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Key Points  15 

1. We present a new subgrain-size piezometer calibrated for EBSD, with a 1° critical 16 

misorientation angle. 17 

2. This subgrain-size piezometer can be applied to multiple minerals and appears to be independent 18 

of the deformation geometry. 19 

3. This subgrain-size piezometer should be unaffected by the presence of secondary minerals and 20 

thus applicable to polymineralic rocks.  21 
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Abstract 22 

We calibrate a subgrain-size piezometer using electron backscatter diffraction (EBSD) data 23 

collected from experimentally deformed samples of olivine and quartz. Systematic analyses of angular 24 

and spatial resolution test the suitability of each dataset for inclusion in calibration of the subgrain-size 25 

piezometer. To identify subgrain boundaries, we consider a range of critical misorientation angles and 26 

conclude that a 1° threshold provides the optimal piezometric calibration. The mean line-intercept 27 

length, equivalent to the subgrain-size, is found to be inversely proportional to the von Mises equivalent 28 

stress for datasets both with and without the Holyoke and Kronenberg (2010) correction. These new 29 

piezometers provide stress estimates from EBSD analyses of polymineralic rocks without the need to 30 

discriminate between relict and recrystallised grains and therefore greatly increase the range of rocks that 31 

may be used to constrain geodynamic models.  32 

Plain Language Summary  33 

Understanding the tectonic stress in the lithospheric plates is key to evaluating a breadth of 34 

geological phenomena, such as the evolution of major ductile shear zones. One method of estimating 35 

past stress magnitudes is to measure microstructural features that vary systematically with the applied 36 

stress, a technique known as ‘piezometry’. Several piezometers have been calibrated based on the size of 37 

recrystallised grains in a rock, but they are limited to domains consisting of only a single mineral, as the 38 

presence of multiple minerals inhibits grain growth. Subgrains, however, are features inside individual 39 

grains and are unaffected by the presence of other minerals. We use electron backscatter diffraction 40 

(EBSD), a scanning electron microscopy technique, to quantify the relationship between subgrain size 41 

and stress in rocks that have been deformed in a laboratory under controlled conditions, providing the 42 

first subgrain-size piezometer calibrated for EBSD. In addition, unlike many piezometers that are 43 

calibrated for a single mineral, our piezometer can be applied to each mineral in a rock. This piezometer 44 
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offers the potential to investigate the macroscopic stress and microscopic stress distributions in a wide 45 

range of rock types. 46 

1. Introduction 47 

Quantitative constraints on the stresses associated with past deformation events in the ductile 48 

portion of the lithosphere are key to developing and testing geodynamic models. One method of 49 

estimating past stress magnitudes is to measure microstructural elements that can be related to stress 50 

through experimental calibrations, a technique known as piezometry. Paleopiezometry has provided key 51 

estimates of the strength of continental (e.g., Kohlstedt & Weathers, 1980; Stipp et al., 2002; Weathers et 52 

al., 1979) and oceanic (e.g., Hansen et al., 2013; Jaroslow et al., 1996; Speckbacher et al. 2011; Warren 53 

&  Hirth, 2006) fault zones, yielded insight into the mechanisms of localisation in outcrop-scale shear 54 

zones (e.g., Austin et al., 2008; Gueydan et al., 2005; Haertel & Herwegh, 2014; Linckens et al., 2011; 55 

Skemer et al., 2010; Skemer et al., 2013), and enabled tests of the extrapolation of laboratory-derived 56 

rheological laws to geological conditions (e.g., Behr & Platt, 2011; Hansen & Warren, 2015;  Hirth et al., 57 

2001; Stipp et al., 2002; Wex et al., 2019). Thus, paleopiezometry is an essential tool for field-based 58 

quantitative investigations of the mechanical behaviour of the lithosphere. 59 

The most frequently used piezometers are based on the size of dynamically recrystallized grains, 60 

herein referred to as grain size (Karato et al., 1980; Rutter, 1995; Schmid et al., 1980; Stipp & Tullis, 61 

2003; Twiss, 1986; Van der Wal et al., 1993). However, piezometers based on grain size are only 62 

applicable to rocks consisting of a single mineral. Secondary minerals may modify grain size by limiting 63 

grain-boundary mobility and thus inhibiting grain growth, an effect known as ‘pinning’ (Evans et al., 64 

