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Abstract 8 

This contribution presents an early-time solution for permeability evaluation in pulse-decay tests. A 9 

nonlinear governing equation for gas transport in the sample is derived with consideration of the pressure 10 

dependence of gas compressibility and slippage effect, and the early-time solution is obtained through the 11 

integral balance analysis. The permeability coefficient can be determined by the proposed solution through 12 

the pressure transients within the early-time stage of the tests, i.e. before the upstream pressure pulse penetrates 13 

through the core sample and reaches the downstream side. To validate the proposed solution, measurements 14 

were performed on a core sample of the Cretaceous Eagle Ford shale, Texas, USA, under different pore and 15 

confining pressures. Helium was used as the test fluid to minimize the Joule-Thomson effect and adsorption. 16 

The experimental results show that the permeability coefficients obtained from this new solution agree well 17 

with those from the late-time solution, and prove our solution an accurate and efficient way for permeability 18 

evaluation. The present approach provides a good supplement for the pulse-decay method and suitable for 19 

measurements of ultra-low-permeability rocks. 20 
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Key Points 25 

 An early-time solution was developed for pulse-decay measurements of ultra-tight rocks. 26 

 Gas compressibility and slippage effects are considered in the derivation. 27 

 The validity and efficiency of this model were verified through experimental measurements. 28 

 29 

Plain Language Summary 30 

 Unconventional natural gas has become an increasingly important energy source in recent years and 31 

attracted active research and developments accordingly. One key problem in unconventional natural gas 32 

reservoir exploitation is the determination of the viability of commercial production, where the permeability 33 

is a critical parameter. The pulse decay test is the most popular method of permeability measurements for low-34 

permeable rocks. It requires analytical solutions to evaluate the permeability coefficient from pressure records. 35 

Most previous methods are based on the late-time solutions that interpret the late-time pressure data and omit 36 

the information in the early-time stage. The early-time solution developed in this work interprets the early-37 

stage pressure data and considers the variation of gas compressibility and the slippage effect. The validity and 38 

efficiency of the proposed solution is testified by both numerical simulation and experimental measurements.  39 

  40 



1. Introduction 41 

Unconventional natural gas has become more and more important throughout the world. One key problem 42 

is the determination of the viability of commercial production, for which permeability is the critical parameter 43 

[Darabi et al., 2012; Liu et al., 2018; Z Wang et al., 2018; Zhao et al., 2020]. However, due to the tightness 44 

of these rocks, permeability measurements using the steady-state method are very time-consuming [Heller 45 

and Zoback, 2013; Metwally and Sondergeld, 2011]. One of the most widely used transient methods is the 46 

pulse-decay method [Brace et al., 1968]. In the typical pulse-decay tests, a cylindrical rock sample is installed 47 

in a flow cell connected to two gas reservoirs. In the initial stage, the sample is pressure-equilibrated at a 48 

defined pressure. Thereafter a pressure pulse is applied in the upstream compartment and the resulting pressure 49 

decay is recorded with time. For ultra-tight rocks, the pulse-decay method has the advantages of efficiency 50 

(steady state is not required to be reached) and accuracy (the measurement of pressure is more accurate than 51 

that of flux) [Akkutlu and Fathi, 2012; Yang et al., 2016]. Different from the steady-state method, where the 52 

permeability coefficient can be calculated directly through Darcy’s law, the permeability coefficient in the 53 

pulse-decay method is determined by fitting the analytical solution to the measured pressure transients.  54 

 The first analytical solution was reported by Brace et al. [1968], who used the one-dimensional mass 55 

balance equation combined with Darcy’s law to describe the pulse-decay process. A single exponential 56 

solution was obtained, which is, however, only valid when the reservoir volumes are much larger than the 57 

sample’s pore volume. Later, Dicker and Smits [1988] removed the restriction of reservoir size, and obtained 58 

a series solution, which reduces to a single exponential form with increasing time. Jones [1997] further 59 

simplified Dicker and Smits’ expression by introducing an extra factor that accounts for the compressibility 60 

and proposed a strategy to reduce the test time of pulse-decay experiments. Solutions with explicit 61 

