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ecohydrology of water logged drylands are discussed. 44 
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   53 

1. Introduction 54 

Shallow perched aquifers subtanded and sustained by caliche (petrocalcic horizons) or other 55 

low-permeable (e.g. gypsic) layers are common for arid  and  semi-arid regions, where 56 

evapotranspiration and human abstraction from dug wells are important components of hydrologic 57 

balances, with applicaitns to ecohydrology, MAR, and rural water supply (see e.g. Hamutoko et al., 58 

2019, Niswonger and  Fogg, 2008, Villeneuve et al., 2015). Groudnwater and soil moisture motion in 59 

these aquifers and thin vadose zone above the water table is modeled both numerically and 60 

analytically.   61 

Dirichlet and mixed boundary value problems (hereafter, BVPs) to the Poisson PDE are 62 

solved for phreatic, vertically (Z-coordinate in Fig.2) averaged Darcian flows in porous (soil, rock) 63 

volumes (Aravin and Numerov, 1953, Haitjema, 1995, Polubarinova-Kochina,1962,  Strack,  2017 64 

a,b,  Zijl et al., 2017). A horizontal cross-section (aerial view) of such a volume is shown in Fig.1a, 65 

where D is a planar flow domain and G is its external boundary. Vertical cross-sections are shown in 66 

Fig.2. Examples of hydrological prototypes are: 67 

a)  in Holland, a rectangular D represents a cropfield bounded by four drainage ditches (G), 68 

the water level in which is constant; for a typical dyad (a,h0)  (tens of meters, tens of 69 

cm); 70 

b) in Oman, the Muscat International Airport is bounded by a shallow trench (see the 71 

Photogallery), and  (a,h0)  (hundreds of meters, tens of cm).   72 

In humid climates (like Holland), a gross-recharge (infiltration) to the aquifer from a vadose 73 

zone takes place on a hydrologically-annual time scale and, consequently, the RHS of the Poisson 74 

equation, is a negative function of two planar coordinates, x and y. Physically, accretion results in 75 
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groundwater mounds whose summits hydraulically command the regional discahrge zones (the curve 76 

G in Fig.1, see e.g. Youngs, 1990).  Analytical and numerical solutions to these BVPs are applied to 77 

groundwater hydrology, agricultural and geotechncial engineering, geomorphology, among others 78 

(see e.g. Coffey and  Shaw, 2017, Cohen and Rothman, 2017,  Haitjema, 1995, Kacimov et al. 2016, 79 

2017a,b, 2020 a,  McDonald,  2020,  Strack, 2017a). If wells are pumped in D, the mound is 80 

drained with a near-well drawdown of the water table. In other words, if  x,y  changes its sign in 81 

D, then minima and maxima on the water table emerge (see e.g. Mahdavi, 2020, Strack, 2017a, 82 

Fig.2.3.3).  83 

In Oman and other Gulf coutnries, where the aridity index > 20, shallow unconfined aquifers 84 

often evaporate from their phreatic surfaces to the vadose zone, rather than gain water from there. 85 

Therefore,  is positive i.e. the Poisson equaiton has a sink term. Also, the roots of phreatophites 86 

transpire with the same sink-effect. Instead of mounds, groudnwater troughs are formed, especially, in 87 

catchments with intensive pumping (Kacimov et al., 2009). These troughs may become so deep that 88 

the phreatic surface reaches the bedrock, which confines the shallow aquifer from below,  and 89 

unsaturated “gaps”  are formed (Kacimov et al., 2004). Physically, no groundwater exists in these 90 

zones and the fronts (unknown free boundaries) emerge in Fig.1,  sketched there as Gd.  In a 91 

mathematical parlance, the “support” domain of the initital Poisson equation shrinks and becomes a 92 

part of solution. However, in these “gaps” an unsaturated moisture flow continues, commingled with 93 

the groundwater flow. Overall, evapotranspiration, capillarity, gravity and Darcian resistance of the 94 

porous matrix are intricately juxtaposed in problems with positive  (or a similar S-sink term in the 95 

Richards equation). Apriori unknown unsaturated lacunae complicate  the mathematical tasks of 96 

determination of the flow characteristics: the fields of piezometric heads, streamlines, isotachs, 97 

isobars and isohumes. 98 

A unique hydrological situation has emerged in rapidly growing cities of the Gulf countries, in 99 
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particular,  in Muscat: the virgin water table prior to urban development was so deep (often 10 + m 100 

under the ground surface) that even in hot and dry climatic conditions evaporation from it could be 101 

safely ignored. However, a recent ground surface pavement (construction of roads, buildings, car 102 

parks, etc.) in large urban areas, as well as extermination of the wild vegetation,  reduced 103 

evapotranspiration and the water table rose dramatically, causing a pernicious waterlogging of the 104 

urban infrastrcuture (see e.g.  Al-Sefri and Şen, 2006, Al-Senafy et al, 2015, Alsharhan and  Rizk, 105 

2020, Kreibich and Thieken, 2008). Therefore, evapotranspiration has become a vital component of 106 

hydrological balances. Moreover, municipalities and communities (severley affected by groundwater 107 

inundation) started to implement phyto-engineering measures aimed at combatting the groundwater 108 

inundation by attempts to enhance evapotranspiration. In other words, urban plants are cultivated not 109 

only for ornamental (beautification) purposes but as bioengineers, the main purpose of which is 110 

desaturation by intensive transpiration of a critical zone in the urban subsurface (Fig.2a). In the Gulf, 111 

the situation  is exacerbated by the lack of evapotranspiration-related hypdropedological and 112 

hydrogeological data on the subsurface. Indeed,  a common perception of urban planners in the Gulf 113 

was always  a “deep water table”, with no threats of waterlogging. Unlike humid and semi-humid 114 

regions of Europe (e.g. UK, Germany, Switzerland), where the urban groundwater is monitored for 115 

centuries and the trend of its recent rise is well undesrstood (see e.g. Minnig et al., 2018, Moeck et al., 116 

2018), in Oman the corrresponding studies have just started (Kacimov et al., 2020b). The local 117 

hydrologists, engineers and mathematicians are urged to conceive at least estimates of the ongoing 118 

groundwater inundation and to offer adequate models of groundwater and vadose zone flows, as a 119 

component for urban planning.   120 

      This paper is organized as following. In Section 2-3,  we estimate the volume of groundwater 121 

and area of an unsaturated “gap” by the help of a model based on the Dirichlet’s BVP to the Poisson 122 

equation with a constant RHS (evaporation intensity). In Section 4, the PDE becomes nonlinear 123 
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because evapotranspiration exponentially decreases with the depth of the water table. In Section 5, we 124 

use HYDRUS and solve a mixed BVP to the Richards equation, which models evaporation from the 125 

water table subtending or “fingering” into a vadose zone. In Appendix 1 (Electronic Supplementary 126 

File 2), we provide some details on  the confomal radius of planar domains.  127 

 128 
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Fig. 1. Plan (aerial) view of an unconfined aquifer.  130 



 
7 
 

h0 h0

Disconnected phreatic lines

Dried 

zone

bedrock

h(x,y)

d(x,y)
d0

b) 

h0

h0

Single-trough phreatic 

surface in a cross-

section

Vadose 

zone

Saturated zone

bedrock

h(x,y)

d(x,y)

d0

a) 

Z

Root  zone

Intensive evapotranspiration

Frontal points

Z

F2 F1 

g

O

Saturated

DF flow in 

the aquifer

Unsaturated flow in the 

vadose zone

h0 h0

Dried 

zones

bedrock
c) 

Saturated 

“tongue”