2001; Hiraga et al., 2010; Smith, 1948; Tasaka et al., 2017). As most natural rocks contain more than one 65 

mineral, pinning severely limits the applicability of grain-size piezometers.  66 

Like grain size, subgrain size varies systematically with differential stress during steady-state 67 

deformation (Luton & Sellars, 1969; Twiss, 1986). Piezometers based on these intragranular structures 68 

https://paperpile.com/c/2Kip0i/veDq+oD6L+KEU0
https://paperpile.com/c/2Kip0i/veDq+oD6L+KEU0
https://paperpile.com/c/2Kip0i/OP62+ZYSO+v7kt
https://paperpile.com/c/2Kip0i/OP62+ZYSO+v7kt
https://paperpile.com/c/2Kip0i/XieM+8r3L+Can3+60xP+xDy0+UN9J/?prefix=e.g.%2C,,,,,
https://paperpile.com/c/2Kip0i/XieM+8r3L+Can3+60xP+xDy0+UN9J/?prefix=e.g.%2C,,,,,
https://paperpile.com/c/2Kip0i/C5Tf+d7KB+XVus+cpyY+pSCz/?prefix=e.g.%2C,,,,
https://paperpile.com/c/2Kip0i/C5Tf+d7KB+XVus+cpyY+pSCz/?prefix=e.g.%2C,,,,
https://paperpile.com/c/2Kip0i/ntaM+GZOc+9Cbn+ARu3
https://paperpile.com/c/2Kip0i/ntaM+GZOc+9Cbn+ARu3
https://paperpile.com/c/2Kip0i/9HOk+Rx1q
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are preferable to those based on grain size for two reasons: 1) subgrain sizes are not modified by grain-69 

boundary pinning (Hansen & Warren, 2015; White, 1979), and 2) as subgrains form over relatively small 70 

strain intervals (≤ 10%, Biberger & Blum, 1992; Ross et al., 1980) in both relict and recrystallised 71 

grains. Therefore, subgrain-size piezometry can be applied to samples subject to small strains and 72 

obviates the need to identify grains that formed by dynamic recrystallisation. Subgrain-size piezometry 73 

therefore provides a tool to evaluate past stress experienced by broader range of rocks, including 74 

polymineralic rocks (e.g., Hansen & Warren, 2015). 75 

Relationships between applied stress and subgrain size measured using optical microscopy or 76 

transmission electron microscopy (TEM) have been established for quartz (Mercier et al., 1977), olivine 77 

(Durham & Goetze, 1977; Goetze, 1975; Karato et al., 1980; Toriumi, 1979), and calcite (Friedman & 78 

Higgs, 1981; Platt & De Bresser, 2017). In addition, subgrain-size piezometers applicable to multiple 79 

minerals have previously been proposed (Shimizu, 1998; Twiss, 1986). However, different methods for 80 

measuring microstructural features have different detection limits, which can lead to systematic offsets 81 

between piezometric relationships for the same mineral (Cross et al., 2017; Hansen et al., 2011). 82 

Currently, no subgrain-size piezometers have been calibrated for data collected by electron backscatter 83 

diffraction (EBSD), despite the relatively simple sample preparation, rapid data acquisition, and 84 

precision in misorientation angles of ± 0.5° (Humphreys, 2004) associated with this technique.  85 

Here, we present EBSD measurements of subgrain size in experimentally deformed olivine and 86 

quartz samples and derive a single piezometric relationship for both minerals. We explore the sensitivity 87 

of the piezometric calibration to the lower cut-off of subgrain-boundary misorientation angles and 88 

provide tests for the number of intercept lines, the number of grains, and the step size required to 89 

accurately capture the subgrain size. The resulting piezometer greatly extends the range of rocks for 90 

which EBSD data can provide quantitative stress estimates.  91 

https://paperpile.com/c/2Kip0i/cpyY+2uRt
https://paperpile.com/c/2Kip0i/PIQU+R7hh/?prefix=%E2%89%A4%2010%25%2C,
https://paperpile.com/c/2Kip0i/cpyY/?prefix=e.g.%2C
https://paperpile.com/c/2Kip0i/qMEy
https://paperpile.com/c/2Kip0i/2jTU+OMjb+0YDl+8vtf
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Confidential manuscript submitted to Geophysical Research Letters  

