REFERENCES:
Abbott, B. W., Rocha, A. V., Shogren, A., Zarnetske, J. P., Iannucci, F., Bowden, W. B., Bratsman, S. P., Patch, L., Watts, R., Fulweber, R., Frei, R. J., Huebner, A. M., Ludwig, S. M., Carling, G. T., & O’Donnell, J. A. (2021). Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic. Global Change Biology, 27(7), 1408–1430. https://doi.org/10.1111/gcb.15507
Adkins, J., Sanderman, J., & Miesel, J. (2019). Soil carbon pools and fluxes vary across a burn severity gradient three years after wildfire in Sierra Nevada mixed-conifer forest. Geoderma, 333, 10–22. https://doi.org/10.1016/j.geoderma.2018.07.009
Agbeshie, A. A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419–1441. https://doi.org/10.1007/s11676-022-01475-4
Ball, G., Regier, P., González-Pinzón, R., Reale, J., & Van Horn, D. (2021). Wildfires increasingly impact western US fluvial networks. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-22747-3
Bartels, S. F., Chen, H. Y. H., Wulder, M. A., & White, J. C. (2016). Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. Forest Ecology and Management, 361, 194–207. https://doi.org/10.1016/j.foreco.2015.11.015
Barton, R., Richardson, C. M., Pae, E., Montalvo, M. S., Redmond, M., Zimmer, M. A., & Wagner, S. (2024). Hydrology, rather than wildfire burn extent, determines post‐fire organic and black carbon export from mountain rivers in central coastal California. Limnology and Oceanography Letters, 9(1), 70–80. https://doi.org/10.1002/lol2.10360
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
Betts, E. F., & Jones, J. B. (2009). Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska.Arctic, Antarctic, and Alpine Research, 41(4), 407–417. https://doi.org/10.1657/1938-4246-41.4.407
Bladon, K. D., Silins, U., Wagner, M. J., Stone, M., Emelko, M. B., Mendoza, C. A., Devito, K. J., & Boon, S. (2008). Wildfire impacts on nitrogen concentration and production from headwater streams in southern Alberta’s Rocky Mountains.Canadian Journal of Forest Research, 38(9), 2359–2371. https://doi.org/10.1139/X08-071
Blodgett, D. & Johnson, J. M. (2022). nhdplusTools: Tools for Accessing and Working with the NHDPlus. GitLab. https://doi.org/10.5066/P97AS8JD
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Cavaiani, J., Regier, P., Roebuck, A., Barnes, M., Garayburu-Caruso, V. A., Gillespie, X., McKever, S. A., Renteria, L., Forbes, B., Powers-McCormack, B., & Myers-Pigg, A. (2024). Data and scripts associated with a manuscript on a meta-analysis synthesizing stream biogeochemical response to wildfires across space and time.https://data.ess-dive.lbl.gov/view/doi:10.15485/2319038
Chiriboga, G., & Borges, A. V. (2023). Andean headwater and piedmont streams are hot spots of carbon dioxide and methane emissions in the Amazon basin.Communications Earth & Environment, 4(1), Article 1. https://doi.org/10.1038/s43247-023-00745-1
Chow, A. T., Tsai, K.-P., Fegel, T. S., Pierson, D. N., & Rhoades, C. C. (2019). Lasting Effects of Wildfire on Disinfection By-Product Formation in Forest Catchments. Journal of Environmental Quality, 48(6), 1826–1834. https://doi.org/10.2134/jeq2019.04.0172
Clausen, J. C., & Spooner, J. (1993). Paired watershed study design(PB-94-154820/XAB; EPA-841/F-93/009). Environmental Protection Agency, Washington, DC (United States). Office of Wetlands, Oceans and Watersheds. https://www.osti.gov/biblio/7207219
Clay, G. D., Worrall, F., & Aebischer, N. J. (2012). Does prescribed burning on peat soils influence DOC concentrations in soil and runoff waters? Results from a 10year chronosequence. Journal of Hydrology, 448–449, 139–148. https://doi.org/10.1016/j.jhydrol.2012.04.048
Connolly, C. T., Khosh, M. S., Burkart, G. A., Douglas, T. A., Holmes, R. M., Jacobson, A. D., Tank, S. E., & McClelland, J. W. (2018). Watershed slope as a predictor of fluvial dissolved organic matter and nitrate concentrations across geographical space and catchment size in the Arctic.Environmental Research Letters, 13(10), 104015. https://doi.org/10.1088/1748-9326/aae35d
