝑇𝑇= ∆𝑤𝑤𝑤𝑤
𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

          (S3-4) 

where ∆𝑤𝑤𝑤𝑤 is the change in density and barometric efficiency corrected water depth (cm) and 
𝛥𝛥𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the temperature change(°C) from a 10-cm depth soil probe, and TE is the thermal 
efficiency.  

Daily thermal efficiency values 

The diurnal thermal efficiency was determined through two methods. The first method used linear 
regression and median-of-ratios approaches on hourly water level and temperature change 
periods. The second method used the median-of-ratios technique on the ratio of the daily range in 
soil temperature to the daily range in water level. Each month was analyzed individually using 
both methods to identify seasonal trends in temperature-controlled diurnal water level 
fluctuations. 

The first method only worked with the 0.8 m deep well (BLM-93C) co-located with the soil 
temperature probe. This method showed that there are seasonal variations in the daily thermal 
efficiency. The thermal efficiency signal was strong with a high R2 (>0.6) and a value between ~0.5 
and 0.8 between May and October. This pattern reflects the correlation between diurnal water level 
fluctuation and maximum air temperature (Figure 6). This method was ineffective in other wells 
because of lags in heat transfer relating to well and water depth. Therefore, the second method 
was used to compare wells.  

The median-of-ratios approach using daily ranges in water depth and soil temperature yielded 
similar results to the first method for the 0.8 m well. The median diurnal thermal efficiency of wells 
within the saline pan was found to be >0.25 to 0.5. The 0.8-m well was an outlier with a thermal 
efficiency of ~0.73. Wells to the west of the saline pan and at its northeastern edge had lower daily 
thermal efficiencies of 0.15 to <0.25. 

https://doi.org/10.5281/zenodo.5671739


 
 

8 
 

Seasonal thermal efficiency values 

Seasonal thermal efficiencies were determined using weekly and monthly periods of water level 
and temperature change. Using these more extended periods significantly limited the number of 
data points, so only the median-of-ratios method was used to determine seasonal thermal 
efficiencies. Because of the effect of non-thermal processes on water levels over these longer 
timescales, datasets were clipped to only the driest periods with the most notable temperature-
controlled water level changes (typical August to December).  

Data were plotted and then compared with observed changes in water level to qualitatively assess 
if calculated thermal efficiency values were recreating seasonal changes in water level. In general, 
seasonal thermal efficiencies replicated most groundwater changes during the dry fall months. The 
seasonal thermal efficiency for different wells ranged from ~0.8 to 2.2. The central areas with 
thicker evaporite crust had lower values, and the salt crust edge wells had higher values. Each well’s 
diurnal and seasonal thermal efficiencies do not appear to be correlated.  

Apparent specific yield of near-surface porous material 

The specific yield is defined as the gravity-drainable pores within a sediment. The specific yield is 
often assumed to be constant within wells. However, this simplification does not apply to shallow 
wells and short periods because the drainage rate may take several days to years, and the water 
content of the capillary fringe and vadose zone, and antecedent conditions can vary greatly and 
influence measurements (Crosbie et al., 2019). Because of this, the apparent specific yield (Sya) is 
often reported. This value factors in the effect of the capillary fringe, and it begins to approach zero 
as the groundwater level approaches the surface. Only at deeper groundwater depths does Sya 
approach a sediment’s specific yield (Crosbie et al., 2005; Duke, 1972). 

Specific yield is highly dependent on environmental conditions and sediment texture (Healy & 
Cook, 2002). As Healy and Cook (2002) note, the value of Sy to use for a study can be unclear. 
Because of the low topography at BSF and its well-constrained precipitation and evaporative 
fluxes, the apparent specific yield of the shallow crust at BSF was estimated using a form of the 
water budget equation which relies on water table fluctuations (Gerla, 1992; Lv et al., 2021; Walton, 
1970) (equation S3-5). 