 

 

5 

2. Method 92 

2.1 Sample Description  93 

Samples from three sets of experiments conducted on quartz and olivine were analysed. The 94 

experimental conditions associated with each sample can be found in the supplementary material (Table 95 

S1). Each stress reported in Table S1 is the von Mises equivalent stress (hereafter referred to solely as 96 

the equivalent stress, σ) experienced by the sample, which is assumed to be associated with the 97 

microstructures observed at the end of the experiment. All samples were deformed in a regime in which 98 

deformation is rate-limited by the motion of dislocations. 99 

2.1.1 Quartz Experiments  100 

Quartz samples prepared from Black Hills Quartzite were deformed in two sets of experiments, 101 

denoted Qz-1 and Qz-2. Qz-1 samples were deformed in a Griggs apparatus at Brown University, Rhode 102 

Island (Stipp & Tullis, 2003). Qz-2 consists of samples deformed in a Griggs apparatus either at Texas 103 

A&M University or at Brown University (Holyoke & Kronenberg, 2013; Holyoke & Tullis, 2006). Both 104 

sets of experiments were conducted at a confining pressure of 1.50–1.56 GPa and temperatures in the 105 

range 800°–1100°C. Samples included in the calibration lay within recrystallisation regimes 2 and 3 as 106 

defined by Hirth and Tullis (1992), as the relationship between subgrain size and stress appears to 107 

change in regime 1 (cf., Stipp & Tullis, 2003).    108 

The Qz-1 samples consisted of cylinders deformed in axial compression at constant 109 

displacement rates of 1.8×10-6–1.7×10-3 mm/s. Flow stress, taken as an average of the value between 110 

10% strain and the value at the final strain (17–41%) in each experiment, ranged between 34 ± 16 and 111 

268 ± 40 MPa (Stipp et al., 2003). 112 

For the Qz-2 samples, experienced either general shear or axial compression at constant 113 

equivalent strain rates of 1.6×10-6–1.15×10-5. Final shear strains ranged from 50% to 610%. The only 114 

https://paperpile.com/c/2Kip0i/adCQ
https://paperpile.com/c/2Kip0i/Nqfq
https://paperpile.com/c/2Kip0i/UlGQ/?noauthor=1
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experiment deformed in axial compression in Qz-2, TMQ-7, reached a final axial strain of 15.6%. All 115 

Qz-2 samples, excluding W-1105, were deformed to their yield point. The ability of subgrains to keep 116 

pace with the stress after very little strain means the lack of steady-state conditions should not influence 117 

the piezometric calibration. Therefore the final flow stress, converted into the equivalent stress, was 118 

taken as the stress associated with the final microstructures.  119 

Correction of the mechanical data in Qz-1 and Qz-2 for the friction on the σ1 piston, were 120 

performed according to the procedures of Gleason and Tullis (1995) / Stipp and Tullis (2003) and 121 

Holyoke and Tullis (2006), respectively. We then compare two sets of stresses to subgrain size, either 122 

with or without a second friction correction described by Holyoke and Kronenberg (2010, 2013) to 123 

account for increased friction due to a Poisson effect on the load column during loading of the sample.  124 

2.1.2 Olivine Experiments  125 

Data from olivine samples deformed in a number of different axial compression and torsion 126 

experiments were compiled to form the ‘Ol’ dataset (Hansen et al., 2011, 2012; Pommier et al., 2015; 127 

Tasaka et al., 2016, 2017) . Polycrystalline Fo90 and Fo50 samples were fabricated from San Carlos 128 

olivine (Hansen et al., 2011) or from a combination of oxide powers and San Carlos olivine (Tasaka et 129 

al., 2017), respectively. Experiments were conducted in a servo-controlled, internally heated, gas-130 

medium apparatus (Paterson, 1990) at the University of Minnesota, at a confining pressure of 300 MPa 131 

and temperatures of 1150°–1250°C. Equivalent strain rates were 9×10-6–1.48×10-3 s-1
. Stress was 132 

measured with an internal load cell and controlled to ±1 MPa for axial compression experiments (Hansen 133 

et al., 2011) and ±2 MPa for torsion experiments (Tasaka et al., 2016). Stresses measured during torsion 134 

experiments were converted to equivalent stress following Paterson and Olgaard (2000). In axial 135 

compression experiments, maximum axial strains reached up to 20%. In torsion experiments, except PT-136 