F1 F3 F4 F2 

131 
    Fig.2.  Vertical cross-sections. Unconfined aquifer with: no unsaturated lacunae a), one 132 

lacuna b), two lacunae c). 133 

 134 

2. Constant Evaporation Rate 135 

We assume that without evaporation (e.g. during the winter season in Muscat) and/or prior 136 

to phyto-drainage (no transpiration), groundwater in an unconfined homogeneous and isotropic 137 

aquifer is static i.e. we neglect a regional flow. Therefore, the water table is horizontal, at an 138 

elevation h0 (m) above a horizontal impermeable bedrcok (Fig.1-2). A flat soil surface is at the level 139 

d0 (m) above the bedrock. D has a characteristic size 𝑎 (m). 140 

The land surface in zone D may be covered by xerophitic plants (e.g. Australian prosopis 141 

reeds, Ghaf tree, Christ’s thorn tree, acacia tortilis, eucaleptus, or other species), which intensively 142 

uptake soil water from the vadose zone (and, perhaps, even from the saturated zone) such that 143 

evapotranspiration from D is even higher than from a bare soil. Examples of phreatophitic plants 144 
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growing over a shallow water table in  Oman are illustrated in the Photogallery (Electronic 145 

Supplementary File 1) attached to this MS; an example of a designed wetland is presented in Zhang 146 

et al. (2020). 147 

The domain D (for simplicity assumed to be simply-connected in Fig.1) is  bounded by a 148 

closed curve G (e.g. a drainage ditch).  Kacimov et al. (2016 ), Toller and Strack  (2019) modeled 149 

D  as a promontory (see photo in Fig.1) or island.       150 

Evapotranspiration induces pore water flow from G into D in  the following  way: the 151 

saturated flow is quasi-horizontal and the vadose zone flux (controlled by root water uptake and 152 

evaporation) is quasi-vertical. In the analytical (steady) solutions (Sections 2-3),  capilarity is 153 

ignored.  In Section 4, a transient saturated-unsaturated 3-D flow is numerically studied. 154 

If evapotranspiration is very high (or h0  is small,  or a is large), then a subdomain 155 

dD D   can form (Kacimov et al., 2004). There is no saturated groundwater inside Dd. Fig.2a 156 

shows a vertical cross-section 1-1 (Fig.1) without an unsaturated lacuna, whereas Fig.2b depicts 157 

another cross-section 2-2 (see also Fig.1) in which two saturated tongues extend into D up to 158 

frontal points F1 and F2 i.e. the phreatic line in Fig.2b tapers towards these points from the left and 159 

right (zone D in Fig.1 is double-connected) 160 

Obviously,  even in a double-connected D and simply-connected Dd (Figs. 1 and 2b) we can 161 

get two or more disconnected unsaturated zones Dd1,  Dd2,… In other words, depending on the 162 

choice of the cross-section 2-2 (Fig.1), more than two frontal points can exist (see e.g. a vertical 163 

section in Fig.2c where two unsaturated lacunae and four frontal points are shown).  164 

In this Section, we select cartesian coordinates xyZO (Figs.1 and 2);  the vertical axis OZ is 165 

counteroriented with the gravitaitonal acceleration.   166 
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 In D,  we follow Strack (2017,a, Chapter 2) and consider a vertically-averaged flow in the 167 

𝑥, 𝑦-directions of Fig.1. In other words, we employ the Dupuit-Forchheimer (hereafter abbreviated 168 

as DF) approximation (valid for domains D  with sufficiently small h0/a in Fig.2a). Strictly speaking, 169 

flow regimes in Fig.2b,c require a full 3-D groundwater flow analysis, which even in 2-D flows with 170 

non-vertical trench boundaries AC is cumbersome (Kacimov et al., 2004, 2016).  171 

 In the DF model,  the saturated thickness of the aquifer is ℎ(𝑥, 𝑦) (m). Aquifer’s 172 

conductivity is 𝐾  (m/day) and we first  assume the evaporation rate 𝜀  (m/day) to be 173 

independent of the depth of the water table such that 𝑒 = 𝑐𝑜𝑛𝑠𝑡 = 2𝜀/𝐾 > 0. It is well-known 174 

(Polubarinova-Kochina, 1962, Strack, 2017 a) that ℎ(𝑥, 𝑦) obeys the linear Poisson PDE:  175 

        176 

  177 

 
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑥2 +
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑦2 = 𝑒,    𝑒 > 0                     (1) 178 

In what follows,  we impose the Dirichlet boundary condition along  G :  179 

 ℎ𝑔 = ℎ0,    ℎ0 = 𝑐𝑜𝑛𝑠𝑡 > 0,    ℎ0 ≤ 𝑑0                                (2) 180 

Eqn. (2) is an approximation of variable (in space) boudnary conditions in drainage ditches, 181 

rivers and their tributaries, wadis, etc.  Mixed BVPs to eqn.(1) modeling seepage have been 182 

solved in Kacimov et al. (2020a).  183 

Physically, h>0 for groundwater and h=0 corresponds to Gd in Figs.1, 2b,c. One of the key 184 

integral charactersitics of a hydrological system is the total groundwater storage in D:  185 

 186 

 𝑉𝑤 = ∬  
𝐷

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦.                                                             (3) 187 

 188 
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Explicit calcualtion of Vw is possible for simple shapes of D only, when the BVP can be analytically 189 

solved. For arbitrary D, reasonable bounds of Vw are needed such that solution to the BVP is 190 

circumvented. Thus,  we formulate:   191 

      Problem 1. Estimate 𝑉𝑤. 192 

We suppose that there exists ℎ(𝑥, 𝑦) ≥ 0 on the domain D. For positive  e,  ℎ(𝑥, 𝑦) <193 

ℎ0. Consequently,    194 

 195 

 𝑉𝑤 = ∬  
D

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 < ℎ0𝐴(D), 196 

where 𝐴(D) is the area of the domain D.  Clearly,  there exists a quantity 𝜅 = 𝜅(𝑒, ℎ0, D) 197 

such that  198 

 0 < 𝜅(𝑒, ℎ0, D) < ℎ0𝐴(D)                                             (4) 199 

and   200 

 𝑉𝑤 = ∬  
𝐷

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ℎ0𝐴(D) − 𝜅(𝑒, ℎ0, D),     (5) 201 

Obviously, the inequalities (4) are trivial. 202 

Our main aim is to obtain non-trivial bilateral estimates of 𝜅 = 𝜅(𝑒, ℎ0, D),  better than 203 

inequalities (4). To do this we  consider the domain D as a Lobachevsky plane endowed with the 204 

hyperbolic Poincaré metric1. More precisely, we engage the conformal radius 𝑅(𝑧, D) (𝑧 = 𝑥 +205 

𝑖𝑦 ∈ D) defined by the equation  206 

 𝑅(𝑧, D) =
1

𝜆𝐷(𝑧)
,    𝑧 = 𝑥 + 𝑖𝑦 ∈ D, 207 

where we introduced a complex variable z;  𝜆𝐷(𝑧) is the coefficient of the Poincaré metric on the 208 

domain D with the Gaussian constant curvature 𝑐 = −4.  209 

                                                       
1 In the Appendix,  we elaborate on the Poincaré metric. 
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       In our improved estimates, we will also use a novel charactersitic, 𝐼𝑐(D), the conformal 210 

inertia moment of the domain D defined by Avkhadiev (1998) as follows:  211 

 212 

 𝐼𝑐(D) = ∬  
𝐷

𝑅2(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦. 213 

 214 

𝐼𝑐(D) generalizes the well known moment of intertia, which in classical mechanics is evaluated 215 

with respect to a certain line, rather than a bounding curve.  216 

          Here we list several basic properties of the conformal radius (the details see in  217 

Bandle and Flucher, 1996,  Avkhadiev and Wirths, 2009, ): 218 

(i) The radius 𝑅(𝑧, D) satisfies the non-linear Liouville equation  219 

 Δ𝑈 = exp(−2𝑈),    𝑈 = 𝑈(𝑥, 𝑦) = ln𝑅(𝑧, D),    𝑧 = 𝑥 + 𝑖𝑦 ∈ D, 220 

which is equivalent to the following non-linear PDE  221 

 𝑅(𝑧, D)Δ𝑅(𝑧, D) = |∇𝑅(𝑧, D)|2 − 4,    𝑧 = 𝑥 + 𝑖𝑦 ∈ D. 222 

(ii) Inside the domain D,  𝑅(𝑧, D) > 0 and 𝑅(𝑧, D) = 0 for boundary points 𝑧 ∈ 𝐺.   223 

