REFERENCES:
Abbott, B. W., Rocha,
A. V., Shogren, A., Zarnetske, J. P., Iannucci, F., Bowden, W. B.,
Bratsman, S. P., Patch, L., Watts, R., Fulweber, R., Frei, R. J.,
Huebner, A. M., Ludwig, S. M., Carling, G. T., & O’Donnell, J. A.
(2021). Tundra wildfire triggers sustained lateral nutrient loss in
Alaskan Arctic. Global Change Biology, 27(7), 1408–1430.
https://doi.org/10.1111/gcb.15507
Adkins, J., Sanderman,
J., & Miesel, J. (2019). Soil carbon pools and fluxes vary across a
burn severity gradient three years after wildfire in Sierra Nevada
mixed-conifer forest. Geoderma, 333, 10–22.
https://doi.org/10.1016/j.geoderma.2018.07.009
Agbeshie, A. A.,
Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the
effects of forest fire on soil properties. Journal of Forestry
Research, 33(5), 1419–1441.
https://doi.org/10.1007/s11676-022-01475-4
Ball, G., Regier, P.,
González-Pinzón, R., Reale, J., & Van Horn, D. (2021). Wildfires
increasingly impact western US fluvial networks. Nature
Communications, 12(1), Article 1.
https://doi.org/10.1038/s41467-021-22747-3
Bartels, S. F., Chen,
H. Y. H., Wulder, M. A., & White, J. C. (2016). Trends in
post-disturbance recovery rates of Canada’s forests following wildfire
and harvest. Forest Ecology and Management, 361, 194–207.
https://doi.org/10.1016/j.foreco.2015.11.015
Barton, R.,
Richardson, C. M., Pae, E., Montalvo, M. S., Redmond, M., Zimmer, M. A.,
& Wagner, S. (2024). Hydrology, rather than wildfire burn extent,
determines post‐fire organic and black carbon export from mountain
rivers in central coastal California. Limnology and Oceanography
Letters, 9(1), 70–80. https://doi.org/10.1002/lol2.10360
Bates, D., Mächler,
M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67,
1–48. https://doi.org/10.18637/jss.v067.i01
Betts, E. F., &
Jones, J. B. (2009). Impact of Wildfire on Stream Nutrient Chemistry and
Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska.Arctic, Antarctic, and Alpine Research, 41(4), 407–417.
https://doi.org/10.1657/1938-4246-41.4.407
Bladon, K. D., Silins,
U., Wagner, M. J., Stone, M., Emelko, M. B., Mendoza, C. A., Devito, K.
J., & Boon, S. (2008). Wildfire impacts on nitrogen concentration and
production from headwater streams in southern Alberta’s Rocky Mountains.Canadian Journal of Forest Research, 38(9), 2359–2371.
https://doi.org/10.1139/X08-071
Blodgett, D. &
Johnson, J. M. (2022). nhdplusTools: Tools for Accessing and
Working with the NHDPlus. GitLab. https://doi.org/10.5066/P97AS8JD
Breiman, L. (2001).
Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324
Cavaiani, J., Regier,
P., Roebuck, A., Barnes, M., Garayburu-Caruso, V. A., Gillespie, X.,
McKever, S. A., Renteria, L., Forbes, B., Powers-McCormack, B., &
Myers-Pigg, A. (2024). Data and scripts associated with a
manuscript on a meta-analysis synthesizing stream biogeochemical
response to wildfires across space and time.https://data.ess-dive.lbl.gov/view/doi:10.15485/2319038
Chiriboga, G., &
Borges, A. V. (2023). Andean headwater and piedmont streams are hot
spots of carbon dioxide and methane emissions in the Amazon basin.Communications Earth & Environment, 4(1), Article 1.