0966, the strain was recorded as the outer radius shear strain and reached up to 880%. For sample PT-137 

0966 the shear strain, recorded as 500%, was calculated from an originally vertical crease in the jacket 138 

formed during the initial pressurisation of the sample.  139 

https://paperpile.com/c/2Kip0i/VA7o/?noauthor=1
https://paperpile.com/c/2Kip0i/68NW+Nqfq/?noauthor=1,1
https://paperpile.com/c/2Kip0i/1InA+keES+jv2c+2fnq+ARu3/?noauthor=0,0,0,0,1
https://paperpile.com/c/2Kip0i/1InA+keES+jv2c+2fnq+ARu3/?noauthor=0,0,0,0,1
https://paperpile.com/c/2Kip0i/1InA
https://paperpile.com/c/2Kip0i/ARu3
https://paperpile.com/c/2Kip0i/ARu3
https://paperpile.com/c/2Kip0i/1InA
https://paperpile.com/c/2Kip0i/1InA
https://paperpile.com/c/2Kip0i/2fnq
https://paperpile.com/c/2Kip0i/cDks/?noauthor=1
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2.2 Acquisition of Microstructural Data   140 

For EBSD analyses, samples deformed in axial compression were cut parallel to the cylindrical 141 

axis (Hansen et al., 2011; Holyoke & Kronenberg, 2013; Stipp & Tullis, 2003). For samples deformed in 142 

torsion, tangential sections were chosen for analysis (Hansen et al., 2012; Tasaka et al., 2016, 2017). In 143 

the direct shear geometry, sections parallel to the shear direction and perpendicular to the shear plane 144 

were chosen (Holyoke & Tullis, 2006). The sectioned surfaces were prepared by polishing with diamond 145 

lapping films or suspensions with decreasing grit sizes from 30 to 0.05 μm and were generally finished 146 

by polishing with 0.03 or 0.04 μm colloidal silica. 147 

EBSD data were collected with an FEI Quanta 650 FEG E-SEM in the Department of Earth 148 

Sciences, University of Oxford, equipped with Oxford Instruments AZtec (Version 3.3) acquisition 149 

software and a NordlysNano EBSD camera. Samples, were tilted at 70° and mapped in low vacuum (50–150 

60 Pa, H2O) at accelerating voltages of 20–30 kV with step sizes of 0.1–1.0 µm. Noise reduction was 151 

performed using Oxford Instruments Channel5 software. Non-indexed points with ≥ 6 indexed 152 

neighbours within the same grain were assigned the average orientation of their neighbours. In addition, 153 

pixels in images of quartz that were systematically misindexed due to pseudosymmetry were corrected 154 

by applying a rotation of 60° around [0001] (Trimby et al., 2002).  155 

 156 

https://paperpile.com/c/2Kip0i/adCQ+1InA+Nqfq
https://paperpile.com/c/2Kip0i/keES+2fnq+edP0/?noauthor=0,0,1
https://paperpile.com/c/2Kip0i/waYj
https://paperpile.com/c/2Kip0i/nuZ1
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 157 

 158 

Figure 1: Full analysis of PI-1523 (olivine), where λ is the measured mean line-intercept length and λbest is 159 

the value of λ associated with the smallest step size and largest map area. (a) Schematic of the line-intercept 160 

method on a map of the sample coloured by normal to the section. (b) Mean line-intercept length versus the 161 

number of intercept lines taken in both the vertical and the horizontal direction. (c) Mean line-intercept length 162 

versus minimum misorientation angle used to define a subgrain boundary. (d) Step-size analysis, see main text for 163 
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description. (e) Area analysis, see main text for description. (f) Histogram of mean line-intercept lengths with a 164 

logarithmic bin width.  165 

For our piezometer, subgrains were measured using the line-intercept method. This method, 166 