 Moreover,   224 

 𝑅(𝑓(𝜁), D) ≡ |𝑓′(𝜁)|(1 − |𝜁|2),    𝑧 = 𝑓(𝜁) ∈ D, 225 

where 𝑓 is a univalent conformal mapping of the unit disc |𝜁| < 1 in a reference plane i   226 

onto the domain D. 227 

(iii) As consequences of the Koebe one-quarter theorem and the Schwarz-Pick inequality 228 

(Garnett and Marshall, 2005 ,  Avkhadiev and Wirth, 2009)  we have   229 

 
1

4
𝑅(𝑧, D) ≤ 𝑑𝑖𝑠𝑡(𝑧, G) ≤ 𝑅(𝑧, D),    𝑧 ∈ D,                                  (A1) 230 

where 𝑑𝑖𝑠𝑡(𝑧, G) is the distance from 𝑧 ∈ D to the boundary of D, i. e.  231 
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 𝑑𝑖𝑠𝑡(𝑧, G) = min
𝑤∈G

|𝑧 − 𝑤|,    𝑧 ∈ D. 232 

Clearly, the quantity 𝑑𝑖𝑠𝑡(𝑧, G) is the distance between a point inside the domain and the 233 

boundary of D.  Distance is common in the Euclidean geometry, i.e. is defined independent of any 234 

conformal mappings.  235 

Now, we consider the estimates of 𝑉𝑤 from (3) in the case, when ℎ(𝑥, 𝑦) is solution to 236 

the BVP (1)—(2).  237 

We prove the inequalities (6) and (7):  238 

  239 

 𝑉𝑤 = ∬  
D

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ ℎ0𝐴(D) −
𝑒

8𝜋ℎ0
𝐴2(D),       (6) 240 

and   241 

 
3𝑒

4ℎ0
≤

𝜅(𝑒,ℎ0,D)

𝐼𝑐(D)
≤

2𝑒

ℎ0
,                        (7) 242 

These inequalities are equivalent to the bilateral estimates:  243 

 244 

 ℎ0𝐴(𝐷) −
𝑒

ℎ0
∬  

𝐷
𝑅2(𝑧)𝑑𝑥𝑑𝑦 ≤ 𝑉𝑤 ≤ ℎ0𝐴(D) −

3𝑒

8ℎ0
∬  

D
𝑅2(𝑧)𝑑𝑥𝑑𝑦,         (8) 245 

 246 

For a fixed ℎ0, from inequalities (8) it follows that  247 

 lim
𝑒→0

𝑉𝑤 = ℎ0𝐴(D). 248 

i.e. a trivial limit of a static water table with no evapotranspiration. It is noteworthy that the rough 249 

estimate 𝑉𝑤 = ∬  
D

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 < ℎ0𝐴(D) becomes asymptotically sharp, if the number 𝑒/ℎ0 is 250 

sufficiently small. 251 

To prove the inequalities (6)—(8) we use  the results from the theory of elasticity, viz. 252 
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torsion of bars (see e.g. Arutyunyan and Abramyan, 1963).  In this theory,  a characteristic 253 

function obeys the same BVP (1)-(2) but with a negative constant in the RHS of eqn.(1). In 254 

dimensionless quantities, the torsional rigidity, 𝑃(D),   of an elastic bar having a cross section D 255 

is defined (see e.g. Saint Venant, 1856, Timoshenko, 1954)   by  the integral 256 

 𝑃(D) = 2 ∬  
D

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦, 257 

where the stress function 𝑢 = 𝑢(𝑥, 𝑦) is the solution of the Dirichlet  BVP: Δ𝑢 = −2 on D and 258 

𝑢 = 0 on G.  The functional P quantifies the resistance to twisting of a cylindrical bar having a 259 

cross section D in Fig.1. Let now  260 

 𝑢(𝑥, 𝑦) = (2/𝑒)(ℎ0
2 − ℎ2(𝑥, 𝑦)) 261 

 that gives 262 

 𝑃(D) =
4

𝑒
∬  

D
(ℎ0

2 − ℎ2(𝑥, 𝑦))𝑑𝑥𝑑𝑦, 263 

where the function ℎ2(𝑥, 𝑦) is defined as the solution of the BVP  (1)—(2). Using the simple 264 

inequalities  265 

 
ℎ0

2−ℎ2(𝑥,𝑦)

2ℎ0
≤ ℎ0 − ℎ(𝑥, 𝑦) ≤

ℎ0
2−ℎ2(𝑥,𝑦)

ℎ0
 266 

we obtain that  267 

 
𝑒

8ℎ0
≤

𝜅(𝑒,ℎ0,D)

𝑃(D)
≤

𝑒

4ℎ0
,           (9) 268 

and that  269 

 ℎ0𝐴(D) −
𝑒

4ℎ0
𝑃(D) ≤ 𝑉𝑤 ≤ ℎ0𝐴(D) −

𝑒

8ℎ0
𝑃(D).                     (10) 270 

According to the Saint Venant - Pòlya isoperimetric inequality (see Pòlya and Szegö, 1951, 271 

Timoshenko, 1954):  272 

 𝑃(D) ≤
𝐴2(D)

2𝜋
. 273 
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Applying this inequality and the left hand site inequality in (10), we get the inequality (6). 274 

We obtain the estimates (7) and (8) by using (9) and (10) and applying the bilateral 275 

estimates  276 

 277 

𝐼𝑐(D) ≤ 𝑃(D) ≤ 4𝐼𝑐(D)  278 

 279 

obtained by  Avkhadiev (1998), as well as the isoperimetric inequality (3/2)𝐼𝑐(D) ≤ 𝑃(D) of 280 

Salahudinov (2001). 281 

 Remark. The quantity P(D) has been evaluated and utlized in mechanics of soilid bodies 282 

and fluids, see, e.g. Saint Venant (1856), Pòlya and Szegö (1951), Timoshenko (1954), Arutyunyan 283 

and Abramyan, 1963, Bandle (1980), Avkhadiev and Kacimov (2002), Carbery et al. (2014), Kacimov 284 

et al. (2017a),  Avkhadiev (1995, 2015, 2020), Keady and Wiwatanapataphee (2020). One can 285 

readily obtain several estimates, similar to (6)–(8), using other known results on the quantity 𝑃(𝐷) 286 

and eqn. (10). In particular, one can apply the classical formulas by Cauchy and Saint Venant (see 287 

Timoshenko, 1954, Arutyunyan and Abramyan, 1963): 288 

 𝑃(D) ≈ 4
𝐼𝑥𝐼𝑦

𝐼𝑝
,    𝑃(D) ≈

𝐴4

4𝜋2𝐼𝑝
. 289 

Here 𝐼𝑝, 𝐼𝑥, 𝐼𝑦 are the inertia moments of D:  290 

 𝐼𝑝 = ∬  
𝐷

[(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2]𝑑𝑥𝑑𝑦, 291 

 292 

 𝐼𝑥 = ∬  
𝐷

(𝑦 − 𝑦0)2𝑑𝑥𝑑𝑦,    𝐼𝑦 = ∬  
D

(𝑥 − 𝑥0)2𝑑𝑥𝑑𝑦, 293 

where the point (𝑥0, 𝑦0) is the center of mass of D. 294 

 295 
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3. Lower and upper estimates for the area of the unsaturated 296 

zone 297 

As we have mentioned, in hydroecological applications it is important to know the size of 298 

Dd, in particular its area Ad (shaded in Fig.1a). Specifically, the roots of phreatophytes, if located 299 

in Dd, can not get water from the water table i.e. the plants there may wilt. 300 

Similarly to Problem 1, we formualte  301 

Probem 2. Estimate 𝐴𝑑. 302 

In order to solve this Problem we inscribe circles into D.  Let 𝛿0 > 0 be the Euclidean 303 

inradius defined by  304 

 𝛿0 = max
𝑧∈D

 𝑑𝑖𝑠𝑡(𝑧, G). 305 

It is evident that 𝛿0  as a minimax is the radius of the largest circle, inscribed in the domain D 306 

and there exists a disc D(𝑥0, 𝑦0, 𝛿0) such that  307 

 D(𝑥0, 𝑦0, 𝛿0) = {(𝑥, 𝑦): (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 < 𝛿0
2} ⊂ D. 308 

