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An algorithm for unsupervised partitioning of geoscientific datasets using flexible similarity
metrics

Grant W. Pettya
a Atmospheric and Oceanic Sciences, University of Wisconsin-Madison

ABSTRACT: A simple yet flexible and robust unsupervised classification algorithm is described for efficiently partitioning a data set
into compact, non-overlapping groups or classes based on pairwise similarity. Unlike most clustering algorithms, there is no assumption
that natural clusters exist in the dataset, though some clusters, when present, may be preferentially assigned to one or more classes. The
method also does not require data objects to be compared within any coordinate system but rather permits the user to quantify pairwise
similarity using almost any conceivable criterion. For all of the above reasons, the method lends itself to certain geoscientific applications
for which conventional clustering methods are unsuited, including two non-trivial and distinctly different datasets presented as examples.
The computer memory required for the user-defined similarity matrix is 4# 2 bytes and is the sole practical limitation on the size # of
the dataset that can be directly classified. Much larger data sets can be readily accommodated by assigning members to classes previously
determined from a representative subset.

1. Introduction

a. Background

In the Earth science disciplines in which multivariate
observational data sets arise, it is sometimes desirable
to group data set members into discrete, non-overlapping
classes with distinct properties or interpretations. For ex-
ample, the pixels in remote sensing images of the Earth’s
surface might be classified according to land use or type,
such as open water, forest, bare ground, snow, etc., usually
based on the spectral and/or textural properties determined
from the image (Talukdar et al. 2020).

The assignment of classifications to the members of a
data set is usually supervised in the sense that a labeled
training data set with known interpretation is available to
help define the criteria utilized to classify new data and
to assess and refine the overall quality of the classification
algorithm (Bruzzone and Demir 2014). A number of dis-
tinct methods for supervised classification exist, including
artificial neural networks, classification trees, support vec-
tor machines, :-nearest neighbor, random forest, and naive
Bayes (Abiodun et al. 2018; Hush and Horne 1993; Loh
2011; Maulik and Chakraborty 2017; Prasath et al. 2017;
Belgiu and Drăguţ 2016; Bielza and Larranaga 2014).

Though less common, there are applications in which
labeled data are unavailable and/or it is desirable to allow
the data set itself to suggest specific natural groupings of
data set members. In such cases, unsupervised classifi-
cation is employed (Olaode et al. 2014). Most unsuper-
vised classification schemes are based on cluster analysis,
in which natural groupings of dataset members are iden-
tified from regions of higher sample density relative to
the surrounding multidimensional space (Duran and Odell
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2013; Kaufman and Rousseeuw 2009). Researchers have
utilized cluster analysis to redefine climate zones by iden-
tifying natural groupings of multivariate climate records
(Fovell and Fovell 1993; Unal et al. 2003) among other
Earth sciences applications.

Common cluster analysis methods include connectivity-
based or hierarchical clustering (Murtagh and Contreras
2012), centroid-based clustering (e.g, :-means; Kanungo
et al. 2002)), density-based clustering (e.g., DBSCAN;
Kriegel et al. 2011), and others. In general, unsupervised
cluster analysis requires the user to specify parameters gov-
erning the clustering algorithm, such as the expected num-
ber of clusters and/or the target radius of the cluster in
observation space.

A central underlying assumption in cluster analysis
methods, of course, is that multiple semi-distinct clusters
may be present in the data, and that it is the job of the
algorithm to find them. Depending on the application, this
may be an inappropriate assumption. Most cluster anal-
ysis methods also expect to group members of a dataset
based on some measure of their proximity to one another
in a multidimensional coordinate space. However, as will
be discussed below, it may sometimes be desirable to de-
fine “similarity” in a more general way—one that does not
make reference to a shared coordinate space.

For both reasons, there are applications for which con-
ventional cluster analysis is ill-suited. Instead, one might
require a method for efficiently partitioning a dataset into
self-similar groups irrespective of the existence of distinct
density modes and perhaps to do so without reference to an
external coordinate system within which dataset members
are located.
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b. Motivation

Petty and Li (2013) (hereafter PL) required a static grid-
ded global land classification based on similarities in the
climatological background microwave brightness temper-
ature variations measured by the Tropical Rainfall Mea-
suring Mission (TRMM) Microwave Imager (TMI; Kum-
merow et al. 1998). They computed long-term means and
covariances of the 7-channel brightness temperatures, after
excluding scenes containing precipitation. The purpose of
the classification was to partition the entire land surface
of the Earth into a small set of discrete classes within
each of which the mean and covariance of all observations
combined was as similar as possible to the means and co-
variances within each geographic grid box assigned to the
class. The class-wide mean and covariance would then
serve as a reasonable approximation to the local geophysi-
cal noise term that must be accounted for in the multichan-
nel retrieval of light or frozen precipitation from individual
observations.

Standard clustering techniques are not well suited to this
problem for the following reasons:

• Mean background brightness temperaturesT resolved
on the relatively coarse geographic grid utilized by PL
typically represent an admixture of highly variable
land surface properties and are therefore distributed
on a continuum in observation space, with no guar-
antee that “natural” clusters will emerge in the form
of distinct density modes.