𝑆𝑆𝑦𝑦𝑦𝑦  =
PPT+Q𝑜𝑜𝑜𝑜−Q𝑜𝑜𝑜𝑜𝑜𝑜−ET− ΔS𝑠𝑠𝑠𝑠sw− ΔS𝑢𝑢𝑢𝑢

𝛥𝛥𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥        (S3-5) 

where PPT is precipitation, Qon and Qoff are surface and subsurface water flow in and out of the area 
of interest, ET is evapotranspiration, ΔSsw is surface water storage, ΔSuw is unsaturated zone water 
storage, Δwd is the change in groundwater height, and Δt is the study period. Qon, Qoff, ΔSsw, and 
ΔSuw

 were assumed to be negligible because of the study site’s low topography and hydraulic 
gradients and its near-surface water table with a capillary fringe can intersect the surface. Only dry 
periods with no surface water at the beginning of the interval were used. This equation then 
simplifies to: 

𝑆𝑆𝑦𝑦𝑦𝑦 = ((PPT – E𝑒𝑒)/∆𝑤𝑤𝑤𝑤)𝑑𝑑𝑑𝑑        (S3-6) 

where over a period dt the change in groundwater height (∆𝑤𝑤𝑤𝑤) is attributable to the net recharge 
(PPT – Ee). More simply, this is the ratio of infiltrated precipitation to the change in the water table. 
This calculation assumes that recharge is the only variable influencing water level. To address this 
concern, only daily averages of water levels that were corrected for barometric efficiency were 
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considered were considered to partially eliminate the influence of temperature and air pressure 
fluctuations upon water levels.  

The daily average value of water level, reported as the equivalent height of saturated water column 
and corrected for barometric efficiency (for the 3.5 m well), was used to compensate for these 
variables. Furthermore, the input periods to calculate Sya were selected to meet the following 
criteria 1) initial water depth greater than 6 cm, 2) recharge (PPT-Ee)/Ee > 0.5, and 3) the final water 
depth was below the surface and did not decline rapidly in the days after precipitation (which 
would be indicative the reverse Wieringermeer or Lisse effects, where trapped air increases the 
apparent water column (Gillham, 1984; Heliotis & DeWitt, 1987)). Furthermore, to reduce to impact 
of the Lisse effect, apparent specific yield values less than 0.03 were not considered.  

If these conditions were met more frequently, a threshold value of >5mm of precipitation would 
also be included for determining Sya criteria. The study intervals used here extended one day before 
precipitation to at least one day following precipitation. Some periods include several precipitation 
events. 

The Sya values determined by this method varied (mean of 0.09 with a standard deviation of 0.04). 