Again, we  draw an analogy with the theory of elasitcity and consider the Saint Venant stress 309 

function, 𝑢 = 𝑢(𝑥, 𝑦), defined as the solution of the BVP: Δ𝑢 = −2 on D and 𝑢 = 0 on G. 310 

In view of the identity 𝑢(𝑥, 𝑦) = (2/𝑒)(ℎ0
2 − ℎ2(𝑥, 𝑦)), the domain Dd is defined by  311 

 Dd = {(𝑥, 𝑦) ∈ D: 𝑢(𝑥, 𝑦) > (2/𝑒)ℎ0
2}. 312 

Assume that  313 

 𝛿0 >
2  ℎ0

√𝑒
.                        (11) 314 

If the condition (11) on the Euclidean inradius 𝛿0 is valid for D, then the unsaturated domain D𝑑 315 

is not an empty set. 316 
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Indeed, from comparing u(x,y)  with the stress function for the inscribed disc  317 

D(𝑥0, 𝑦0, 𝛿0)    the inequality follows:  318 

 2 2 2

0 0 0 0 0 0

1
( , ) ( ) ( ) ,        ( , ) D( , , )

2
u x y x x y y x y x y         (A2) 319 

Consequently,  320 

2
2 2 2 0
0 0 0 d

4
 ( , ) D : ( ) ( ) D

h
x y x x y y

e


 
       

 
 321 

Therefore, the domain Dd   contains the disc 
2

2 2 2 0
0 0 0

4
 ( , ) D : ( ) ( )

h
x y x x y y

e


 
      

 
. Thus 322 

if the inequality (11) is valid, then  323 

2
2 0
0

4
d

h
A

e
 
 

  
 

 324 

Evidently, if D is a disc, then this inequality is sharp. 325 

         Next, suppose that there exists a domain Dd and we target  an upper estimate of its  326 

area 𝐴𝑑. 327 

Since the stress function 𝑢(𝑥, 𝑦) ≥ 0  on D  and 𝑢(𝑥, 𝑦) ≥ (2/𝑒)ℎ0
2  on Dd , one 328 

immediately obtains  329 

 𝑃(D) = 2 ∬  
D

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ 2 ∬  
Dd

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ (4/𝑒)ℎ0
2𝐴𝑑 . 330 

that yields 331 

 𝐴𝑑 ≤
𝑒

4 ℎ0
2  𝑃(D). 332 

Now, one can apply the known isoperimetric inequalities for the torsional rigidity. In particular, 333 

one has the following inequalities:  334 

 𝐴𝑑 ≤
𝑒

8𝜋 ℎ0
2  𝐴2(D),    𝐴𝑑 ≤

𝑒

 ℎ0
2  

𝐼𝑥𝐼𝑦

𝐼𝑝
,    𝐴𝑑 ≤

𝑒𝐼𝑐

 ℎ0
2 335 
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  336 

 Example 1. Consider a disc as domain D. Namely, we take  337 

 D = D(𝑥0, 𝑦0, 𝑟0) = {(𝑥, 𝑦): (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 < 𝑟0
2},    𝑟0 > 0. 338 

The solution of the BVP (1)—(2) for infiltration (negative RHS in eqn.(1)) is (Strack, 2017a)  339 

 ℎ2(𝑥, 𝑦) =
𝑒

4
[(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2] + ℎ0

2 −
𝑒

4
𝑟0

2. 340 

Assume that  341 

 ℎ0 ≥
√𝑒

2
𝑟0, 342 

then ℎ(𝑥, 𝑦) ≥ 0 at every point of the disc i.e. no dried zone emerges at the centre. For this case,  343 

straightforward computations and some algebra give that  344 

 𝑉𝑤 = ∬  
D

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =
8𝜋

3𝑒
(ℎ0

3 − (√ℎ0
2 − 𝑒𝑟0

2/4)
3

) = 345 

 346 

 =
2𝐴

3
ℎ0 (𝜏 +

1

1+𝜏
),              (A3) 347 

where 𝜏 = √1 − 𝑒𝑟0
2/(4ℎ0

2) ∈ [0,1) and 𝐴 = 𝜋𝑟0
2 is the area of the disc. It is evident that  348 

 
2

3
≤

𝑉𝑤

𝐴ℎ0
< 1.                     (A4) 349 

Next, assume that  350 

 0 < ℎ0 <
√𝑒

2
𝑟0. 351 

Evidently, in this case Dd is a smaller “internal” disc  352 

 (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 < 𝑟𝑑
2,    𝑟𝑑 = √𝑟0

2 −
4

𝑒
ℎ0

2, 353 

and  354 

 𝐴𝑑 = 𝜋 (𝑟0
2 −

4

𝑒
ℎ0

2),    𝑉𝑤 = ∫  
D\Dd

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =
8𝜋

3𝑒
ℎ0

3  (A5) 355 
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 Example 2. Let D is an ellipse with semiaxes a0 and b0 . Namely, we assume that  356 

 D = D(𝑥0, 𝑦0, 𝑎0, 𝑏0) = {(𝑥, 𝑦):
(𝑥−𝑥0)2

𝑎0
2 +

(𝑦−𝑦0)2

𝑏0
2 < 1} , 𝑎0 > 0, 𝑏0 > 0. 357 

Similarly to Strack (2017a, Section 2.5.8),  who tackled the Poisson equation with a negative RHS, 358 

the BVP (1)—(2) has the solution defined by  359 

 ℎ2(𝑥, 𝑦) =
𝑒 𝑎0

2 𝑏0
2

2(𝑎0
2+𝑏0

2)
(

(𝑥−𝑥0)2

𝑎0
2 +

(𝑦−𝑦0)2

𝑏0
2 ) + ℎ0

2 −
𝑒 𝑎0

2 𝑏0
2

2(𝑎0
2+𝑏0

2)
. 360 

The condition ℎ(𝑥, 𝑦) ≥ 0 on D(𝑥0, 𝑦0, 𝑎0, 𝑏0) is equivalent to the inequality  361 

 ℎ0 ≥
𝑎0 𝑏0√𝑒

√2(𝑎0
2+𝑏0

2)

. 362 

Using the generalized polar coordinates 𝑥 = 𝑎0𝑟cos𝜃 , 𝑦 = 𝑏0𝑟sin𝜃   by straightforward 363 

computations we obtain  364 

 𝑉𝑤 = ∬  
D

ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =
4𝜋(𝑎0

2+𝑏0
2)

3𝑒𝑎0𝑏0
(ℎ0

3 − (√ℎ0
2 −

𝑒 𝑎0
2 𝑏0

2

2(𝑎0
2+𝑏0

2)
)

3

] = 365 

 366 

 =
2𝐴(𝑎0,𝑏0)

3
ℎ0 (𝜏0 +

1

1+𝜏0
), 367 

where 𝜏0 = √1 − 𝑒(𝑎0
2 + 𝑏0

2)/(2𝑎0
2𝑏0

2ℎ0
2) ∈ [0,1)  and 𝐴(𝑎0, 𝑏0) = 𝜋𝑎0𝑏0  is the area of the 368 

domain D(𝑥0, 𝑦0, 𝑎0, 𝑏0). Again, we obtain that  369 

 
2

3
≤

𝑉𝑤

𝐴(𝑎0,𝑏0)ℎ0
< 1. 370 

Now, we assume that  371 

 0 < ℎ0 <
𝑎0 𝑏0√𝑒

√2(𝑎0
2+𝑏0

2)

. 372 

For this case, the domain Dd is  373 

 
𝑒 𝑎0

2 𝑏0
2

2(𝑎0
2+𝑏0

2)
(

(𝑥−𝑥0)2

𝑎0
2 +

(𝑦−𝑦0)2

𝑏0
2 ) <

𝑒 𝑎0
2 𝑏0

2

2(𝑎0
2+𝑏0

2)
− ℎ0

2 374 
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and Gd is a small “internal”  ellipse,  the area of which is   375 

 𝐴𝑑 = 𝜋𝑎0𝑏0 (1 −
2 ℎ0

2 (𝑎0
2+𝑏0

2)