compares adjacent pixels on evenly spaced lines transecting the sample (Figure 1a). Along each line, 167 

misorientations greater than a specified angle, the critical misorientation angle, are detected and the 168 

intercept length between misorientations recorded. The number of intercept lines is increased and the 169 

mean line-intercept length measured until the latter stabilises (±2.5%), thus ensuring the number of 170 

intercepts is sufficient to accurately estimate the mean value.  171 

The line-intercept method is preferred over other grain-size measurement techniques because it 172 

includes non-closing subgrain boundaries. When analysing subgrain boundaries with small 173 

misorientation angles, it is important to include such primitive structures because subgrain boundaries do 174 

not always fully enclose an isolated region (e.g., Figure1a & Figure 2). Additional benefits compared to 175 

alternative area-based subgrain-size measurement include lower sensitivity to changes in step size 176 

(Mingard et al., 2007; Valcke et al., 2006), faster processing times (Humphreys, 2001), and lower 177 

sensitivity to anomalous clusters of data points missed during post-processing (Hansen et al., 2011).  178 

To obtain sample averages, we use the arithmetic mean of the line-intercept lengths. This 179 

approach provides the mean spacing between all boundaries with misorientations above the chosen 180 

critical value. An alternative average, the geometric mean, is more sensitive to misindexed pixels and 181 

variations in step-size (Mingard et al., 2007). In previous studies, a stereological correction was 182 

commonly applied to convert the mean line-intercept length from a 2-D section to the mean grain 183 

diameter in 3-D (Hansen et al., 2011; Hansen & Warren, 2015; Underwood, 1970, pages 80–93; Valcke 184 

et al., 2006). As the choice of 3D correction adds an additional layer of uncertainty to the data 185 

processing, we avoid any correction and simply use the mean line-intercept length, λ, as the 186 

microstructural length scale in our piezometric calibration.  187 

https://paperpile.com/c/2Kip0i/DBJe+qoGk
https://paperpile.com/c/2Kip0i/pwyC
https://paperpile.com/c/2Kip0i/1InA
https://paperpile.com/c/2Kip0i/qoGk
https://paperpile.com/c/2Kip0i/9IVF+DBJe+1InA+cpyY/?locator=80%E2%80%9393,,,
https://paperpile.com/c/2Kip0i/9IVF+DBJe+1InA+cpyY/?locator=80%E2%80%9393,,,
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2.3 Sensitivity Tests  188 

As EBSD maps only examine a portion of a deformed material, we devised two tests to assess 189 

whether a mapped area is representative of the bulk deformation. These tests examine the effect of the 190 

size and spatial resolution of the map on the measured values of mean intercept length. MATLAB®  191 

scripts to perform these tests are presented in the Supplemental Material (Text S1).  192 

As increasing the step size of an EBSD map leads to overestimates of grain size (Cross et al., 193 

2017; Humphreys, 2001), we tested the influence of step size on measured subgrain size. We evaluated 194 

the spatial resolution by implementing the same step size analysis test as Cross et al. (2017). In this 195 

procedure, the resolution of the map is artificially reduced (i.e., the effective step size increased) by 196 

selecting subsets of points in the map on a regular grid. The line-intercept length is then measured and 197 

compared to the mean-line intercept length associated with the smallest step size, λbest.  We refer to the 198 

ratio of λ to λbest as the intercept variation factor. The spatial resolution is deemed sufficient if the 199 

measured mean intercept length is not sensitive to the effective step size. For each sample in Figures 1d 200 

and S2, decreasing the pixels per intercept length (defined as the λbest divided by the effective step size) 201 

had an insignificant effect on the mean line-intercept length. The presence of an asymptote at an 202 

intercept variation factor of 1 is evidence that step size is small enough to capture the mean intercept 203 

length.   204 

In the second test, we evaluated the size of the map relative to the mean intercept length, that is, 205 

whether a sufficient number of intercepts were measured for their mean value to be representative of the 206 

sample mean. We propose that, rather than being fixed (Humphreys, 2001, 2004; Valcke et al., 2006), 207 

the number of required subgrains (or intercept lengths) is likely to depend on the variance of the true 208 

subgrain-size distribution. Therefore, for each map, we tested the effect of map area on the mean 209 

intercept length by measuring the mean intercept length from a centred sub-area of the original map. 210 