• Classification based on noise characteristics requires
one to take into account not only the observed mean
T but also the observed covariances �) for each grid
box. The latter are usually far from diagonal and are
strongly scene-dependent. For example, a grid box
that contains mixture of land and water will exhibit
a very different covariance than one with the same
mean brightness temperature but that is affected by
variable amounts of snow and ice over the course of a
year or longer. It is the combination of T and �) that
determines the degree of statistical overlap in back-
ground brightness temperatures for two different grid
cells and thus the practical degree of similarity. The
required calculation does not lend itself to a represen-
tation of dataset members as points in a coordinate
space as required by most clustering methods.

PL therefore devised and utilized, but did not describe
in detail, a heuristic unsupervised classification algorithm
to create a static global map of empirical land classes at
1◦ resolution in latitude and longitude. To the author’s
knowledge, it does not resemble any other classification
algorithm in wide use. Indeed it is best described as an
unsupervised partitioning algorithm, as it does not explic-
itly seek to identify density modes but rather to efficiently
subdivide the entire dataset into manageable number of

self-similar classes based on a user-specified similarity
threshold. The method is notable for its conceptual and
computational simplicity, relative efficiency, and ability
to accommodate an arbitrary, externally-defined metric of
pairwise “similarity.”

c. Overview

In the following section, the partitioning algorithm itself
is outlined. Section 3 demonstrates the application of the
algorithm to two simple mock data sets intended to facili-
tate understanding of the key properties of the algorithm.
Section 4 briefly describes its application to two real but
very dissimilar geoscientific data sets, the first being an
update of the problem described by PL. The second data
set consists of a time series of 74 years of 6-hourly mete-
orological analysis maps. Section 5 offers a summary and
conclusions.

2. Classification Algorithm

a. Similarity function

A prerequisite for—but separate from—the classifica-
tion scheme itself is an arbitrary user-defined function that
computes the “similarity” between the 8th and 9 th objects
in the data set, denoted here as d8 and d 9 . Specifically,

0 ≤ 5 (d8 ,d 9 ) ≤ 1,

where 5 (d8 ,d8) = 5 (d 9 ,d 9 ) ≡ 1, and 5 (d8 ,d 9 ) = 5 (d 9 ,d8) <
1 for any pair of members that is not to be considered
identical. Any pair of objects such that 5 (d8 ,d 9 ) = 0 is
considered to be perfectly dissimilar.

For example, a problem that requires partitioning of data
based on conventional Euclidean distance between data set
members might choose

5 (d8 ,d 9 ) =
1

1− ‖x8 −x 9 ‖
, (1)

where x8 is the position of the 8th data point in a con-
ventional multidimensional coordinate system. There are
other possible functions that accomplish the same thing;
the only requirement is that the function mononotically in-
crease from 0 to 1 as the Euclidean distance decreases to
zero. Equation (1) is utilized in the first mock data example
in Section 3a.

But other definitions are possible. For example, if one
attribute of the data object d8 happens to be a unit vector
û8 representing the local orientation of a vector field, then
one might define the degree of similarity in orientation as

5 (d8 ,d 9 ) =
û8 · û 9 +1
2

, (2)
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Fig. 1. A minimal working Python implementation of the basic classification algorithm. It requires the similarity matrix S (simmat)and user-
specified similarity threshold ) (thresh) as inputs.

If one were, say, a magnetostratigraphist, one might then
objectively segment the magnetic field in rocks into dis-
crete regions based on approximate local direction of the
field. Equation (2) is utilized in the second mock data
example in Section 3b.

For the application of PL involving =-channelmicrowave
brightness temperature variability in geographic grid cells,
the relevant similarity metric is far more complicated. It
is defined in terms of the degree of overlap between two
=-variate Gaussian distributions characterized by vector
means µ8 and µ 9 and covariances �8 and � 9 . It is given
by

5 (d8 ,d 9 ) = exp
(
b) Ab− 2
4

) [
2= |A|
|�8 |

1
2 |� 9 |

1
2

] 1
2

, (3)

where

A = (�−18 +�−19 )−1

b = �−18 µ8 +�−19 µ 9

2 = µ)
8 �
−1
8 µ8 +µ)

9 �
−1
9 µ 9 .

This similarity metric is utilized Section 4a.

Finally, the fourth example in Section 4b utilizes the
Pearson correlation coefficient to group 500 hPa height
maps, in which case the similarity function is simply

5 (d8 ,d 9 ) =
Corr(di,dj) +1

2
. (4)

b. Similarity matrix

Given a data set with # members, the primary input
to the classification algorithm is a similarity matrix S, the
8, 9 th element of which is B8 9 = 5 (d8 ,d 9 ). It is thus an
# ×# symmetric matrix whose diagonal elements B88 = 1
and whose off-diagonal elements 0 ≤ B8 9 ≤ 1.