𝑒 𝑎0
2 𝑏0

2 ). 376 

 377 

4.   The Evaporation Rate Varying with Depth 378 

In this Section, we consider the evaporation rate decreasing with the depth of the water 379 

table, 𝑑(𝑥, 𝑦) = 𝑑0 − ℎ(𝑥, 𝑦) (Fig. 2). Linear or nonlinear functions 𝑒(𝑑) were experimentally 380 

examind (see, e.g., Hu et al., 2008, Katz, 1968, PK-62, Shokri‐Kuehni et al., 2019). 381 

Without any loss of generality, we select the exponential function in the RHS of the Poisson 382 

equation (Kacimov et al., 2019). Then the BVP  (1)-(2) is transformed into a nonlinear one:  383 

 384 

 
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑥2 +
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑦2 = 𝑒0𝑒𝑥𝑝[−𝜆𝑑(𝑥, 𝑦)],    (12) 385 

where   386 

 𝑒0 = 𝑐𝑜𝑛𝑠𝑡 > 0,   𝜆 = 𝑐𝑜𝑛𝑠𝑡 ≥ 0, 𝑑0 = 𝑐𝑜𝑛𝑠𝑡 ≥ ℎ0 = 𝑐𝑜𝑛𝑠𝑡 ≥ 0, ℎ𝐺 = ℎ0. 387 

       Probem 3. Estimate Vw and Ad. 388 

Again, we engage the classical Saint Venant model. Namely, we use the earleir defined  389 

torsional rigidity 𝑃(𝐷) where the function 𝑢 = 𝑢(𝑥, 𝑦) is superharmonic one, defined as the 390 

solution of the BVP: Δ𝑢 = −2 on 𝐷 and 𝑢 = 0 on 𝐺. 391 

Assume that there exists the solution ℎ(𝑥, 𝑦) such that 0 ≤ ℎ(𝑥, 𝑦) ≤ ℎ0 at every point 392 

(𝑥, 𝑦) ∈ 𝐷. We use eqn. (12) and the estimates  393 

 𝑒0𝑒𝑥𝑝[−𝜆𝑑0] ≤ Δℎ2(𝑥, 𝑦) =
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑥2 +
𝜕2ℎ2(𝑥,𝑦))

𝜕𝑦2 ≤ 𝑒0𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)] 394 

juxtaposed with  the equation  395 
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 Δ𝑢(𝑥, 𝑦) =
𝜕2𝑢(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑢(𝑥,𝑦)

𝜕𝑦2 = −2, 396 

That yileds 397 

 Δ (−ℎ0
2 + ℎ2(𝑥, 𝑦) +

𝑒0

2
𝑒𝑥𝑝[−𝜆𝑑0] 𝑢(𝑥, 𝑦)) ≥ 0 398 

and the inequality  399 

 Δ (−ℎ0
2 + ℎ2(𝑥, 𝑦) +

𝑒0

2
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)] 𝑢(𝑥, 𝑦)) ≤ 0 400 

which holds at every point (𝑥, 𝑦) ∈ 𝐷. Since the functions −ℎ0
2 + ℎ2(𝑥, 𝑦) and 𝑢(𝑥, 𝑦) vanish 401 

on the boundary of the domain, we get  402 

 
𝑒0

2
𝑒𝑥𝑝[−𝜆𝑑0]𝑢(𝑥, 𝑦) ≤ ℎ0

2 − ℎ2(𝑥, 𝑦) ≤
𝑒0

2
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)]𝑢(𝑥, 𝑦)            (13) 403 

at every point (𝑥, 𝑦) ∈ D. By integrating we obtain  404 

 
𝑒0

4
𝑒𝑥𝑝[−𝜆𝑑0] ≤

∬  𝐷 (ℎ0
2−ℎ2(𝑥,𝑦))𝑑𝑥𝑑𝑦

𝑃(𝐷)
≤

𝑒0

4
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)].                               (14) 405 

Using inequalities (14) and the inequalities  406 

 (ℎ0
2 − ℎ2(𝑥, 𝑦))/(2ℎ0) ≤ ℎ0 − ℎ(𝑥, 𝑦) ≤ (ℎ0

2 − ℎ2(𝑥, 𝑦))/ℎ0, 407 

we get  408 

 
𝑒0

8ℎ0
𝑒𝑥𝑝[−𝜆𝑑0]𝑃(D) ≤ ℎ0𝐴(D) − 𝑉𝑤 ≤

𝑒0

4ℎ0
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)𝑃(D).                   (15) 409 

From inequalities (15) it follows that  410 

 𝑉𝑤 ≈ ℎ0𝐴(D), 411 

if the quantity 𝑒0 is sufficiently small. 412 

Using inequalities (15) and the known inequalities for the torsional rigidity 𝑃(D) one can 413 

find several estimates for 𝑉𝑤 . We present here two of them. Applying (15) and the Saint 414 

Venant-Pòlya isoperimetric inequality 𝑃(D) ≤ 𝐴2(D)/(2𝜋), we obtain that  415 

 𝑉𝑤 ≥ ℎ0𝐴(D) −
𝑒0

8𝜋ℎ0
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0)]𝐴2(D). 416 
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Applying the bilateral estimates (3/2)𝐼𝑐(D) ≤ 𝑃(D) ≤ 4𝐼𝑐(D) that are valid for every simply 417 

connected domain D, one gets  418 

 
3𝑒0

16ℎ0
𝑒𝑥𝑝[−𝜆𝑑0] ≤

ℎ0𝐴(𝐷)−𝑉𝑤

∬  D 𝑅2(𝑥+𝑖𝑦,𝐷)𝑑𝑥𝑑𝑦
≤

𝑒0

ℎ0
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0). (16) 419 

By the above-used property (A1) of the conformal radius we obtain  420 

 ∬  
D

𝑑𝑖𝑠𝑡2(𝑧, G)𝑑𝑥𝑑𝑦 ≤ ∬  
D

𝑅2(𝑧, D)𝑑𝑥𝑑𝑦 ≤ 16 ∬  
𝐷

𝑑𝑖𝑠𝑡2(𝑧, G)𝑑𝑥𝑑𝑦.       (17) 421 

Inequalities (16) and (17) imply the following estimates  422 

 
3𝑒0

16ℎ0
𝑒𝑥𝑝[−𝜆𝑑0] ≤

ℎ0𝐴(𝐷)−𝑉𝑤

∬  D 𝑑𝑖𝑠𝑡2(𝑥+𝑖𝑦,𝐺)𝑑𝑥𝑑𝑦
≤

16𝑒0

ℎ0
𝑒𝑥𝑝[−𝜆(𝑑0 − ℎ0), 423 

Lower and upper estimates for the area of the unsturated zone 424 

First, we assume that 425 

0
0 0

0

2
exp( / 2)

h
d

e
                                                     (18) 426 

where 𝛿0 is the Euclidean inradius of the domain 𝐷. Using the estimate (A2) and the left 427 

hand side  in eqn.(13) we infer the following: if the inequality (18) is satisfied, then Dd  is not an 428 

empty set and   429 

2
2 0
0 0

0

4
exp( / 2)d

h
A d

e
  
 

  
 

 430 

Now, suppose that the domain 𝐷𝑑 is not an empty set. We obtain an upper estimate of the area 431 

𝐴𝑑 of 𝐷𝑑. 432 

The stress function 𝑢(𝑥, 𝑦) ≥ 0 on 𝐷. From the RHS of inequality (13) it follows that 433 

𝑢(𝑥, 𝑦) ≥ (2/𝑒0)ℎ0
2exp(𝜆(𝑑0 − ℎ0)) at any point (𝑥, 𝑦) ∈ 𝐷𝑑. From this inequality,  it follows 434 

that  435 

 𝑃(𝐷) = 2 ∬  
𝐷

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ 2 ∬  
𝐷𝑑

𝑢(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≥ (4/𝑒0)ℎ0
2exp(𝜆(𝑑0 − ℎ0)) 𝐴𝑑. 436 
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Therefore,   437 

 𝐴𝑑 ≤
𝑒0

4 ℎ0
2 exp(−𝜆(𝑑0 − ℎ0)) 𝑃(𝐷). 438 

Applying the known isoperimetric inequalities for P(D), one has the following inequalities:  439 