https://doi.org/10.1038/s43247-023-00745-1
Chow, A. T., Tsai,
K.-P., Fegel, T. S., Pierson, D. N., & Rhoades, C. C. (2019). Lasting
Effects of Wildfire on Disinfection By-Product Formation in Forest
Catchments. Journal of Environmental Quality, 48(6),
1826–1834. https://doi.org/10.2134/jeq2019.04.0172
Clausen, J. C., &
Spooner, J. (1993). Paired watershed study design(PB-94-154820/XAB; EPA-841/F-93/009). Environmental Protection Agency,
Washington, DC (United States). Office of Wetlands, Oceans and
Watersheds. https://www.osti.gov/biblio/7207219
Clay, G. D., Worrall,
F., & Aebischer, N. J. (2012). Does prescribed burning on peat soils
influence DOC concentrations in soil and runoff waters? Results from a
10year chronosequence. Journal of Hydrology, 448–449,
139–148. https://doi.org/10.1016/j.jhydrol.2012.04.048
Connolly, C. T.,
Khosh, M. S., Burkart, G. A., Douglas, T. A., Holmes, R. M., Jacobson,
A. D., Tank, S. E., & McClelland, J. W. (2018). Watershed slope as a
predictor of fluvial dissolved organic matter and nitrate concentrations
across geographical space and catchment size in the Arctic.Environmental Research Letters, 13(10), 104015.
https://doi.org/10.1088/1748-9326/aae35d
Coombs, J. S., &
Melack, J. M. (2013). Initial impacts of a wildfire on hydrology and
suspended sediment and nutrient export in California chaparral
watersheds. Hydrological Processes, 27(26), 3842–3851.
https://doi.org/10.1002/hyp.9508
Crandall, T., Jones,
E., Greenhalgh, M., Frei, R. J., Griffin, N., Severe, E., Maxwell, J.,
Patch, L., Clair, S. I. S., Bratsman, S., Merritt, M., Norris, A. J.,
Carling, G. T., Hansen, N., Clair, S. B. S., & Abbott, B. W. (2021).
Megafire affects stream sediment flux and dissolved organic matter
reactivity, but land use dominates nutrient dynamics in semiarid
watersheds. PLOS ONE, 16(9), e0257733.
https://doi.org/10.1371/journal.pone.0257733
Dahm, C. N.,
Candelaria-Ley, R. I., Reale, C. S., Reale, J. K., & Van Horn, D. J.
(2015). Extreme water quality degradation following a catastrophic
forest fire. Freshwater Biology, 60(12), 2584–2599.
https://doi.org/10.1111/fwb.12548
DeBano, L. F. (2000).
The role of fire and soil heating on water repellency in wildland
environments: A review. Journal of Hydrology, 231–232,
195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
Dove, N., & Hart, S.
(2017). Fire Reduces Fungal Species Richness and In Situ Mycorrhizal
Colonization: A Meta-Analysis. Fire Ecology, 13, 37–65.
https://doi.org/10.4996/fireecology.130237746
Emmerton, C. A.,
Cooke, C. A., Hustins, S., Silins, U., Emelko, M. B., Lewis, T., Kruk,
M. K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J. G., &
Orwin, J. F. (2020). Severe western Canadian wildfire affects water
quality even at large basin scales. Water Research, 183,
116071. https://doi.org/10.1016/j.watres.2020.116071
Flannigan, M. D.,
Krawchuk, M. A., Groot, W. J. de, Wotton, B. M., & Gowman, L. M.
(2009). Implications of changing climate for global wildland fire.International Journal of Wildland Fire, 18(5), 483–507.
https://doi.org/10.1071/WF08187
Fox, J., & Weisberg,
S. (2019). An {R} companion to applied regression 3rd ed Sage
Thousand Oaks. CA.
Gerla, P. J., &
Galloway, J. M. (1998). Water quality of two streams near Yellowstone
Park, Wyoming, following the 1988 Clover-Mist wildfire.Environmental Geology, 36(1), 127–136.
https://doi.org/10.1007/s002540050328
Guo, D., Saft, M.,
Hou, X., Webb, J. A., Hairsine, P. B., & Western, A. W. (2023). How
does wildfire and climate variability affect streamflow in forested
catchments? A regional study in eastern Australia. Journal of
Hydrology, 625, 129979.
https://doi.org/10.1016/j.jhydrol.2023.129979
Gustine, R. N., Hanan,
E. J., Robichaud, P. R., & Elliot, W. J. (2022). From burned slopes to
streams: How wildfire affects nitrogen cycling and retention in forests
and fire-prone watersheds. Biogeochemistry, 157(1),
51–68. https://doi.org/10.1007/s10533-021-00861-0
Hallema, D. W., Sun,
G., Bladon, K. D., Norman, S. P., Caldwell, P. V., Liu, Y., & McNulty,
S. G. (2017). Regional patterns of postwildfire streamflow response in
the Western United States: The importance of scale-specific
connectivity. Hydrological Processes, 31(14), 2582–2598.
https://doi.org/10.1002/hyp.11208
Hallema, D. W., Sun,
G., Caldwell, P. V., Norman, S. P., Cohen, E. C., Liu, Y., Bladon, K.