Coombs, J. S., & Melack, J. M. (2013). Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrological Processes, 27(26), 3842–3851. https://doi.org/10.1002/hyp.9508
Crandall, T., Jones, E., Greenhalgh, M., Frei, R. J., Griffin, N., Severe, E., Maxwell, J., Patch, L., Clair, S. I. S., Bratsman, S., Merritt, M., Norris, A. J., Carling, G. T., Hansen, N., Clair, S. B. S., & Abbott, B. W. (2021). Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds. PLOS ONE, 16(9), e0257733. https://doi.org/10.1371/journal.pone.0257733
Dahm, C. N., Candelaria-Ley, R. I., Reale, C. S., Reale, J. K., & Van Horn, D. J. (2015). Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology, 60(12), 2584–2599. https://doi.org/10.1111/fwb.12548
DeBano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231–232, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
Dove, N., & Hart, S. (2017). Fire Reduces Fungal Species Richness and In Situ Mycorrhizal Colonization: A Meta-Analysis. Fire Ecology, 13, 37–65. https://doi.org/10.4996/fireecology.130237746
Emmerton, C. A., Cooke, C. A., Hustins, S., Silins, U., Emelko, M. B., Lewis, T., Kruk, M. K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J. G., & Orwin, J. F. (2020). Severe western Canadian wildfire affects water quality even at large basin scales. Water Research, 183, 116071. https://doi.org/10.1016/j.watres.2020.116071
Flannigan, M. D., Krawchuk, M. A., Groot, W. J. de, Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire.International Journal of Wildland Fire, 18(5), 483–507. https://doi.org/10.1071/WF08187
Fox, J., & Weisberg, S. (2019). An {R} companion to applied regression 3rd ed Sage Thousand Oaks. CA.
Gerla, P. J., & Galloway, J. M. (1998). Water quality of two streams near Yellowstone Park, Wyoming, following the 1988 Clover-Mist wildfire.Environmental Geology, 36(1), 127–136. https://doi.org/10.1007/s002540050328
Guo, D., Saft, M., Hou, X., Webb, J. A., Hairsine, P. B., & Western, A. W. (2023). How does wildfire and climate variability affect streamflow in forested catchments? A regional study in eastern Australia. Journal of Hydrology, 625, 129979. https://doi.org/10.1016/j.jhydrol.2023.129979
Gustine, R. N., Hanan, E. J., Robichaud, P. R., & Elliot, W. J. (2022). From burned slopes to streams: How wildfire affects nitrogen cycling and retention in forests and fire-prone watersheds. Biogeochemistry, 157(1), 51–68. https://doi.org/10.1007/s10533-021-00861-0
Hallema, D. W., Sun, G., Bladon, K. D., Norman, S. P., Caldwell, P. V., Liu, Y., & McNulty, S. G. (2017). Regional patterns of postwildfire streamflow response in the Western United States: The importance of scale-specific connectivity. Hydrological Processes, 31(14), 2582–2598. https://doi.org/10.1002/hyp.11208
Hallema, D. W., Sun, G., Caldwell, P. V., Norman, S. P., Cohen, E. C., Liu, Y., Bladon, K. D., & McNulty, S. G. (2018). Burned forests impact water supplies.Nature Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-03735-6
Hampton, T. B., Lin, S., & Basu, N. B. (2022). Forest fire effects on stream water quality at continental scales: A meta-analysis. Environmental Research Letters, 17(6), 064003. https://doi.org/10.1088/1748-9326/ac6a6c
Hanan, E. J., D’Antonio, C. M., Roberts, D. A., & Schimel, J. P. (2016). Factors Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems. Ecosystems, 19(5), 910–926. https://doi.org/10.1007/s10021-016-9975-0
Hanan, E. J., Schimel, J. P., Dowdy, K., & D’Antonio, C. M. (2016). Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biology and Biochemistry, 95, 87–99. https://doi.org/10.1016/j.soilbio.2015.12.017
Harper, A. R., Doerr, S. H., Santin, C., Froyd, C. A., & Sinnadurai, P. (2018). Prescribed fire and its impacts on ecosystem services in the UK. Science of The Total Environment, 624, 691–703. https://doi.org/10.1016/j.scitotenv.2017.12.161