 𝐴𝑑 ≤
𝑒0

8𝜋 ℎ0
2 exp(−𝜆(𝑑0 − ℎ0)) 𝐴2(𝐷),    𝐴𝑑 ≤

𝑒0

 ℎ0
2 exp(−𝜆(𝑑0 − ℎ0)) 

𝐼𝑥𝐼𝑦

𝐼𝑝
.    (19)  440 

 441 

5. HYDRUS Simulations 442 

In this Section, we use HYDRUS (Šimůnek et al., 2016), which is a finite element code solving a 443 

3-D transient Richards’ equation: 444 

      ( ) ,                                   (20)

where θ( , , , )=volumetric moisture content, 

( ) theVan Genuchten's hydrualic conductivity funnction, 

( , , , ) total head,  = pressur

K p h S
t

t x y Z

K p

h t x y Z p Z p


   





   e head,  =vertical coordinate,

volume of water uptake by plant roots from a volume of soil per time (1/s),

 ( ), potential water uptake rate (1/s), 

Feddes'  stress response function (unitles

p p

Z

S

S S h S





 

 s), 0 1 

 445 

 446 

Eqn.(20)  generalizes the model used in Sections 2-4 by taking into account the unsaturated zone 447 

and capillarity of the soil. Even in humid countries where the phreatic surface is a netto-recipient of 448 

water from the vadose zone, flow in the capillary fringe and unsaturated zone, conjugated with 449 

groundwater beneath, is not so trivially-vertically 1-D  (see e.g. Hunt et al., 2008, Silliman et al., 450 

2002), as often misconcepted.    451 

In this Section, we use the notation p(t,x,y,Z)=h-Z for the pressure head2, x for the radial 452 

                                                       
2 In HYDRUS, the pressure head is denoted as h that is contrary to standard notation in groundwater hydrology where 
h is reserved for the total (piezometric) head (see e.g. PK-62, Strack, 2017) 
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coordinate (we solve axisymmetric problems), and is the corresponding nabla operator.  453 

For comparisons with analytical results, we engage the following options of HYDRUS-3D: 454 

 “2D –Axisymmetric Vertical Flow” for a circular G in Sections 2-4  455 

 transient  seepage during the time interval  0 <t <T ;  at t=0 a certain initial 456 

condition in a 3-D porous domain is selected for p(0,x,y,Z);  T is the simulation time 457 

(we fixed it to be 600 days) at which flow becomes steady-state and, therefore, 458 

comparisons with the analytical solutions in Sections 2-4 are possible  459 

 a default HYDRUS initial condition of p=-100 cm in the whole flow domain is used 460 

 default HYDRUS iteration criteria, time step controls, and internal interpolation are used  461 

 hysteresis-free loam from the HYDURS Soil Catalogue, with the pentad parameters, 462 

which determine the Van Genuchten capillary pressure relation p(), is used 463 

 464 

 465 
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 469 

 470 

 471 

Fig.3. HYDRUS simulations for saturated-unsaturated axisymmetric flow in a circular cylinder 472 

having r0=10 m at t=600 days: a) phreatic surface TB for |AB|=50 cm.; b) isohumes x,Z); c) 473 
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vectors of Darcian velocities;  d) streamlines; e) phreatic surface with concave-up and 474 

concave-down segments for |AB|=75 cm.  475 

In simulations shown in Figs.3-4 we assumed no transpiration i.e. S=0 in the RHS of eqn.(20). 476 

Fig.3  presents the results of simulations for the case of flow without an unsaturated “gap”. In 477 

this HYDRUS project,  we selected a porous cylinder of a radius r0=10 m (see Example 1  in 478 

Section 3). Due to  symmetry we show only one half of an axisymmetric section. The vertical 479 

coordinate OZ coincides with the axis of symmetry, the horizontal (radial) axis Ox coincides with 480 

the bedrock. In the selected cross-section, the flow domain is a rectangle OABC. We assumed the 481 

soil thickness d0  =1 m.  482 

The boundary conditions are: no flow along OA (an impervious substratum), OD (the line of 483 

symmetry) and BC. The latter condition is common in the Vedernikov-Bouwer model (see e.g. 484 

PK-62, Kacimov et al., 2019) and is physically justified by the fact that evaporation from vertical 485 

slopes of excavations (see the Photogallery) are relatively minor, compared with evaporation from 486 

a horizontal soil surface). Evaporation from segment BC can be also modeled (see Kacimov, 2006).  487 

Along DC we assumed p=-10000 cm that is equivalent to very dry soil conditions. In the field, we 488 

measured the moisture content, , along the soil surface and found this value in May-June to be as 489 

low as 3-5% (see the Photogallery) that is even less than (-10000) according to the VG function for 490 

loam in HYDRUS. In sensitivity analysis, we varied pDC between -10000 cm and -1000 cm and 491 

showed that the variations of the quantitative properties shown in Fig.3 (the case of the driest soil 492 

surface) are minor. We recall that according to Philip (1991), DCp    corresponds to the upper 493 

bound of evaporation. Along AB in Fig.3a, the total head h=h0=50 cm i.e. p decreases linearly 494 

upward from 50 (point A) cm to 0 (point B). 495 
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The targeted size of finite elements was 10 cm. The mesh was refined along AC and CD. The 496 

number of mesh entities is: 7332 nodes, 498 1-D elements,  and 14164 2-D elements.  497 

Curve BT in Fig.3a represents a phreatic surface p=0. Point T is the bottom of the water table 498 

trough. Fig.3b shows the colour map of isohumes i.e.  x,Z). Fig.3c illustrates the vector field of 499 

Darcian velocities. This field corroborates the DF analytical model used in Sections 2-4. Indeed, in the 500 

saturated zone flow is prevalently horizontal and becomes almost vertical close to the soil surface 501 

(albeit, close to the phreatic line the vertical and axial components of the velocity vectors are 502 

comparable). The same qualitative behavior can be inferred from the streamlines plotted in Fig.3d. In 503 

Fig.3e we increased h0 from 50 to 75 cm. As result, we see not only a drawup of the phreatic line 504 

(that is trivial)  but also the appearance of an inflexion point. The DF approximation can not 505 

predict such points and a full 2-D potential theory is needed for comparisons with HYDRUS 506 

(Craster, 1994, Kacimov et al., 2018, Kacimov and Obnosov, 2006, Kacimov and Youngs, 2005).   507 

 508 

 509 
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 512 

 513 

 514 

Fig.4. HYDRUS simulations for a cylinder having r0=20 m at t=600 days: a) phreatic surface TB 515 

for |AB|=50 cm.; b) isohumes; c) Darcian velocities near AC;  d) velocity magnitude along CD (left 516 
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panel) and  evaporation rate e(Z) computed in Wolfram’s (1991)  Mathematica (right panel); e) 517 

velocity along AB. 518 

 519 

In Fig.4  simulation results are presented for r0=20 m (other parameters are the same as in 520 

Fig.3). In Fig.4a, a large unsaturated lacuna appears in the centre of the original 3-D porous 521 

cylinder. The phreatic line BF2 bounds a saturated “tongue” BF2A with the coordinate of the front 522 

point F2, and  rf=12.4 m.  Remarkably, BF2, unlike a “strongly” curved BT in Fig.3a, e, is almost a 523 

straight line that is in comport with the analytical solutions in terms of both the DF and potential 524 

theories (Kacimov and Obnosov, 2006, 2019, Kacimov et al, 2004).  525 

Fig.4b and 4c show the isohumes and velocity vectors in a zone close to G. The left panel in 526 

Fig.4d presents the HYDRUS-computed magnitudes of velocity vectors along CD. The wiggling is 527 

caused by numerical approximations. The right panel in Fig.4d shows “smoothening” of this curve 528 

by adopting the exponentially decreasing evaporation rate, according to eqn.(12) in Section 4. 529 