Initially, this sub-area was 1% of the size of the original map. We then measured the mean intercept 211 

https://paperpile.com/c/2Kip0i/pwyC+yNAl
https://paperpile.com/c/2Kip0i/pwyC+yNAl
https://paperpile.com/c/2Kip0i/pwyC+4i5J+DBJe/?noauthor=0,1,0
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length as the sub-area was progressively increased in size. As the size of the sub-area increases, the mean 212 

intercept length should asymptotically approach the mean for the entire map, indicating the full map area 213 

is sufficiently large. Examples of the area-analysis technique are presented in Figures 1e and S3.  214 

Samples that demonstrated a strong dependence of mean line-intercept length on the size of the sub-area 215 

(e.g., Figure S4) were mapped multiple times. The mean intercept length was then calculated as the 216 

average intercept length across all the maps to ensure representative measurement.  217 

3. Results 218 

 219 

Figure 2: Maps of local misorientation for (a) olivine and (b) quartz samples deformed at low and high flow 220 

stresses. Black lines are grain boundaries (misorientation ≥ 10°). Unindexed pixels are also plotted in black. 221 

Experiments conducted at high flow stresses have higher densities of subgrain boundaries.  222 
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 223 

Figure 3: Mean line-intercept length, normalised by the Burgers vector as a function of the equivalent stress, 224 

normalised by the shear modulus. In (a) and (b) the correction from Holyoke and Kronenberg (2010) was applied 225 

to the quartz data, whereas in (c) and (d) the correction was not applied. (a) and (c) data are coloured by phase, 226 

with the recrystallised grain-size piezometer of Cross et al. (2017), also calibrated for EBSD, plotted for 227 

https://paperpile.com/c/2Kip0i/68NW/?noauthor=1
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comparison. (b) and (d) plot the same data as in (a) and (c), respectively, coloured by deformation geometry. Axial 228 

experiments refer to those conducted in pure shear and shear experiments refer to those conducted in general 229 

shear or simple shear.    230 

To identify a general piezometric relationship applicable for both quartz and olivine, the 231 

equivalent stress and the mean intercept length were normalised by the shear modulus μ and the Burgers 232 

vector b respectively. We then explored the effect of the choice of critical misorientation angle on mean 233 

intercept length. We tested angles ranging from 1° to 10° (e.g., Figure 1c). We did not evaluate critical 234 

misorientation angles below 1°, the minimum angle that can be measured repeatedly and accurately with 235 

Hough-based EBSD (Humphreys, 2001, 2004; Wallis et al., 2016). Also we did not evaluate critical 236 

misorientation angles above 10° as we consider misorientations of >10° to be grain boundaries rather 237 

than subgrain boundaries. For all values of the critical misorientation angle, in all three datasets, the 238 

mean intercept length exhibits a power-law relationship with the equivalent stress (Figure S5). The three 239 

datasets coincide best at lower critical misorientation angles. The discrepancy between the quartz 240 

datasets and the olivine dataset increases as a function of increasing critical misorientation angle. 241 

Therefore, we used a critical misorientation angle of 1° in our calibrations. 242 

We fit a power-law equation using least squares linear regression on the logarithmic 243 

transformation of mean intercept length against equivalent stress, yielding the following equations: 244 

𝜆

𝑏
= 100.6±0.7 (

σ

μ
)
−1.2±0.3

  (eq.1) 245 

and  246 

𝜆

𝑏
= 101.2±1.0 (

σ

μ
)
−1.0±0.4

  (eq.2).                                                                      247 

Equations 1 and 2 represent piezometers with and without the calibration of Holyoke and Kronenberg 248 

(2010) discussed above in Section 2.11, respectively. Uncertainties are reported as 95% confidence 249 

https://paperpile.com/c/2Kip0i/pwyC+4i5J+zSjY/?noauthor=0,1,0
https://paperpile.com/c/2Kip0i/pwyC+4i5J+zSjY/?noauthor=0,1,0
https://paperpile.com/c/2Kip0i/68NW/?noauthor=1
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intervals. Here we use b = 5.10x10-4 μm or 5×10-4 μm and μ = 4.2×104 MPa or 7.78/6.26×104 MPa for 250 

quartz and olivine (Fo90/Fo50), respectively (see supplementary Text S2 for discussion).  251 