consideration of the adsorption effect were developed by Cui et al. [2009]. Han et al. [2018] analyzed the 62 

pulse decay process for dual-porosity samples. 63 

Though successfully used in practice, the above solutions are the so-called “late-time solutions” [Sander 64 



et al., 2017] that can interpret only the pressure data recorded during the late-time stage of the pulse-decay 65 

test, and omit the information contained at the early-time stage, which may lead to a loss of efficiency. Hsieh 66 

et al. [1981] proposed an early-time solution obtained by Laplace transformation. However, this solution is 67 

not convenient for practical application, because of the complexity of the complementary error function (erfc) 68 

involved. In their derivation, Hsieh et al. assumed constant fluid compressibility (usually the value at the mean 69 

gas pressure), which works well when liquids are used as test media but may be invalid when gases are used 70 

in the measurements [Feng et al., 2018; Liang et al., 2001; Wu et al., 2020]. 71 

 In this study, an early-time solution has been developed for the interpretation of early-time stage pressure 72 

data in pulse-decay tests. A nonlinear governing equation for gas transport in the sample is derived with the 73 

variations of gas compressibility and slippage effect both considered and the early-time solution is obtained 74 

by the integral method. The only undetermined constant in the final expression for apparent permeability was 75 

obtained from numerical simulation. Both, numerical simulation and experimental measurement were 76 

performed to validate the proposed solution. A detailed description of the solution and its validation is given 77 

in the subsequent sections.  78 

 79 

2. Physical and Mathematical Models 80 

2.1 Derivation of the governing equation 81 

In a typical pulse-decay test, a rock sample is placed in a measuring cell connected to two gas 82 

reservoirs. Here we consider a small control volume between x and x+dx, as shown in figure 1. Assuming 83 

that Darcy’s law is valid (i.e. we have a linear relationship between volume flux and pressure gradient) in 84 

the differential volume, the mass flow q (kg∙s-1) along the x-axis is,  85 

 
d

d

appk A P
q

x



  . (1) 86 

Here ρ is the gas density (kg∙m-3), kapp the apparent permeability coefficient (m2), A the cross-section area of 87 



the sample (m2), μ the dynamic viscosity of the gas (Pa∙s), and P is the gas pressure (Pa). 88 

 89 

Figure 1. Scheme of a pulse-decay test. Upstream and downstream sides are indicated by subscripts u and d, respectively. 90 

The mass change of gas in the control volume  per unit time is equal to the net flow:  91 

  
d

d =d
d

A x q
t
  . (2) 92 

Here ϕ is the porosity of the sample.  93 

Substituting equation (1) into equation (2) yields the governing equation of pulse-decay tests at constant 94 

temperature: 95 

   appk A P
A

t x x
  



   
  

   
. (3) 96 

The density of the gas is related to its pressure through the equation of state,  97 

 
M

P
ZRT

  , (4) 98 

where M is the molar mass of the test gas (kg∙mol-1), Z the compressibility factor, R the gas constant (R = 99 

8.314 J∙mol-1·K-1), and T the absolute temperature (K). In the experimental part of this study, helium was used 100 

as test fluid. Within the pressure range of the measurements (0.1~10 MPa), the compressibility factor Z for 101 

helium is very close to the value of one, with an error smaller than 5%. Thus, the density ρ in equation (3) 102 

could be replaced by the pressure P when multiplying both sides of equation (3) by M/ZRT. We also have the 103 

expression for the compressibility of gas density as a function of pressure: 104 
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P P
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



 


. (5) 105 

Substituting equations (4) and (5) into equation (3), we get: 106 

dA x



   appk P
P

t x x


 

   
      

. (6) 107 

From experimental observations, many models have been proposed to account for the dependence of 108 

apparent permeability on pressure due to slip flow. The most widely used Klinkenberg formula [Klinkenberg, 109 

1941] is adopted in this study: 110 

   1 s
app int

b
k P k

P

 
  

 
.  (7) 111 

Here kint is the intrinsic permeability coefficient (m2) and bs is the slippage factor (Pa).  112 