D., & McNulty, S. G. (2018). Burned forests impact water supplies.Nature Communications, 9(1), Article 1.
https://doi.org/10.1038/s41467-018-03735-6
Hampton, T. B., Lin,
S., & Basu, N. B. (2022). Forest fire effects on stream water quality
at continental scales: A meta-analysis. Environmental Research
Letters, 17(6), 064003.
https://doi.org/10.1088/1748-9326/ac6a6c
Hanan, E. J.,
D’Antonio, C. M., Roberts, D. A., & Schimel, J. P. (2016). Factors
Regulating Nitrogen Retention During the Early Stages of Recovery from
Fire in Coastal Chaparral Ecosystems. Ecosystems, 19(5),
910–926. https://doi.org/10.1007/s10021-016-9975-0
Hanan, E. J., Schimel,
J. P., Dowdy, K., & D’Antonio, C. M. (2016). Effects of substrate
supply, pH, and char on net nitrogen mineralization and nitrification
along a wildfire-structured age gradient in chaparral. Soil
Biology and Biochemistry, 95, 87–99.
https://doi.org/10.1016/j.soilbio.2015.12.017
Harper, A. R., Doerr,
S. H., Santin, C., Froyd, C. A., & Sinnadurai, P. (2018). Prescribed
fire and its impacts on ecosystem services in the UK. Science of
The Total Environment, 624, 691–703.
https://doi.org/10.1016/j.scitotenv.2017.12.161
Hickenbottom, K.,
Pagilla, K., & Hanigan, D. (2023). Wildfire impact on disinfection
byproduct precursor loading in mountain streams and rivers. Water
Research, 244, 120474.
https://doi.org/10.1016/j.watres.2023.120474
Hill, R. A., Weber, M.
H., Leibowitz, S. G., Olsen, A. R., & Thornbrugh, D. J. (2016). The
Stream-Catchment (StreamCat) Dataset: A Database of Watershed Metrics
for the Conterminous United States. JAWRA Journal of the American
Water Resources Association, 52(1), 120–128.
https://doi.org/10.1111/1752-1688.12372
Hohner, A. K., Cawley,
K., Oropeza, J., Summers, R. S., & Rosario-Ortiz, F. L. (2016).
Drinking water treatment response following a Colorado wildfire.Water Research, 105, 187–198.
https://doi.org/10.1016/j.watres.2016.08.034
Hohner, A. K.,
Rhoades, C. C., Wilkerson, P., & Rosario-Ortiz, F. L. (2019). Wildfires
Alter Forest Watersheds and Threaten Drinking Water Quality.Accounts of Chemical Research, 52(5), 1234–1244.
https://doi.org/10.1021/acs.accounts.8b00670
Holden, Z. A., Luce,
C. H., Crimmins, M. A., & Morgan, P. (2012). Wildfire extent and
severity correlated with annual streamflow distribution and timing in
the Pacific Northwest, USA (1984–2005). Ecohydrology,5(5), 677–684. https://doi.org/10.1002/eco.257
Hurtado, S. I. (2020).RobustLinearReg: Robust Linear Regressions (1.2.0) [Computer
software].
https://cran.r-project.org/web/packages/RobustLinearReg/index.html
Jones, M. W.,
Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M.,
Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch,
S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré,
C. (2022). Global and Regional Trends and Drivers of Fire Under Climate
Change. Reviews of Geophysics, 60(3), e2020RG000726.
https://doi.org/10.1029/2020RG000726
Kinoshita, A. M., &
Hogue, T. S. (2011). Spatial and temporal controls on post-fire
hydrologic recovery in Southern California watersheds. CATENA,87(2), 240–252. https://doi.org/10.1016/j.catena.2011.06.005
Laudon, H., &
Sponseller, R. A. (2018). How landscape organization and scale shape
catchment hydrology and biogeochemistry: Insights from a long-term
catchment study. WIREs Water, 5(2), e1265.