Apparent specific yield relative to prior BSF research 

The porosity and characteristics of evaporite crust at BSF have been previously described and 
indicate that the apparent specific yield reported here is reasonable. The porosity of upper halite 
crust samples from X-ray computed tomography measurements was determined to be 29% (±5%) 
(Bernau & Bowen, 2021). Porosity was also estimated from the dry density of crystalline crust from 
30 samples reported by Mason & Kipp (1998). Assuming an 80-20 ratio of halite to gypsum in these 
samples yields an average estimated porosity of 23%. Using other proportions of halite to gypsum 
leads to a range of estimated porosities of 19 to 40%. Halite-rich portions of the lower part of the 
evaporite crust have an estimated porosity of 35-45% (Bernau & Bowen, 2021). The porosity of fine 
to medium sand in gypsum layers is likely between 20-50% (Bowen et al., 2018). Past examination 
of the fine-grained lacustrine sediments at BSF suggests a porosity of 50% and a specific yield of 
10% (Turk et al., 1973). 
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Figure S1. Long-term climate measurements from Wendover, Utah, and comparisons of monthly 
average values of evaporation and potential evaporation, and monthly sums of precipitation at 
the western margin (margin) and center (crust) of the Bonneville Salt Flats from April to October 
1993 and April to August 1994. (a) Crust evaporation (E) was higher than playa margin 
evaporation. (b) Potential evaporation (PE) was higher at the playa margin. (c) Cumulative 
precipitation (PPT) between the crust and the margin was within 5% of each other from October 
1992 to July 1994. (d) Wendover, Utah, annual precipitation record demonstrates that the study 
period was drier than average but included unusually wet and dry years and that there has been a 
long-term decline in precipitation. (e) Average annual temperatures from Wendover, Utah, reveal 
that the study period was warmer than average. (Figure data from Mason & Kipp, 1998; NOAA 
Climate Data Online Portal and MesoWest). 
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Figure S2. Anthropogenic brine volumes and solute mass balances over time in comparison to 
precipitation and limited groundwater level measurements. (a) Net annual BSF anthropogenic 
brine volumes since 2001. (b) Mass of anthropogenic solutes added and removed from BSF 
(updated from Kipnis & Bowen, 2018). (c) Millimeters of water added to southwestern area of BSF 
annually, assuming added brine covers an area between 20 and 50 km2 (as suggested by Bowen et 
al., 2017). (d) Density-corrected changes in groundwater level over time (key in (e)). Wells BLM-41, 
BLM-34, and BLM-31 are located near brine extraction ditch. The black line shows temperature-
controlled water levels in the 3.5 m well if no water inputs or output is assumed. (e) Modeled 
groundwater changes over with temperature effects on water levels removed. (f) Monthly values of 
brine addition and removal during study period. 



 
 

12 
 

 
 
Figure S3. Weekly average values of (a)outgoing longwave (lw) radiation and of (b) net lw 
radiation. 
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Figure S4. Eddy-covariance evaporation values used for training compared with artificial neural 
network evaporation values (model inputs in addition to air temp, relative humidity, wind speed, 
and time of day denoted in legends with LW and SW referring to radiation). (a) Hourly evaporation 
rates from eddy-covariance measurements and the artificial neural network. (b) Comparison of 
cumulative evaporation measurements between eddy-covariance data and different artificial 
neural networks. (c) Calibration period cumulative values of estimated daily evaporation made 
with different methods. (b) and (c) period totals differ because of data gaps in (b).  
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Figure S5. Comparison of the median values of evaporation modeled with select artificial neural 
networks. (a-b) Estimated evaporation trained with different inputs (base inputs are described in 
key, with additional inputs noted). Estimated evaporation made with albedo-calibrated Penman 
evaporation models shown for comparison. A smaller number of inputs without longwave 
radiation are used in (a), while longwave radiation values are used in (b). (c-d) The impact of 
removing incrementally lower humidity and higher temperature periods from the training dataset 
on artificial neural network evaporation estimates. (c) Winter evaporation estimates were much 
higher when lower temperatures are removed from the training dataset. (d) Removing high 
humidity values from the training dataset had minimal effects on evaporation estimates.  
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Figure S6. Groundwater 
equivalent head correction. 
(a) Measured (filled circles) 
and calculated (lines) 
groundwater densities in 0.8 
and 3.5 m deep wells. (b) 
Comparison of measured 
water depth and halite-
saturated water equivalent 
head from 0.8 and 3.5-m 
wells. (c) The difference 
between head calculated 
with a constant density and 
head calculated with a 
variable density is between 
0.5 and 1.2 cm. (d) 
Centimeters of difference in 
head between the 3.5 and 
0.8-m deep wells show 
vertical flow gradients vary 
seasonally. 
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Figure S7. Equivalent halite-saturated head and equivalent halite-saturated head corrected for 
barometric efficiency in the 3.5 m well. Precipitation shown for reference. (a) Barometric correction 
removes significant variability from the water level, making it more representative of the water 
table in the halite crust. (b) Comparison of corrected values and measured water table level in 
shallow surface (0.8 m well) demonstrates agreement between barometric-corrected head and 
observed near-water table water level values. 
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Figure S8. Average monthly groundwater depths (corrected to equivalent head of halite-
saturated brine) from wells along the centerline of the Bonneville Salt Flats, where the water table is 
consistently high (Lines, 1979; Mason & Kipp, 1998; Turk, 1973; and USGS water data portal). (BLM-
93 and BLM-93C are the same wells as the 3.5 and 0.8 m well described in this paper). These 
measurements illustrate that water levels stabilizes in July to August. Other months of the year are 
more variable. The lower summer of 1967 water levels in BR1 and BR2 (Turk, 1973), are from when 
the Salduro Loop water collection ditch was active. Groundwater collection rates from this time are 
unknown. 
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Figure S9. Relationship between water depth in the 0.8 m well and (a) evaporation rate, (b) 
evaporation relative to potential evaporation, and (c) albedo. 