 If we assume the compressibility and viscosity of the gas, as well as the apparent permeability and porosity 113 

of the sample, are all constants and replace them with their values at the mean pore pressure (e.g. 114 

 meanP    , and  app app meank k P  ,     0 0 2mean u dP P P   ), equation (6) will reduce to a linear 115 

form that was obtained by Brace et al. [1968]. However, during the pulse-decay test, the pressure within the 116 

sample is not uniform, causing these pressure-dependent parameters also to be non-uniform. To determine 117 

whether one parameter can be approximated as constant, the relative change of its value caused by pressure 118 

variation (or non-uniformity) need to be estimated: 119 

 
1

r X

X X
X P P

X X P


 
     


,  (8) 120 

where ∆r X denotes the relative change of parameter X, ∆P is the pressure difference in the pulse-decay test 121 

(Pa) and lnX X P      is the pressure-dependence of parameter X (Pa-1). Strictly speaking, the gas 122 

compressibility, gas viscosity, sample porosity, intrinsic permeability, and slippage factor are all pressure-123 

dependent, so the relative changes of their values need to be evaluated (i.e. , , , orint sX k b   ). As shown 124 

in equation (5), the gas compressibility,   , is equal to the reciprocal of pressure, and thus we have 125 

r rP P        . 126 

 In the pulse-decay tests, the initial pressure difference between two ends of the sample can be on the order 127 

of Megapascal (i.e. 
610 PaP  ) [Fedor et al., 2008; Feng and Pandey, 2017]. Previous researches show 128 

that for the permeability measurements on shale, the compressibility of gas density   is of the order 107~105 129 



Pa1, and those of gas viscosity, sample porosity, intrinsic permeability, and slippage factor (  ,  , 
intk , 130 

sb ) are of the order 10-9~10-8 Pa-1 [Chalmers et al., 2012; Dong et al., 2010; Fink et al., 2017; Senger et al., 131 

2018; Sun et al., 2020]. Therefore, 
r   is of the order 10-1~101, while the relative changes of the other four 132 

parameters ( r , r , r intk , r sb ) are of the order 10-3~10-2, which are small enough and can be ignored 133 

safely. Therefore, only the pressure dependence of   is considered in the following derivation. The intrinsic 134 

permeability kint, slippage factor bs, and porosity ϕ of the sample, and the viscosity μ of the gas are regarded 135 

as constant. 136 

With all the considerations above, equation (3) simplifies to 137 

 
1 appkP P

t x x 

   
      

. (9) 138 

The pressure dependence of the apparent permeability coefficient kapp due to the slippage effect is accounted 139 

for by equation (7). 140 

 Substituting the expressions for   and 
appk , equations (5) and (7), into equation (9), we have the 141 

final form of the governing equation: 142 

  int
s

kP P
P b

t x x

   
  
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.  (10) 143 

Equation (10) is nonlinear because we take the gas compressibility and the apparent permeability as pressure-144 

dependent. The nonlinearity may be omitted in the late-time stage of the pulse-decay tests where the pressure 145 

difference P  in equation (8) becomes small. However, in the early-time stage of the pulse-decay tests with 146 

a relatively large pressure difference [Feng et al., 2017; Y Wang et al., 2015], the nonlinearity plays an 147 

important role. 148 

Following a similar procedure, the boundary conditions at the two ends of the sample are obtained, which 149 

are also nonlinear: 150 

  
0 0

int
s

x xu

k AP P
P b

t V x 

 
 

 
, (11) 151 



  int
s

x L x Ld

k AP P
P b

t V x 

 
  

 
. (12) 152 

Here L is the length of the cylindrical sample (m), uV   and dV   are the volumes of the upstream and 153 

downstream reservoirs (m3), respectively. 154 

The initial conditions are given by: 155 

  
 

 

0 , for 0
,0

0 , for 0

u

d

P x
P x

P x L


 

 

.  (13) 156 

where  0uP  and  0dP  are the initial pressure values at upstream and downstream (Pa), respectively. 157 

 158 

2.2 Model for permeability evaluation 159 

For ease of derivation, the following dimensionless variables with subscript D are defined, 160 

     