4. Discussion 252 

The organization of dislocations into subgrain boundaries is driven by the associated reduction 253 

in the strain energy of the system (e.g., Raj & Pharr, 1986; Read, 1953, page 226). During deformation, 254 

the mean subgrain size varies systematically with the applied stress. Normalising the stress by the shear 255 

modulus and the subgrain size by the Burgers vector collapses mineral-specific piezometers into a single 256 

relationship (e.g., Twiss, 1986). Our results thus define a subgrain-size piezometer, which can be used on 257 

multiple minerals. As our piezometer is calibrated by EBSD, it differs from calibrations obtained by 258 

different measurement techniques (Durham & Goetze, 1977; Goetze, 1975; Karato et al., 1980; Mercier 259 

et al., 1977; Toriumi, 1979). We also provide a set of tests that assess the suitability of a dataset for 260 

analysis by this method based on factors including the number of linear intercepts, the step size, and the 261 

map area. The ability to perform these tests routinely in an automated and objective manner provides 262 

clear benefits over existing quality control measures (e.g., Humphreys, 2001, 2004; Valcke et al., 2006).  263 

Subgrain-size piezometry is beneficial compared to grain-size piezometry in several ways. First, 264 

the most significant advantage of subgrain-size piezometry over grain-size piezometry is that the former 265 

is insensitive to the presence of secondary minerals and the pinning of grain boundaries (Hansen & 266 

Warren, 2015; White, 1979). As most rocks are polymineralic and the presence of secondary phases 267 

leads to smaller-than-expected recrystallised grains, the majority of existing stress estimates were 268 

derived from spatially restricted monomineralic rocks or domains. In contrast, in polymineralic rocks, 269 

subgrain-size piezometry should record the average stress supported by the analysed phase, regardless of 270 

the fraction of secondary phases. Thus, the subgrain-size piezometer can be used to analyse the stress 271 

supported by each phase deforming by dislocation creep in polymineralic rocks. Consequently, grain-272 
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size piezometry based estimates of stresses supported by the lithosphere (e.g., Behr & Platt, 2011; 273 

Weathers et al., 1979; White, 1979) can be tested against new data acquired using subgrain-size 274 

piezometry on more representative rock types. 275 

Grain-size piezometry also requires the user to distinguish between recrystallised and relict 276 

grains, the proportions of which depend on total strain. Previously, the bimodal grain-size distribution of 277 

partially recrystallised rocks allowed the characterization of recrystallised and relict grains on the basis 278 

of size (e.g., Post & Tullis, 1999; Stipp & Tullis, 2003). This method truncates the grain-size 279 

distribution, thereby modifying the mean grain size and the resulting stress calculated from that grain 280 

size. More recent work used the degree of intracrystalline lattice distortion within each grain to identify 281 

recrystallised grains on the assumption that relict grains have a greater degree of internal distortion than 282 

recrystallised grains (Cross et al., 2017).  Although this new method provides a working calibration, it 283 

adds additional steps and assumptions to the analysis. In deforming materials with active subgrain 284 

formation, both recrystallized and relict grains develop subgrain boundaries which fall on a single 285 

piezometric relationship (Ross et al., 1980). As our calibration contains subgrains both from relict and 286 

recrystallised grains, as long as both sets of grains contain subgrains in the sample to be analysed, no 287 

distinction between them is necessary in measuring subgrain size. Instead, we only need to define a 288 

critical misorientation angle. The 1° critical misorientation angle fits with previous observations that 289 

subgrain boundaries tend to have misorientation angles < 2° at strains of 15% and < 5° at strains of 50% 290 

(Pennock et al., 2005) In addition, Trimby et al. (1998), observed subgrains in relict and recrystallized 291 

grains were the same size based on a 1° critical misorientation.  292 

Finally, subgrain-size piezometry is independent of flow geometry. In contrast, samples 293 

deformed in general shear and axial compression may exhibit different grain sizes at the same equivalent 294 

stress (Heilbronner & Kilian, 2017). As observed by Heilbronner and Kilian (2017), different kinematics 295 

in subdomains of deformed quartzites lead to different crystallographic preferred orientations (CPOs). 296 