https://doi.org/10.1002/wat2.1265
Lintern, A., Webb, J.
a., Ryu, D., Liu, S., Bende-Michl, U., Waters, D., Leahy, P., Wilson,
P., & Western, A. W. (2018). Key factors influencing differences in
stream water quality across space. WIREs Water, 5(1),
e1260. https://doi.org/10.1002/wat2.1260
Mast, M. A., & Clow,
D. W. (2008). Effects of 2003 wildfires on stream chemistry in Glacier
National Park, Montana. Hydrological Processes, 22(26),
5013–5023. https://doi.org/10.1002/hyp.7121
Mast, M. A., Murphy,
S. F., Clow, D. W., Penn, C. A., & Sexstone, G. A. (2016).
Water-quality response to a high-elevation wildfire in the Colorado
Front Range. Hydrological Processes, 30(12), 1811–1823.
https://doi.org/10.1002/hyp.10755
Minshall, G. W.
(2003). Responses of stream benthic macroinvertebrates to fire.Forest Ecology and Management, 178(1), 155–161.
https://doi.org/10.1016/S0378-1127(03)00059-8
Murphy, S. F.,
McCleskey, R. B., Martin, D. A., Writer, J. H., & Ebel, B. A. (2018).
Fire, Flood, and Drought: Extreme Climate Events Alter Flow Paths and
Stream Chemistry. Journal of Geophysical Research:
Biogeosciences, 123(8), 2513–2526.
https://doi.org/10.1029/2017JG004349
Murphy, S. F., Writer,
J. H., McCleskey, R. B., & Martin, D. A. (2015). The role of
precipitation type, intensity, and spatial distribution in source water
quality after wildfire. Environmental Research Letters,10(8), 084007. https://doi.org/10.1088/1748-9326/10/8/084007
Newcomer, M. E.,
Underwood, J., Murphy, S. F., Ulrich, C., Schram, T., Maples, S. R.,
Peña, J., Siirila-Woodburn, E. R., Trotta, M., Jasperse, J., Seymour,
D., & Hubbard, S. S. (2023). Prolonged Drought in a Northern California
Coastal Region Suppresses Wildfire Impacts on Hydrology. Water
Resources Research, 59(8), e2022WR034206.
https://doi.org/10.1029/2022WR034206
Oliver, A. A., Reuter,
J. E., Heyvaert, A. C., & Dahlgren, R. A. (2012). Water quality
response to the Angora Fire, Lake Tahoe, California.Biogeochemistry, 111(1/3), 361–376.
Paul, M. J., LeDuc, S.
D., Lassiter, M. G., Moorhead, L. C., Noyes, P. D., & Leibowitz, S. G.
(2022). Wildfire Induces Changes in Receiving Waters: A Review With
Considerations for Water Quality Management. Water Resources
Research, 58(9), e2021WR030699.
https://doi.org/10.1029/2021WR030699
R Core Team. (2023).R: A Language and Environment for Statistical Computing[Computer software]. R Foundation for Statistical Computing.
https://www.R-project.org/
Raoelison, O. D.,
Valenca, R., Lee, A., Karim, S., Webster, J. P., Poulin, B. A., &
Mohanty, S. K. (2023). Wildfire impacts on surface water quality
parameters: Cause of data variability and reporting needs.Environmental Pollution, 317, 120713.
https://doi.org/10.1016/j.envpol.2022.120713
Rhea, A. E., Covino,
T. P., & Rhoades, C. C. (2021). Reduced N-Limitation and Increased
In-Stream Productivity of Autotrophic Biofilms 5 and 15 Years After
Severe Wildfire. Journal of Geophysical Research: Biogeosciences,126(9), e2020JG006095. https://doi.org/10.1029/2020JG006095
Rhoades, C. C., Chow,
A. T., Covino, T. P., Fegel, T. S., Pierson, D. N., & Rhea, A. E.
(2019). The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in
Headwater Catchments. Ecosystems, 22(3), 643–657.