   2

0 0
, , , , ,

0 0 2

mean s int u ds
D D D

mean s u d u d s

P b k t P PP bx LA LA
x t P a b c

L L P b V V P P b

 



 
     

  
, (14) 161 

where Dx  , Dt  , DP   represent the dimensionless counterparts of x, t, P, respectively, 162 

    0 0 2mean u dP P P    the mean pore pressure, and a, b, c represent the upstream volume ratio, 163 

downstream volume ratio, and dimensionless pulse size (dimensionless initial pressure difference), 164 

respectively. 165 

With these dimensionless variables, the governing equation (10) can be rewritten as: 166 

 D D
D

D D D

P P
P

t x x

  
  
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.  (15) 167 

and the dimensionless boundary and initial conditions are given by: 168 
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D D
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D Dx x

P P
a P

t x
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, (16) 169 

 
1 1D D

D D
D

D Dx x

P P
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t x
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 
 

 
, (17) 170 

  
 

 

0 1 , for 0
,0

0 1 , for 0 1

uD D

D D

dD D

P c x
P x

P c x

  
 
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. (18) 171 

Getting an analytic solution to the nonlinear problem is usually impossible, so some approximations must 172 



be introduced. In this study, we adopt the integral method [Özışık, 1989] to account for the early-time stage 173 

of pulse-decay test, which is an approximation method first proposed by von Karman in the study of boundary 174 

layer [Schlichting and Gersten, 2016] and is now widely used in the fields of fluid dynamics and heat 175 

conduction. This method is simple and straightforward and applicable to both linear and nonlinear problems. 176 

Despite the approximate nature, the accuracy of the integral method is high enough for engineering purposes 177 

[Hahn and Özisik, 2012]. 178 

 179 

Figure 2. Scheme for the penetration length δ(t ). The pressure distributions within the setup at the beginning and 180 

instant Dt  are represented by the blue solid line and the green dashed line, respectively. The penetration length 181 

 Dt  denotes upstream pressure propagation front at instant Dt . The two shaded parts represent the mass of gas 182 

leaving the upstream reservoir and that of gas entering the sample, respectively.  183 

In the pulse-decay testing of tight rocks, it is observed that when the pressure pulse is applied on the 184 

upstream side, the pressure at the downstream side increases not instantly but after a delay. The delay 185 

represents the time in which the gas penetrates from upstream to downstream through the sample and fills 186 

the interconnected pore volume. Inspired by such observation and the thermal layer concept in heat 187 

conduction [Hahn and Özisik, 2012], we introduce the penetration length δ(tD) to describe the length of the 188 

domain of influence of the pressure pulse at instant tD. As shown in figure 2, δ(tD) denotes the position of the 189 

upstream pressure propagation front. According to this definition, at instant tD, the region 0 ≤ xD ≤ δ(tD) has 190 

been affected by the pressure pulse, while the region δ(tD) ≤ xD ≤ 1 is unaffected and remains the initial 191 



pressure  0dDP . Thus, we have: 192 
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
. (19) 193 

The application of integral method is as follows: 194 

Firstly, equation (10) is integrated with respect to the space variable from xD = 0 to xD = δ(tD) 195 
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  , (20) 196 

where the right-hand side can be rearranged with Leibniz’s rule: 197 
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
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Substituting equation (19) and (21) into equation (20), we have 199 
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0

d
0

d
D

D
D dD D

x D

P
P P t

x t
 




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,  (22) 200 

where 
 

0
d

Dt

D DP x


    represents the gas storage in the sample. Equation (22) is usually called the balance 201 

integral [Goodman, 1958] in heat conduction theory. Combining the balance integral (22) and upstream 202 

boundary condition (16), we have: 203 

    
dd 1

0
d d

uD
dD D

D D

P
P t

t a t
      , (23) 204 

where the left- and right-hand sides represent the mass flow rate in the sample and upstream reservoir, 205 

respectively. Thus equation (23) is actually the mass conservation equation at the early-time stage of the 206 

pulse-decay test. It accounts for the fact that the mass of gas leaving the upstream reservoir equals the mass 207 

increase in the core sample because when the pressure pulse from the upstream has not penetrated through the 208 