Different CPOs may reflect differences in the activity of different slip systems, which in turn may affect 297 
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the mean size of recrystallized grains. Thus, as demonstrated in the compilation of data for quartz 298 

presented by Tokle et al. (2019), experiments conducted in simple shear yield a different grain-size 299 

piezometer than experiments conducted in axial compression. To explore whether this hypothesis holds 300 

true for subgrain sizes, we regrouped the data according to whether the samples were deformed in a pure 301 

shear (i.e., axial compression) or general or simple shear, geometry. In Figures 3b and 3d, there is no 302 

obvious dependence of the mean intercept length on the deformation geometry. Therefore, we suggest 303 

that our single subgrain-size piezometer can be applied to a wide range of rocks, regardless of flow 304 

geometry or CPO. 305 

It is necessary to highlight two potential limitations of subgrain-size piezometry. First, it appears 306 

that the observed relationship between subgrain size and stress is not applicable to deformation at high 307 

stresses (Figure 3). The relationship between subgrain size and stress may change at higher stresses as 308 

the recrystallization mechanisms changes, similar to the relationships observed for the size of 309 

recrystallised grains of quartz (Stipp & Tullis, 2003), which is why the three samples deformed in this 310 

high-stress regime were not included in our calibrations. Similarly, differences in the processes of 311 

subgrain formation or in the mechanisms of dynamic recrystallisation might require different calibrations 312 

at significantly low stresses (e.g., Valcke et al., 2007, 2015; Stipp et al., 2010). Therefore, we 313 

recommend that our piezometer should be applied over the normalised subgrain size and stress range 314 

over which it was calibrated. This range corresponds to mean line-intercept lengths of 1–9 µm for 315 

olivine and 1–18 µm for quartz and a similar range for other silicate minerals. These limits on subgrain 316 

size correspond to stress ranges of 60–420 MPa and 20–240 MPa for olivine and quartz, respectively. 317 

Second, the potential for modifying subgrain size through static annealing or stress relaxation 318 

after deformation remains poorly constrained.  Ross et al. (1980) suggested that subgrains record the 319 

highest stress in rocks subjected to complex deformation histories. However, we demonstrate a strong 320 

correlation between subgrain size and final stress is apparent, even in cases in which the larger stresses 321 

were experienced earlier in the deformation history (Hansen et al., 2012; Holyoke & Tullis, 2006). 322 
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Furthermore, experiments in steel by Qin et al. (2003) revealed that subgrains were only able to coarsen 323 

with additional strain while under stress of a reduced magnitude, whereas they did not coarsen during 324 

static annealing. These observations suggest that subgrain sizes best reflect the last increments of 325 

deformation, although further work is clearly required to fully investigate the mobility of subgrain 326 

boundaries in minerals. If the subsequent modification of subgrain size occurs on a different timescale 327 

than the modification of other microstructural features such as dislocation density or recrystallized grain 328 

size, then combined analysis using multiple piezometers may yield information about complex stress 329 

histories (Kohlstedt & Weathers, 1980; White, 1979).  330 

5. Conclusions 331 

1. We present a subgrain-size piezometer calibrated for EBSD with a 1° critical 332 

misorientation angle. This piezometer, which was derived from data for olivine and 333 

quartz should be applicable to other phases.  334 

2. The size of subgrains calculated based on a critical misorientation angle of 1° appears to 335 

be independent of the deformation geometry, that is, whether the specimen is deformed 336 

in simple/general shear or pure shear. 337 

3. It is recommended that our piezometer should be applied over the normalised subgrain 338 

size and stress range with which it was calibrated. This corresponds to mean line-339 

intercept lengths of 1 to 9 µm for olivine and 1 to 18 µm for quartz corresponding to 340 

stresses of 60 – 420 MPa and 20 – 240 MPa, respectively 341 

4. MATLAB
®

 scripts, provided in the Supplemental Material, can be used to test the 342 

suitability of input data for stress estimates specifically in terms of spatial resolution and 343 

size of the data set.  344 
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