https://doi.org/10.1007/s10021-018-0293-6
Rhoades, C. C., Nunes,
J. P., Silins, U., & Doerr, S. H. (2019). The influence of wildfire on
water quality and watershed processes: New insights and remaining
challenges. International Journal of Wildland Fire,28(10), 721–725. https://doi.org/10.1071/WFv28n10_FO
Richardson, C.,
Montalvo, M., Wagner, S., Barton, R., Paytan, A., Redmond, M., &
Zimmer, M. (2024). Exploring the Complex Effects of Wildfire on Stream
Water Chemistry: Insights From Concentration-Discharge Relationships.Water Resources Research, 60(2), e2023WR034940.
https://doi.org/10.1029/2023WR034940
Rodríguez-Cardona, B.
M., Coble, A. A., Wymore, A. S., Kolosov, R., Podgorski, D. C., Zito,
P., Spencer, R. G. M., Prokushkin, A. S., & McDowell, W. H. (2020).
Wildfires lead to decreased carbon and increased nitrogen concentrations
in upland arctic streams. Scientific Reports, 10(1),
Article 1. https://doi.org/10.1038/s41598-020-65520-0
Rohatgi, A. (2023).WebPlotDigitizer—Copyright 2010-2024 Ankit Rohatgi.
https://apps.automeris.io/wpd/
Rust, A. J., Hogue, T.
S., Saxe, S., McCray, J., Rust, A. J., Hogue, T. S., Saxe, S., &
McCray, J. (2018). Post-fire water-quality response in the western
United States. International Journal of Wildland Fire,27(3), 203–216. https://doi.org/10.1071/WF17115
Santín, C., Doerr, S.
H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M.,
Preston, C. M., & Dittmar, T. (2016). Towards a global assessment of
pyrogenic carbon from vegetation fires. Global Change Biology,22(1), 76–91. https://doi.org/10.1111/gcb.12985
Santos, F., Wymore, A.
S., Jackson, B. K., Sullivan, S. M. P., McDowell, W. H., & Berhe, A. A.
(2019). Fire severity, time since fire, and site-level characteristics
influence streamwater chemistry at baseflow conditions in catchments of
the Sierra Nevada, California, USA. Fire Ecology, 15(1),
3. https://doi.org/10.1186/s42408-018-0022-8
Saxe, S., Hogue, T.
S., & Hay, L. (2018). Characterization and evaluation of controls on
post-fire streamflow response across western US watersheds.Hydrology and Earth System Sciences, 22(2), 1221–1237.
https://doi.org/10.5194/hess-22-1221-2018
Shapiro, S. S., &
Wilk, M. B. (1965). An analysis of variance test for normality (complete
samples)†. Biometrika, 52(3–4), 591–611.
https://doi.org/10.1093/biomet/52.3-4.591
Smith, H. G.,
Sheridan, G. J., Lane, P. N. J., Nyman, P., & Haydon, S. (2011).
Wildfire effects on water quality in forest catchments: A review with
implications for water supply. Journal of Hydrology,396(1), 170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043
Son, J.-H., Kim, S.,
& Carlson, K. H. (2015). Effects of Wildfire on River Water Quality and
Riverbed Sediment Phosphorus. Water, Air, & Soil Pollution,226(3), 26. https://doi.org/10.1007/s11270-014-2269-2
Tank, S. E., Vonk, J.
E., Walvoord, M. A., McClelland, J. W., Laurion, I., & Abbott, B. W.
(2020). Landscape matters: Predicting the biogeochemical effects of
permafrost thaw on aquatic networks with a state factor approach.Permafrost and Periglacial Processes, 31(3), 358–370.
https://doi.org/10.1002/ppp.2057
Tiedemann, A. R.
(1973). Stream chemistry following a forest fire and urea fertilization
in north-central Washington. Res. Note PNW-RN-203. Portland, OR:
U.S. Department of Agriculture, Forest Service, Pacific Northwest
Research Station: 1-20, 203.
https://www.fs.usda.gov/research/treesearch/25489
Tshering, K.,
Miotlinski, K., Blake, D., Boyce, M. C., Bath, A., Carvalho, A., &
Horwitz, P. (2023). Effect of fire on characteristics of dissolved
organic matter in forested catchments in the Mediterranean biome: A
review. Water Research, 230, 119490.
https://doi.org/10.1016/j.watres.2022.119490
Uzun, H., Dahlgren, R.