whole sample, there is no mass flux at the downstream interface.  209 

 Secondly, an analytic approximation of the pressure profile across the penetration length has to be adopted 210 

to make the calculation of θ possible. Here we assume the penetration length increases with the square root of 211 

the dimensionless time, 212 

  D Dt m t  , (24) 213 



where m is a constant. We choose a power function (25) with an exponent n to describe the pressure profile 214 

within the penetration length. Such kind of profile was first proposed by Goodman [1958] and then widely 215 

adopted by other researchers [Fabre and Hristov, 2016; Mitchell and Myers, 2010].  216 
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D D D uD D dD dD D D

x
P x t P t P P x t
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 
.  (25) 217 

Substituting the pressure profile (25) into equation (23), we obtain the following equation: 218 
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0
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uD
uD D dD D
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P t P t

n t a t
   
 

. (26) 219 

 Rearranging equation (26) yields, 220 

       
d 1

0 0
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uD D dD D uD D

D

m
P t P t P t

t n a

 
    

,  (27) 221 

which means the value of the terms inside the square bracket is constant over time. Thus, if we choose two 222 

different instants ( it , jt ) at the early-time stage, the corresponding terms inside the square bracket should be 223 

equal: 224 
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    

 
,  (28) 225 

which has been transformed into a dimensional form.   226 

By rearranging equation (28), we obtain the expression for apparent permeability under the mean pore 227 

pressure: 228 
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, (29) 229 

where the subscripts  ,i jt t   denote the two instants used for permeability evaluation. It is noted that in 230 

addition to the parameters of the sample and testing gas, only the upstream pressure transients are involved 231 

here. 232 

Equation (29) is the main result of this study, and it shows that if the value of (n+1)/m is known, the 233 

apparent permeability  app meank P  can be evaluated through the upstream pressure at different instants. The 234 



numerical simulation results show that  1 1.2n m   and the validity of equation (29) was verified by both 235 

numerical simulation and experimental measurements (see below).  236 

 237 

2.3 How to use the proposed model 238 

In the pulse-decay tests, after the application of the pressure pulse, the upstream pressure is recorded over 239 

time, and the corresponding instants are denoted by order as 0 1 2t t t    . Unlike the other late-time 240 

solutions that use the pressure transients in the late-time stage to evaluate the permeability coefficients, the 241 

proposed solution only needs the upstream pressure data at the early-time stage. 242 

Theoretically, the upstream pressure transients at just two instants are enough to give the permeability 243 

value by equation (29), and the instants ti and tj can be selected freely, as long as they are in the early-time 244 

stage of the pulse-decay test. However, in practice, due to the random error in pressure recording, the 245 

permeability value calculated through the pressure transients at just two instants may be inaccurate. The 246 

random error can be minimized by selecting a series of different  ,i jt t   to calculate corresponding 247 

permeability values   ,i j
app mean t t

k P  and then take the average, i.e. 248 

     ,
,

1

i j
app mean app mean t t

i j

k P k P
N

  , (30) 249 

where N is the number of the selected  ,i jt t . 250 

There are many ways to select a series of  ,i jt t , and here we give one possible choice. As shown in 251 

figure 3, we fix ti = t0, and then gradually increase tj, i.e.    0, , , 1, 2,3,i j jt t t t j  . 252 

 253 

 254 

Figure 3. One way to select ti and tj in equation (29) and (30),    0, , , 1, 2,3,i j jt t t t j  . The data in a short 255 



period (t < t0) at the beginning of the test is omitted to avoid the influence of Joule-Thomson effect. 256 

 257 

The ti and tj in equations (29) and (30) are required to be in the early-time stage of the pulse-decay test, 258 

and a practical way to determine the early-time stage is necessary. Here we take the (ti, tj) = (t0, tj). The 259 

numerical simulation in section 3 shows that (n+1)/m is constant in the early-time stage (see figure 6), so a 260 

horizontal line should be obtained if we plot the calculated permeability coefficient   0 , j
app mean t t

k P  against 261 

tj, when tj is in the early-time stage. However, as tj increases and goes beyond the early-time stage, the 262 

calculated permeability will deviate from the horizontal line, and such derivation can be used as an end 263 

criterion of the early-time stage. 264 

When applying the pressure pulse, the upstream gas pressure changes very rapidly. A sharp pressure 265 

change will induce a temperature change, which is known as the Joule-Thomson effect. The temperature 266 

change resulting from the unit pressure change is quantified by the Joule-Thomson coefficient JT  (K∙MPa-267 