Specifically, we did the following: we retrieved the values of velocity at Z=1 m,  x=rf  and at Z=1 530 

m,  x=r0 from HYSRUS simulations in Fig.4, viz. V=0.03 cm/day and 0.3 cm/day, respectively. Next, 531 

we solved the system of equations 532 

𝑒0𝑒𝑥𝑝[−100 ∗ 𝜆] = 0.03, 

𝑒0𝑒𝑥𝑝[−50 ∗ 𝜆] = 0.3 

with respect to e0 and  that gave e0=3 cm/day and  1/cm. The corresponding evaporation 533 

function is plotted in Fig.4d, right panel.  534 

 Now we compare the HYDRUS results in Fig.3-4 with the analytical solutions and estimates 535 

in Sections 2-4.  We selected Example 1 from Section 3.  536 

First, we evaluated the HYDRUS-simulated from the distribution of the Darcian velocity 537 
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along CD in Fig.3a (a wiggling curve similar to one shown in Fig.4e). We used the Interpolation 538 

routine of Mathematica (interpolation order ->4) to smoothen this velocity, integrated this 539 

interpolation function from x=0 to x=1000 cm and calculated the integral average of =0.084 cm/day. 540 

Then, for the loam having the HYDRUS-catalogued value K=25 cm/day we got e=0.00672. Eqn. (A3) 541 

gives Vw =1.266*10
8
 cm

3
 and the dual bounds (A4) are:  1.047*10

8
 cm

3
 < Vw  < 1.571*10

8
 cm

3
  i.e. 542 

Vw is almost perfectly an arithmetic average of the bounds. HYDRUS does not have an option to 543 

evaluate the volume of the saturated zone. So, we did the following. The water table BT in Fig.3e is a 544 

smooth curve and we selected the HYDRUS coordinates x=0, x=100, x=200, …,x=1000 cm and 545 

found the corresponding Z values at which p=0. Next, we interpolated in Mathematica the obtained 546 

water table equation x(Z). Next, we evaluated by integration of this interpolation function the volume 547 

of the body of revolution that gave us VwH=9.65*10
7
 cm

3
 that is about 30 % less than Vw  computed by 548 

the DF theory.  549 

Second, for the case of an unsaturated “gap” (r0=20 m)  in Fig.4 we retrieved from HYDRUS 550 

the distribution of nodal values of the Darcian velocity along AB. This smooth curve is depicted in 551 

Fig.4e. We interpolated these discrete values in Mathematica. Next, by integrating the obtained   552 

interpolation function  we evaluated an average value of velocity along AB, vAB=2.39 cm/day and an 553 

approximate quantity of water seeping into the cylinder, qa=2 r0 h0 vAB= 1.5*10
6
 cm

3
.  Next, from 554 

HYDRUS we got the radial coordinate of point F2, rdH=1242 cm. After that we assumed that all qa 555 

evaporates from the phreatic surface with a constant  = qa// ( r0
2

 - rdH
2

 ) =0.194 cm/day i.e. e=0.016. 556 

Then from (A5) we evaluate Ad=1.05*10
7
 cm

2
 while HYDRUS gives AdH= *1242

2
 =4.85*10

6
 cm

2
.  557 

If we assume an exponentially decreasing evaporation rate with the above-computed e0 and    then 558 

the first inequality in (19) gives Ad<6.13*10
6
 cm

2
 that well bounds AdH. Overall, the discrepancy 559 

between HYDRUS and analytical results is more for the case of the unsaturated “gap” scenario as 560 
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compared with the scenario in Fig.3.  561 

The major problem of both the DF and potential theories in modeling evaporation from a 562 

non-flat water table is in the assumption of a constant  (see PK-77). This simplification works 563 

reasonably well if the water table is almost flat and close to the ground surface. PK and her students 564 

attempted to model  depending on the water table depth but the obtained results in the potential (2D) 565 

model were poor.   566 

 It is noteworthy that the scenarios modeled in Figs.3-4 correspond to hyper-dry climatic 567 

conditions of the Gulf. For the climate in Holland, Rezaei et al. (2017) studied a shallow unconfined 568 

aquifer having the depth d (Fig.2) similar to ours (around 100 cm). They modeled the vadose zone 569 

flow by HYDRUS1D, assuming a quasi-flat water table, i.e. ignored both the lateral groundwater flow 570 

and 2-,3-D unsaturated flow. In the saturated-unsaturated flows pictured in Figs.3-4, evaporation is so 571 

strong that 1-D simplification in the Richards equation would be far-fetched: both lateral groundwater 572 

motion and essentially 3-D moisture flow have to be considered.    573 

 574 

6.   Concluding Remarks 575 

Subsurface hydrologists in arid/semi-arid environemnts of the South West (Arizona, Nevada) 576 

or Australia are equipped with the opulence of multi-decadal public-domain records from a dense 577 

network of weather stations and observation piezometers, the cornucopea of various computer codes, 578 

multidiscipinary expertise of nearby academics and consultants, advanced instruments (e.g. weighing 579 

lysimeters), among others. In the deserts of Arabia, one  has to muddle through limited modeling 580 

resources, in particular, scanty parametric depositaries in physcially-based models and lacunary (or 581 

even spurious)  proprietary data from field observations. In this context, our paper tries to stitch the 582 

results of a simplified analytical 2D groudnwater model with ones from an advanced 3D 583 
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saturated-unsaturated numerical code.  584 

The hydrological systems tackled in this paper are unique for the hyperarid climates of the 585 

Gulf: for example in Oman, despite a very high ET0 (3500-1500 mm/year) versus only 50-350 586 

mm/year of precipitation (Empty Quarter – Jabel Al Akdar), the water table of unconfined aquifers in 587 

many urban areas of Muscat (as well as in Kuwait City, Jeddah, Medina, Al-Ain, among others), has 588 

risen to d (Fig.2) of only few cm –tens of cm from the ground surface.  That has never been expected 589 

and no contingecny hydrological urban planning was mulled to confront waterlogging and 590 

evapotranspiration directly from the water table, which has become a crucial component of the water 591 

balance of these shallow (perched) aquifers. It is noteworthy, that the focus of Western hydrologists 592 

(see e.g. Hogan et al., 2004) working in arid/semi-arid regions was mostly on recharge to deep water 593 

tables, i.e. evapotranspiraiton was prevalently a realm of soil physicists who work with 594 

“redistribution” in the vadose zone, rather than aquifers.              595 

Mathematically, the dual bounds, obtained in this paper for the groundwater storage and areal 596 

extension of desaturation zone, like eqn. (A4), generalize the one-sided inequalities in the theory of 597 

elasticity, electrostatics and other branches of mathematical physics, reported in the Pòlya and Szegö 598 

(1951) compendium.  Physically, our bounds for integral quantities of interest for arid zone 599 

hydrology, serve the same purpose as pedotransfer functions. Indeed, the isoperimetric estimates of 600 

Pòlya and Szegö asses an integral physical quantity, which is difficult to measure/calculate, via 601 

another, which is easier to get. For example, Vw in (A3)-(A5) is not easy to find by solving the 602 

Richards flow problem, while geometrical properties of D are readily determined.  603 

HYDRUS3D is a wonderful package but the Richards equation requires a pentad of the Van 604 

Genuchten parameters, as compared with only two in the the DF model. Also, only HYDRUS1D is a 605 

free software (needs a basic training to run), while the analytical estimates, albeit based on a “crude 606 

model”,  can be used by field hydrologists as a “back-of-an-envelope” precursor in a scaffolding 607 
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ascend to a more advanced and resource-consuming models. Haitjema (2006) advocated analytical 608 

“equations”,  while our paper advocates “isoperimetric inequalities”.        609 

The perspectives of our work are: 610 

a) In the analytical DF model, we can consider “leaky” layers, instead of an impervious 611 

bedrock in Fig.2. This will transform eqn. (1) into a nonlinear modified Helmholtz 612 

equation, to which we plan applying the same technique of Poincaré’s metric. 613 

b) Waterlogged areas in several uban districts of the Muscat governorate are currently  614 

contemplated for implementing MAD (Managed Aquifer Discharge). One 615 

phytoengineering option to mitigate the harm caused by a rising water table is construction 616 

of reedbeds. In the numerical Richards-equation based model, we plan to involve the root 617 

water uptake by desert plants (Australian prosopis),  using the Feddes “trapezoidal” stress 618 

function from HYDRUS. For this purpose, we will meter sap flow through  desert 619 

vegetation in Oman (HYDRUS does not have catalogued Feddes’ functions for this type of 620 

plants). MAD would diversify the hydrological practices-vernacular of  MAR (see e.g. 621 