Hickenbottom, K., Pagilla, K., & Hanigan, D. (2023). Wildfire impact on disinfection byproduct precursor loading in mountain streams and rivers. Water Research, 244, 120474. https://doi.org/10.1016/j.watres.2023.120474
Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R., & Thornbrugh, D. J. (2016). The Stream-Catchment (StreamCat) Dataset: A Database of Watershed Metrics for the Conterminous United States. JAWRA Journal of the American Water Resources Association, 52(1), 120–128. https://doi.org/10.1111/1752-1688.12372
Hohner, A. K., Cawley, K., Oropeza, J., Summers, R. S., & Rosario-Ortiz, F. L. (2016). Drinking water treatment response following a Colorado wildfire.Water Research, 105, 187–198. https://doi.org/10.1016/j.watres.2016.08.034
Hohner, A. K., Rhoades, C. C., Wilkerson, P., & Rosario-Ortiz, F. L. (2019). Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality.Accounts of Chemical Research, 52(5), 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670
Holden, Z. A., Luce, C. H., Crimmins, M. A., & Morgan, P. (2012). Wildfire extent and severity correlated with annual streamflow distribution and timing in the Pacific Northwest, USA (1984–2005). Ecohydrology,5(5), 677–684. https://doi.org/10.1002/eco.257
Hurtado, S. I. (2020).RobustLinearReg: Robust Linear Regressions (1.2.0) [Computer software]. https://cran.r-project.org/web/packages/RobustLinearReg/index.html
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 60(3), e2020RG000726. https://doi.org/10.1029/2020RG000726
Kinoshita, A. M., & Hogue, T. S. (2011). Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. CATENA,87(2), 240–252. https://doi.org/10.1016/j.catena.2011.06.005
Laudon, H., & Sponseller, R. A. (2018). How landscape organization and scale shape catchment hydrology and biogeochemistry: Insights from a long-term catchment study. WIREs Water, 5(2), e1265. https://doi.org/10.1002/wat2.1265
Lintern, A., Webb, J. a., Ryu, D., Liu, S., Bende-Michl, U., Waters, D., Leahy, P., Wilson, P., & Western, A. W. (2018). Key factors influencing differences in stream water quality across space. WIREs Water, 5(1), e1260. https://doi.org/10.1002/wat2.1260
Mast, M. A., & Clow, D. W. (2008). Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana. Hydrological Processes, 22(26), 5013–5023. https://doi.org/10.1002/hyp.7121
Mast, M. A., Murphy, S. F., Clow, D. W., Penn, C. A., & Sexstone, G. A. (2016). Water-quality response to a high-elevation wildfire in the Colorado Front Range. Hydrological Processes, 30(12), 1811–1823. https://doi.org/10.1002/hyp.10755
Minshall, G. W. (2003). Responses of stream benthic macroinvertebrates to fire.Forest Ecology and Management, 178(1), 155–161. https://doi.org/10.1016/S0378-1127(03)00059-8
Murphy, S. F., McCleskey, R. B., Martin, D. A., Writer, J. H., & Ebel, B. A. (2018). Fire, Flood, and Drought: Extreme Climate Events Alter Flow Paths and Stream Chemistry. Journal of Geophysical Research: Biogeosciences, 123(8), 2513–2526. https://doi.org/10.1029/2017JG004349
Murphy, S. F., Writer, J. H., McCleskey, R. B., & Martin, D. A. (2015). The role of precipitation type, intensity, and spatial distribution in source water quality after wildfire. Environmental Research Letters,10(8), 084007. https://doi.org/10.1088/1748-9326/10/8/084007
Newcomer, M. E., Underwood, J., Murphy, S. F., Ulrich, C., Schram, T., Maples, S. R., Peña, J., Siirila-Woodburn, E. R., Trotta, M., Jasperse, J., Seymour, D., & Hubbard, S. S. (2023). Prolonged Drought in a Northern California Coastal Region Suppresses Wildfire Impacts on Hydrology. Water Resources Research, 59(8), e2022WR034206. https://doi.org/10.1029/2022WR034206
Oliver, A. A., Reuter, J. E., Heyvaert, A. C., & Dahlgren, R. A. (2012). Water quality response to the Angora Fire, Lake Tahoe, California.Biogeochemistry, 111(1/3), 361–376.