1), which varies with the type, temperature, and pressure of the gas. The Joule-Thomson coefficient for an 268 

ideal gas is always zero, while those for the real gases are not. In the derivation of the proposed model, the 269 

Joule-Thomson effect is ignored. However, this effect can be observed in the experiments and needs special 270 

treatment.  271 

 272 

Figure 4. The Joule-Thomson coefficients of gases commonly used in pulse-decay tests (Data from NIST; 273 



https://webbook.nist.gov/chemistry/fluid/). 274 

 275 

To minimize the influence of the Joule-Thomson effect, we chose helium as the test fluid and used a 276 

thermal bath to keep the whole setup in temperature equilibrium. Helium was selected because it deviates 277 

from the ideal gas only to a little degree, and thus exhibits only a very small Joule-Thomson coefficient. 278 

Besides, the choice of helium also helps to reduce the influence of adsorption. As shown in figure 4, the Joule-279 

Thomson coefficients of helium are much smaller than those of other gases (N2, Ar, CH4), within the pressure 280 

range (0.1~10 MPa) of our experiments and at 35 ℃ (308.15 K). For helium, a pressure change of 1 MPa will 281 

only cause a temperature decrease of about 0.6 K, which is less than 0.2% of the absolute temperature (308.15 282 

K). 283 

Therefore, for helium as the testing fluid, the temperature change caused by the Joule-Thomson effect 284 

will be very small and will decline in several seconds if the setup is well thermostated [Hannon Jr, 2020; Jia 285 

et al., 2020]. To further eliminate the influence of the Joule-Thomson effect, we only use the pressure data 286 

starting from twenty seconds after the application of the pressure pulse (i.e. t0 ≥ 20s). 287 

 To illustrate the use of the proposed solution more clearly, we summarize the steps as follows: 288 

1) Equilibrate the whole setup at the desired pressure. 289 

2) Apply a pressure pulse to the upstream reservoir and then record the variations of Pu (t) and Pd (t), 290 

and the corresponding instants, denoted as 0 1 2t t t   . 291 

3) To avoid the Joule-Thomson effect, helium is taken as the testing fluid, and only the pressure data 292 

twenty seconds after the pulse is used (t0 ≥ 20s). 293 

4) Choose a series of instants (ti, tj) at the early-time stage (e.g.    0, , , 1, 2,3,i j jt t t t j  .), and use 294 

the early-time pressure transients with equations (29) and (30) to evaluate the apparent permeability. 295 

5) Optional: use late-time pressure data to evaluate the apparent permeability with the existing late-time 296 

solutions. 297 



 298 

  299 



3. Model verifications 300 

As outlined in detail in section 2, some approximations are introduced in the development of the proposed 301 

model for the evaluation of apparent permeability. These assumptions inevitably bring uncertainties into the 302 

final expression (29) and their rationality needs verification. In this section, the validity and accuracy of the 303 

model are justified by numerical simulation.  304 

The finite difference method was adopted in the simulation. The dimensionless governing equation (15) 305 

is discretized by the Crank-Nicolson scheme and its nonlinearity is coped with by Richtmyer’s linearization 306 

method [Richtmyer and Morton, 1994]. Since the porosity of the tight rocks is generally very small, the 307 

reservoir volume in pulse-decay tests is usually larger than the pore volume of the sample, so the pore volume 308 

to reservoir volume ratios are set to be less than one in the simulation (a, b ≤ 1). The simulation results of the 309 

pressure variations are used as input in the following analysis.  310 

We first check the rationality of the selected pressure profile. By rearranging equation (25), we have: 311 
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, (31) 312 

where the left-hand side is the pressure distribution normalized to the instantaneous pressure difference 313 

between two ends of the sample, and the right-hand side is a function depending solely on the spatial 314 

coordinate normalized to the square root of time. Equation (31) indicates that the normalized pressure 315 

distribution at different instants should converge to the same curve in the normalized spatial coordinate. 316 