Healy, 2010,  Hogan et al., 2004).  622 

c) Estimates for mixed, rather than Dirichlet’s boundary conditions in the BVPs for the 623 

Poisson equation  (Kacimov et al., 2020a) can be attempted to derive. In HYDRUS3D a 624 

new reservoir boundary condition (see e.g. Sasidharan et al., 2018), which allows 625 

considering a finite water storage in the ditch (trench) depicted in Fig.2, i.e. h0(t) devoured 626 

by evaporation from D via the mass-balance conservation (Al-Shukaili et al., 2020), can be 627 

involved.        628 

d) Even in hyper arid climates of Oman and UAE, phytoengineering (growing trees) may 629 

hydrologically make the RHS of the Poisson equation negative in one part of the 630 

catchment (D in Fig.1) due to enhanced infiltration during heavy surface ponding periods 631 
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(see e.g. Al-Maktoumi et al., 2020), and positive in other parts of D. Deriving 632 

isoperimetric estiamates for BVPs with an alternating sign of  is another interesting task.  633 

Along with the above considered dyad of integral quantities (Vw, Ad), other – local -  criteria 634 

can be targeted, e.g. the ordinate of point T in case of no unsaturated lacuna (Fig.2a). If the RHS in the 635 

elliptic eqn.(1) does not change its sign inside D, the minimum principle applies for 636 

evapotranspiration regimes. Estimating the value and locus of this minimum within D, without 637 

solving the BVP itself, is improtant in ecohydrological applications.  638 

A fascinating research area is to find optimal shapes of D, which give “sharp” Pòlya and Szegö 639 

(1951) bounds. We recall: a circular elastic bar maxes the rigidity in the class of all equi-areal bars. 640 

Does a circular D in Fig.1 possess the property of maximum Vw in case of an unsaturated lacuna?  641 

Does Ad  attain an extremum on a cirle? Mathematical questions of this kind can be extended and 642 

solutions – if found - adapted to arid zone hydrology in the Gulf. 643 

      644 

 Appendix (Electronic Supplementary File) 645 

 646 

In this Appendix, we elaborate on the conformal radius, its definition and some known 647 

properties. The conformal radius is a charactersitic of planar domains, which is not well-perceived 648 

even by mathematicians. Specifically, in the classical book by Pòlya and Szegö (1951) R of domains is 649 

considered as a constant that is true if the point z0 is fixed. Only Bandle and Flucher (1996) and 650 

Avkhadiev and Wirth (2009) investigated the properties of R(x,y) for various D. 651 

 Let D be a simply connected plane domain such that D . Let z0=x +i y0 D  be a fixed 652 

point. 653 

According to the Riemann mapping theorem there exists an analytic function w=g(z) that 654 

satisfies the conditions 0 0 0( ) 0, '( ) Re '( ) 0g z g z g z    and maps conformally the domain D onto the 655 
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unit disc D

*
 =D(0, 0, 1), defined by |w|<1 in the w-plane.  656 

The function 0( ) / Re '( )g z g z  maps conformally the domain D onto the  disc D(0, 0, R) of a 657 

radius 01/ Re '( ) 0R g z  . This positive number,  R(z0, D), is called the conformal radius of the 658 

domain D at the point z0 (see, for example, Pòlya and Szegö, 1951).  By this definition, the number R 659 

is determined for every point z0 in D. Therefore, the conformal radius is a function, defined at  every 660 

point 0 Dz   (see, for instance, Bandle and Flucher, 1996,  Avkhadiev and Wirths, 2009). Using 661 

explicit conformal mappings one easily gets the following known  (see e.g.  Bandle and Flucher, 662 

1996) formulas  663 

* 2 2 ** ***(  ,D ) 1 ,   (  ,D ) 2 ,   (  ,D ) 2sinR x i y x y R x i y x R x i y x         664 

where D
**

 is the half-plane defined by x>0, and D
***

 is the strip, defined by 0<x< . 665 

Of course, in the general case of an arbitrary domain D one has no explicit formulas for 666 

conformal radii of domains. Fortunately, there are several useful identities, integral formulas and 667 

explicit estimates for the conformal radius of arbitrary simply connected domains. 668 

Consider an arbitrary conformal map  by  the function z=f() of the unit disc onto the domain 669 

D. As a simple consequence of the definition of the conformal radius one has the following identity 670 

' 2 *[ ( ),D] | ( ) | (1 | | ),    ( ) D,     D D(0,0,1)R f f z f           671 

Using this formula for a disc of a radius r0, one easily gets 672 

   
2 2

0 0

0 0 0 0

0

[ ,D( , , )]
x x y y

R z x y r r
r

  
   673 

We emphasize that the conformal radius is connected with the hyperbolic Lobachevsky 674 

geometry in D via the formula D(z,D) 1/ ( )R z , where D ( )z is the coefficient of the hyperbolic 675 

Poincaré metric in D with the Gaussian curvature c=-4 (more details see, for instance, in Bandle and 676 
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Flucher, 1996,  Avkhadiev and Wirths, 2009). This fact, which  is not widely known even in the 677 

community of mathematicians working with the geometric theory of functions of complex variables, 678 

implies many useful consequences. In particular, we have used the Liouville equations and the 679 

estimates 680 

1
( ,D) ( ,G) ( ,D),    D,     

4
R z dist z R z z    681 

which are inferrred from the classical  Koebe one-quoter theorem and the Schwarz-Pick inequality 682 

(Avkhadiev and Wirth, 2009).  It is noteworthy that the Liouville equation in the form 683 

 684 

2( ,D) ( ,D) | ( ,D) | 4,    D,     R z R z R z z      685 

 686 

where  and    are the Laplacian and gradient operators in the (x,y) plane, as well as a conformally 687 

invariant version of the Hardy inequality, were the pillars  in the analysis  of the properties of  the 688 

moment of inertia  Ic  with respect to G (Avkhadiev, 1998). 689 

In addition to the described classical properties of the conformal radius of a simply connected 690 

domain, we provide below three useful integral formulas, proved by Avkhadiev (2004).  Namely, one 691 

has the following integral equalities: 692 

2

2 2 2

1
( ) | ( , ) | ,

2

( , ) ( , ) | ( , ) | ,

D

D D

A D R z D dxdy

R z D dxdy R z D R z D dxdy

 

 



 
 693 

and the inequality 694 

2

( , )

2 ( ),
( )

D

R z D dxdy

P D
A D

 
 
  


 695 
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where equality occurs if and only if D is a disc. 696 

Using the latter inequality and the right side inequality in eqn.(10) we obtain 697 

2

0

0D

( ,D)

( , ) (D) 2 .
4 (D)

D

w

e R z dxdy

V h x y dxdy h A
h A

 
 
   


  698 

where the function h(x, y) is defined by the BVP (1)-(2) and ( , ) 0h x y  on the domain D. 699 

 700 
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Figures Legends     878 

    Fig. 1. Plan (aerial) view of an unconfined aquifer. 879 

    Fig.2.  Vertical cross-sections. Unconfined aquifer with: no unsaturated lacunae a), one 880 

lacuna b), two lacunae c). 881 

Fig.3. HYDRUS simulations for saturated-unsaturated axisymmetric flow in a circular  cylinder 882 
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at t=600 days: a) phreatic surface TB for |AB|=50 cm.; b) isohumes x,Z); c) vectors of Darcian 883 

velocities;  d) streamlines; e) phreatic surface with concave-up and concave-down segments for 884 

|AB|=75 cm.  885 

Fig.4. HYDRUS simulations for a cylinder having r0=20 m at t=600 days: a) phreatic surface TB 886 

for |AB|=50 cm.; b) isohumes; c) Darcian velocities near AC;  d) velocity magnitude along CD(left 887 

panel) and  evaporation rate e(Z) computed in Wolfram’s (1991)  Mathematica (right panel); e) 888 

velocity along AB. 889 
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