Paul, M. J., LeDuc, S. D., Lassiter, M. G., Moorhead, L. C., Noyes, P. D., & Leibowitz, S. G. (2022). Wildfire Induces Changes in Receiving Waters: A Review With Considerations for Water Quality Management. Water Resources Research, 58(9), e2021WR030699. https://doi.org/10.1029/2021WR030699
R Core Team. (2023).R: A Language and Environment for Statistical Computing[Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Raoelison, O. D., Valenca, R., Lee, A., Karim, S., Webster, J. P., Poulin, B. A., & Mohanty, S. K. (2023). Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs.Environmental Pollution, 317, 120713. https://doi.org/10.1016/j.envpol.2022.120713
Rhea, A. E., Covino, T. P., & Rhoades, C. C. (2021). Reduced N-Limitation and Increased In-Stream Productivity of Autotrophic Biofilms 5 and 15 Years After Severe Wildfire. Journal of Geophysical Research: Biogeosciences,126(9), e2020JG006095. https://doi.org/10.1029/2020JG006095
Rhoades, C. C., Chow, A. T., Covino, T. P., Fegel, T. S., Pierson, D. N., & Rhea, A. E. (2019). The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in Headwater Catchments. Ecosystems, 22(3), 643–657. https://doi.org/10.1007/s10021-018-0293-6
Rhoades, C. C., Nunes, J. P., Silins, U., & Doerr, S. H. (2019). The influence of wildfire on water quality and watershed processes: New insights and remaining challenges. International Journal of Wildland Fire,28(10), 721–725. https://doi.org/10.1071/WFv28n10_FO
Richardson, C., Montalvo, M., Wagner, S., Barton, R., Paytan, A., Redmond, M., & Zimmer, M. (2024). Exploring the Complex Effects of Wildfire on Stream Water Chemistry: Insights From Concentration-Discharge Relationships.Water Resources Research, 60(2), e2023WR034940. https://doi.org/10.1029/2023WR034940
Rodríguez-Cardona, B. M., Coble, A. A., Wymore, A. S., Kolosov, R., Podgorski, D. C., Zito, P., Spencer, R. G. M., Prokushkin, A. S., & McDowell, W. H. (2020). Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-65520-0
Rohatgi, A. (2023).WebPlotDigitizer—Copyright 2010-2024 Ankit Rohatgi. https://apps.automeris.io/wpd/
Rust, A. J., Hogue, T. S., Saxe, S., McCray, J., Rust, A. J., Hogue, T. S., Saxe, S., & McCray, J. (2018). Post-fire water-quality response in the western United States. International Journal of Wildland Fire,27(3), 203–216. https://doi.org/10.1071/WF17115
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M., Preston, C. M., & Dittmar, T. (2016). Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology,22(1), 76–91. https://doi.org/10.1111/gcb.12985
Santos, F., Wymore, A. S., Jackson, B. K., Sullivan, S. M. P., McDowell, W. H., & Berhe, A. A. (2019). Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA. Fire Ecology, 15(1), 3. https://doi.org/10.1186/s42408-018-0022-8
Saxe, S., Hogue, T. S., & Hay, L. (2018). Characterization and evaluation of controls on post-fire streamflow response across western US watersheds.Hydrology and Earth System Sciences, 22(2), 1221–1237. https://doi.org/10.5194/hess-22-1221-2018
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples)†. Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P., & Haydon, S. (2011). Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology,396(1), 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043
Son, J.-H., Kim, S., & Carlson, K. H. (2015). Effects of Wildfire on River Water Quality and Riverbed Sediment Phosphorus. Water, Air, & Soil Pollution,226(3), 26. https://doi.org/10.1007/s11270-014-2269-2
Tank, S. E., Vonk, J. E., Walvoord, M. A., McClelland, J. W., Laurion, I., & Abbott, B. W. (2020). Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach.Permafrost and Periglacial Processes, 31(3), 358–370. https://doi.org/10.1002/ppp.2057
Tiedemann, A. R. (1973). Stream chemistry following a forest fire and urea fertilization in north-central Washington. Res. Note PNW-RN-203. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 1-20, 203. https://www.fs.usda.gov/research/treesearch/25489
Tshering, K., Miotlinski, K., Blake, D., Boyce, M. C., Bath, A., Carvalho, A., & Horwitz, P. (2023). Effect of fire on characteristics of dissolved organic matter in forested catchments in the Mediterranean biome: A review. Water Research, 230, 119490. https://doi.org/10.1016/j.watres.2022.119490
Uzun, H., Dahlgren, R. A., Olivares, C., Erdem, C. U., Karanfil, T., & Chow, A. T. (2020). Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters.Water Research, 181, 115891. https://doi.org/10.1016/j.watres.2020.115891
Van Son, T. C., & Thiel, M. (2006). Multiple Predator Effects in an Intertidal Food Web.Journal of Animal Ecology, 75(1), 25–32.