A., Olivares, C., Erdem, C. U., Karanfil, T., & Chow, A. T. (2020). Two
years of post-wildfire impacts on dissolved organic matter, nitrogen,
and precursors of disinfection by-products in California stream waters.Water Research, 181, 115891.
https://doi.org/10.1016/j.watres.2020.115891
Van Son, T. C., &
Thiel, M. (2006). Multiple Predator Effects in an Intertidal Food Web.Journal of Animal Ecology, 75(1), 25–32.
Wagner, S., Cawley, K.
M., Rosario-Ortiz, F. L., & Jaffé, R. (2015). In-stream sources and
links between particulate and dissolved black carbon following a
wildfire. Biogeochemistry, 124(1), 145–161.
https://doi.org/10.1007/s10533-015-0088-1
Wampler, K. A.,
Bladon, K. D., & Faramarzi, M. (2023). Modeling wildfire effects on
streamflow in the Cascade Mountains, Oregon, USA. Journal of
Hydrology, 621, 129585.
https://doi.org/10.1016/j.jhydrol.2023.129585
Wan, S., Hui, D., &
Luo, Y. (2001). Fire Effects on Nitrogen Pools and Dynamics in
Terrestrial Ecosystems: A Meta-Analysis. Ecological Applications,11(5), 1349–1365.
https://doi.org/10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2
Wang, Q., Zhong, M.,
& Wang, S. (2012). A meta-analysis on the response of microbial
biomass, dissolved organic matter, respiration, and N mineralization in
mineral soil to fire in forest ecosystems. Forest Ecology and
Management, 271, 91–97.
https://doi.org/10.1016/j.foreco.2012.02.006
Wei, X., Hayes, D. J.,
& Fernandez, I. (2021). Fire reduces riverine DOC concentration
draining a watershed and alters post-fire DOC recovery patterns.Environmental Research Letters, 16(2), 024022.
https://doi.org/10.1088/1748-9326/abd7ae
Weintraub, S. R.,
Brooks, P. D., & Bowen, G. J. (2017). Interactive Effects of Vegetation
Type and Topographic Position on Nitrogen Availability and Loss in a
Temperate Montane Ecosystem. Ecosystems, 20(6),
1073–1088. https://doi.org/10.1007/s10021-016-0094-8
Westerling, A. L.
(2016). Increasing western US forest wildfire activity: Sensitivity to
changes in the timing of spring. Philosophical Transactions of the
Royal Society B: Biological Sciences, 371(1696), 20150178.
https://doi.org/10.1098/rstb.2015.0178
Willi, K., & Ross, M.
R. V. (2023). Geospatial Data Puller for Waters in the Contiguous
United States (Version v1) [Computer software]. Zenodo.
https://doi.org/10.5281/zenodo.8140272
Wine, M. L., Cadol,
D., & Makhnin, O. (2018). In ecoregions across western USA streamflow
increases during post-wildfire recovery. Environmental Research
Letters, 13(1), 014010.
https://doi.org/10.1088/1748-9326/aa9c5a
Wright, M. N., &
Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical
Software, 77, 1–17. https://doi.org/10.18637/jss.v077.i01
Writer, J. H., Hohner,
A., Oropeza, J., Schmidt, A., Cawley, K. M., & Rosario-Ortiz, F. L.
(2014). Water treatment implications after the High Park Wildfire,
Colorado. Journal AWWA, 106(4), E189–E199.
https://doi.org/10.5942/jawwa.2014.106.0055
Zeileis, A.,
Grothendieck, G., Ryan, J. A., Ulrich, J. M., & Andrews, F. (2023).zoo: S3 Infrastructure for Regular and Irregular Time Series (Z’s
Ordered Observations) (1.8-12) [Computer software].
https://cran.r-project.org/web/packages/zoo/index.html
Zepner, L., Karrasch,
P., Wiemann, F., & Bernard, L. (2021). ClimateCharts.net – an
interactive climate analysis web platform. International Journal
of Digital Earth, 14(3), 338–356.
https://doi.org/10.1080/17538947.2020.1829112