Figure 5(a) gives the pressure distributions at different instants in the simulation. It shows that during the 317 

early-time stage, i.e. the upstream pressure propagation front has not penetrated through the whole sample, 318 

the upstream pressure keeps decreasing while the downstream pressure remains constant. As time increases, 319 

the area affected by the upstream pressure pulse expands i.e.  Dt  increases. Consistent with equation (31), 320 

the normalized pressure distributions at different instants in figure 5(b) converge to the same curve in the 321 

normalized spatial coordinate, which justifies our selection of the pressure profile.  322 



 323 

 324 

Figure 5. The numerical simulation results for pressure profile within the sample (a = b = 1, c = 0.9). (a) The pressure 325 

distribution at different instants. (b) The normalized pressure distribution in normalized spatial coordinates. 326 

 327 

After verifying the selected pressure profile, we also need to determine the value of m/(n+1) that appears 328 

in the expression for permeability evaluation. To avoid the influence of the Joule-Thomson effect in the 329 

experiments, ti and tj in equation (29) are required to be larger than twenty seconds. However, this requirement 330 

can be relaxed when dealing with the simulation results, because there is no Joule-Thomson effect in the 331 

simulation. As we set ti = 0, tj = t, equation (29) transforms into:  332 

       
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.  (32) 333 

By rearranging equation (32) and rewriting it with the dimensional variables, we get an expression for 334 



the unknown pre-factor m/(n+1): 335 
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. (33) 336 

 The simulated pressure data are substituted into the right-hand side of equation (33) to calculate m/(n+1) 337 

and the results are shown in figure 6. Regardless of the volume ratio a and the dimensionless pulse size c, 338 

m/(n+1) remains constant (≈ 1.2, marked by the horizontal lines) at the early-time stage of the pulse-decay 339 

test, as we assumed in the derivation (section 2). As time increases and goes beyond the early-time stage, 340 

m/(n+1) deviates from the horizontal line and is no longer constant. Consequently, if we substitute the pressure 341 

data out of the early-time stage into equation (29) and still take m/(n+1) = 1.2, the permeability values thus 342 

obtained will deviate from those calculated with early-time pressure data. This deviation helps to determine 343 

the end of the early-time stage of the measurement. 344 

 345 



 346 

Figure 6. Variations of m/(n+1) with time and different initial pressure pulse c. The horizontal lines represent m/(n+1) 347 

= 1.2. (a) a = b = 0.1 (b) a = b = 1. 348 

 349 

4. Experimental measurements 350 

 351 

Figure 7. Scheme of the experimental setup 352 

In this section, the proposed model is applied for the interpretation of the gas pulse-decay test performed 353 

on a core sample of the Cretaceous Eagle Ford shale, Texas, USA. Helium was used as the test fluid to 354 

minimize the influence of the Joule-Thomson effect and gas adsorption on the pore walls. The scheme of the 355 

experimental setup is shown in figure 7. A detailed description of the experimental setup can be found in our 356 

earlier publications [Gaus et al., 2019; Ghanizadeh et al., 2014; Nolte et al., 2021]. The experimental protocol 357 

is briefly outlined as follows: 358 



1) The core sample was dried at 105℃ for at least 24 hours until weight constancy was reached. 359 

2) The core sample was put into the core holder, with two porous steel discs connected to its two ends to 360 

make the inlet and outlet flow uniform. The sample was separated from the confining fluid by a 361 

double-layer sleeve, and a confining pressure was applied to mimic reservoir conditions. An oven was 362 

used to keep the setup in thermal equilibrium (35±0.3℃). 363 

3) With valves 1, 2, and 3 open and valve 4 closed (see figure 9), the core and two reservoirs were filled 364 

with helium to the desired pressure. Then valve 2 was closed, and the pressure in the upstream 365 

reservoir was increased to the desired level. 366 

4) Valve 1 was closed and then valve 2 was opened. Driven by the pressure difference, the gas flowed 367 

from the upstream to the downstream side. The upstream and downstream pressure transients (Pu and 368 