Wagner, S., Cawley, K. M., Rosario-Ortiz, F. L., & Jaffé, R. (2015). In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry, 124(1), 145–161. https://doi.org/10.1007/s10533-015-0088-1
Wampler, K. A., Bladon, K. D., & Faramarzi, M. (2023). Modeling wildfire effects on streamflow in the Cascade Mountains, Oregon, USA. Journal of Hydrology, 621, 129585. https://doi.org/10.1016/j.jhydrol.2023.129585
Wan, S., Hui, D., & Luo, Y. (2001). Fire Effects on Nitrogen Pools and Dynamics in Terrestrial Ecosystems: A Meta-Analysis. Ecological Applications,11(5), 1349–1365. https://doi.org/10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2
Wang, Q., Zhong, M., & Wang, S. (2012). A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. Forest Ecology and Management, 271, 91–97. https://doi.org/10.1016/j.foreco.2012.02.006
Wei, X., Hayes, D. J., & Fernandez, I. (2021). Fire reduces riverine DOC concentration draining a watershed and alters post-fire DOC recovery patterns.Environmental Research Letters, 16(2), 024022. https://doi.org/10.1088/1748-9326/abd7ae
Weintraub, S. R., Brooks, P. D., & Bowen, G. J. (2017). Interactive Effects of Vegetation Type and Topographic Position on Nitrogen Availability and Loss in a Temperate Montane Ecosystem. Ecosystems, 20(6), 1073–1088. https://doi.org/10.1007/s10021-016-0094-8
Westerling, A. L. (2016). Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150178. https://doi.org/10.1098/rstb.2015.0178
Willi, K., & Ross, M. R. V. (2023). Geospatial Data Puller for Waters in the Contiguous United States (Version v1) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.8140272
Wine, M. L., Cadol, D., & Makhnin, O. (2018). In ecoregions across western USA streamflow increases during post-wildfire recovery. Environmental Research Letters, 13(1), 014010. https://doi.org/10.1088/1748-9326/aa9c5a
Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77, 1–17. https://doi.org/10.18637/jss.v077.i01
Writer, J. H., Hohner, A., Oropeza, J., Schmidt, A., Cawley, K. M., & Rosario-Ortiz, F. L. (2014). Water treatment implications after the High Park Wildfire, Colorado. Journal AWWA, 106(4), E189–E199. https://doi.org/10.5942/jawwa.2014.106.0055
Zeileis, A., Grothendieck, G., Ryan, J. A., Ulrich, J. M., & Andrews, F. (2023).zoo: S3 Infrastructure for Regular and Irregular Time Series (Z’s Ordered Observations) (1.8-12) [Computer software]. https://cran.r-project.org/web/packages/zoo/index.html
Zepner, L., Karrasch, P., Wiemann, F., & Bernard, L. (2021). ClimateCharts.net – an interactive climate analysis web platform. International Journal of Digital Earth, 14(3), 338–356. https://doi.org/10.1080/17538947.2020.1829112