	Supporting Information
	Text S1. Meteorological Data
	Meteorological measurements and surface observations
	Eddy-Covariance Data and Aerodynamic Roughness
	Meteorological data gap filling
	Imagery

	Text S2. Estimated Evaporation Models
	Potential evaporation-based models
	Water Activity
	Penman equation evaporation

	Artificial neural network models

	Text S3. Groundwater Data
	Equivalent head calculation
	Barometric efficiency correction
	Thermal efficiency calculation and correction
	Methodology
	Daily thermal efficiency values
	Seasonal thermal efficiency values


	Apparent specific yield of near-surface porous material
	Apparent specific yield relative to prior BSF research


	Figure S4. Eddy-covariance evaporation values used for training compared with artificial neural network evaporation values (model inputs in addition to air temp, relative humidity, wind speed, and time of day denoted in legends with LW and SW referrin...
	Figure S4. Eddy-covariance evaporation values used for training compared with artificial neural network evaporation values (model inputs in addition to air temp, relative humidity, wind speed, and time of day denoted in legends with LW and SW referrin...
	Figure S5. Comparison of the median values of evaporation modeled with select artificial neural networks. (a-b) Estimated evaporation trained with different inputs (base inputs are described in key, with additional inputs noted). Estimated evaporation...
	Figure S5. Comparison of the median values of evaporation modeled with select artificial neural networks. (a-b) Estimated evaporation trained with different inputs (base inputs are described in key, with additional inputs noted). Estimated evaporation...
	Figure S6. Groundwater equivalent head correction. (a) Measured (filled circles) and calculated (lines) groundwater densities in 0.8 and 3.5 m deep wells. (b) Comparison of measured water depth and halite-saturated water equivalent head from 0.8 and 3...
	Figure S6. Groundwater equivalent head correction. (a) Measured (filled circles) and calculated (lines) groundwater densities in 0.8 and 3.5 m deep wells. (b) Comparison of measured water depth and halite-saturated water equivalent head from 0.8 and 3...
	Figure S7. Equivalent halite-saturated head and equivalent halite-saturated head corrected for barometric efficiency in the 3.5 m well. Precipitation shown for reference. (a) Barometric correction removes significant variability from the water level, ...
	Figure S7. Equivalent halite-saturated head and equivalent halite-saturated head corrected for barometric efficiency in the 3.5 m well. Precipitation shown for reference. (a) Barometric correction removes significant variability from the water level, ...
	Figure S8. Average monthly groundwater depths (corrected to equivalent head of halite-saturated brine) from wells along the centerline of the Bonneville Salt Flats, where the water table is consistently high (Lines, 1979; Mason & Kipp, 1998; Turk, 197...
	Figure S8. Average monthly groundwater depths (corrected to equivalent head of halite-saturated brine) from wells along the centerline of the Bonneville Salt Flats, where the water table is consistently high (Lines, 1979; Mason & Kipp, 1998; Turk, 197...
	Figure S9. Relationship between water depth in the 0.8 m well and (a) evaporation rate, (b) evaporation relative to potential evaporation, and (c) albedo.
	Figure S9. Relationship between water depth in the 0.8 m well and (a) evaporation rate, (b) evaporation relative to potential evaporation, and (c) albedo.