Pd) were recorded by the transducers. 369 

 The upstream pressure in the measurements varied from 0.90 MPa to 1.75 MPa and the downstream 370 

pressure from 0.10 MPa to 1.05 MPa. The porosity measured by He-pycnometry on the unstressed sample 371 

was 9.8%. Further information on the sample and the measurement is given in table 1. 372 

 373 

Table 1 Parameters for the pulse-decay tests  374 

Core sample Eagle Ford Shale 

Testing gas Heium 

Sample length L (m) 2.78×10-2 

Sample cross section area A (m2) 1.10×10-3 

Confining pressure Pc (MPa) 30, 40 

Temperature T (°C) 35 

 375 

 After the experiments, the recorded pressure transients were substituted into equations (29) and (30) to 376 

evaluate the permeability coefficients. The apparent permeability deduced from one pulse-decay test is shown 377 

in figure 8. The horizontal axis represents the time of the pressure recordings, and the vertical axis represents 378 

the permeability coefficients derived. At the early-time stage, the permeability values were nearly equal, 379 



though some small fluctuations caused by random errors were observed. The permeability values calculated 380 

through the early-time pressure records were averaged as the final result, which is marked by the dashed line 381 

in figure 8. When using the pressure data beyond the early-time stage, the permeability values show a clear 382 

deviation from the dashed line. Although the pulse-decay test shown here lasted for more than one hour (from 383 

applying pressure pulse to a new pressure equilibrium), the permeability coefficient was obtained by the 384 

proposed method about ten minutes after the start of the test, which proves the proposed method an efficient 385 

way for permeability evaluation. 386 

 387 

Figure 8. Interpretation of apparent permeability coefficients for core sample in one pulse-decay test with 40 MPa 388 

confining pressure. The filled symbols represent the permeability values calculated from the pressure transient data at 389 

different instants, and the dashed line represents the average of the permeability coefficients calculated from the early-390 

time pressure recordings. 391 

The apparent permeability values calculated using the proposed approach and the late-time solution 392 

(Dicker and Smits’ solution) [Dicker, 1988] under different confining pressure and pore pressure are presented 393 

in figure 9. The discrepancy between the permeability values calculated by the two models is less than 10%, 394 

which supports the viability of the proposed solution for reliable assessment of the permeability coefficients 395 

of tight rocks. Since the proposed solution only needs the early-time data as input, it can give an estimate of 396 

the permeability coefficient in a short time. By combining the proposed solution and the other late-time 397 



solutions, both the early-time and late-time pressure data can be interpreted, which helps to make full use of 398 

the information contained in the pulse-decay tests. [Bhandari et al., 2015; Kamath et al., 1992]. 399 

 400 

 401 

Figure 9. Apparent permeability coefficients calculated using the proposed solution (blue diamonds) and the late-time 402 

solution (Dicker and Smits [1988]; red circles) at confining pressures of 30 MPa (a) and 40 MPa (b), respectively. 403 

 404 

5. Conclusions 405 

In this study, an early-time solution was derived for the interpretation of pulse-decay measurements of 406 

tight rocks. The variations of gas compressibility and slippage effects were considered in the derivation, 407 

resulting in a nonlinear diffusion equation for gas transport in porous media. The nonlinear equation was then 408 

solved approximately by an integral method, and an early-time solution was obtained. The proposed solution 409 



requires as input only the pressure recordings during the early-time stage of the pulse-decay tests, which makes 410 

it an efficient way for permeability evaluation and suitable for measurements on tight rocks. Helium is 411 

recommended as the testing fluid to minimize the influence of the Joule-Thomson effect and gas adsorption 412 

on pore walls. Numerical simulation was conducted to verify the proposed solution and determine the value 413 

of the parameters. Measurements under different confining pressures and pore pressures were performed on a 414 

core sample of the Cretaceous Eagle Ford shale, Texas, USA. The permeability values obtained by the 415 

proposed early-time solution and the late-time solution were in good agreement, which proves the accuracy 416 

of the proposed solution. 417 
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