The ability to storeS entirely in corememory for efficient
access is the most important practical limitation on the size
of # that can be accommodated. As 32-bit floating point
precision is more than sufficient for the elements of S, the
maximummemory requirement forS is approximately 4#2
bytes, or about 37 GB for # = 105. For significantly larger
data sets, it will be shown that subsampling can be utilized
to obtain initial classes, with the remaining data then being
efficiently assigned to those classes.

Once S is available, the algorithm requires a single user-
specified parameters: a similarity threshold 0 < ) < 1 that
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controls the acceptable degree of dissimilarity of members
occupying any class determined in the first pass. An initial
# ×# boolean similarity matrix is then defined as

B0 = S > ),

where for computational purposes False=0 and True=1. If
8-bit integers are used, then the memory requirement of
B0 is one-fourth that of S.

c. The algorithm

Given the boolean matrix B0, the first iteration of the
algorithm then proceeds as follows:

1. Each row of B0 is summed. The row with the largest
sum determines the prototype member of the first
class, as it is the member that is similar (to within
the specified threshold )) to the most other members
of the data set.

2. The columns in the selected row that are non-zero
(True) determine the members of the class.

3. All rows and columns of B0 corresponding to the
above members are deleted, leading to a reduced ma-
trix B1 whose dimensions are (# − =1) × (# − =1),
where =1 is the number of members that were as-
signed to the first class in the previous step.

The cycle repeats to obtain successive class prototypes
and class members and updated boolean matrix B8 . The
iteration terminates when all dataset members have been
assigned to a class.

A minimal working implementation in Python is shown
in Fig. 1. The algorithm requires remarkably few lines of
code owing to the vectorization capabilities of the Numpy
library.

d. Algorithm properties

Notable properties of the above algorithm include the
following:

• The first class consists of all data set members that
satisfy the similarity constraint relative to the first pro-
totype, which in turn represents a centroid of the class,
though not necessarily in a Euclidean sense. The first
class is always associated with the most densely pop-
ulated portion of the data space as measured within
the effective radius determined by the threshold ) .

• Subsequent classes are successively smaller and con-
sist of members satisfying the similarity constraint
after all previously assigned members of the data
set have been removed from further consideration.
Therefore, when a member is similar to more than
than one class prototype, it is assigned to the earlier

X

Y

Ntotal = 3000

Fig. 2. Mock data used in the demonstration of classification based on
Euclidean distance.

class. For the same reason, subsequent classes might
or might not be associated with local density max-
ima. As previously noted, the goal of the algorithm
is to efficiently partition the data set into self-similar
classes, not necessarily to find distinct modes.

• The determination of : classes requires : passes
through the cycle desribed in the previous subsection.

• Because the first iteration requires operations on the
largest matrix B0, it also requires the most compu-
tational time. With each subsequent iteration, B8 is
smaller and requires computation in proportion to the
reduced array size #2

8
. Typically, the total execution

time is dominated by the first one or two iterations.

To summarize, the algorithm returns an ordered series
of classes of non-increasing size, with the last of these
commonly containing very few members or even just one.
The disposition of those outlier classes—whether to dis-
card them or merge them with the nearest larger class—is
a decision made by the user depending on the needs of the
application and is discussed below.

3. Application to Mock Data Sets

a. Example classification based on Euclidean distance

To aid in visualizing algorithmbehavior, the first demon-
stration uses Euclidean distance (1) as the similarity metric
applied to a fictitious two-dimensional data set consisting
of # = 3000 points depicted in Fig. 2. The threshold ) was
chosen by trial and error to yield a total of 20 classes.

(i) Initial pass Fig. 3 depicts the results of the first nine
iterations, with black dots marking the prototype member
for each class as it is found. The first three classes imme-
diately find the three major modes in the distribution of
points, with the remaining classes filling in between and
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Class  1   N=826 Class  2   N=804 Class  3   N=547

Class  4   N=239 Class  5   N=156 Class  6   N=124

Class  7   N= 70 Class  8   N= 66 Class  9   N= 52

Fig. 3. Identification of the first nine classes based on a Euclidean
distance threshold applied to the data in Fig. 2. Black dots indicate the
prototype member defining each class.

a) First pass classification  20 classes

Ntotal = 3000

b) Members reassigned to nearest prototype

Ntotal = 3000

c) Members reassigned to 10 largest classes

Ntotal = 3000

d) New data assigned to 10 classes

Ntotal = 30000

Fig. 4. The results of subsequent operations on the classification
results for the data in Fig. 2. a) The initial fully classified data set. b) The
classification following reassignment (reconsolidation) to the nearest
class prototype. c) Reduction of classes from 20 to 10 by reassigning
data in the smallest classes to the nearest larger class. d) Posterior
assignment of a larger data set to the 10 classes in (c).

capturing the points on the edges of the distribution. By the
end of the ninth pass, only 116 points of the original 3000
remain unclassified. These are captured by 11 additional

classes (not shown), with the last four containing only one
member each.

(ii) Optional reconsolidation It is possible that the
initially defined classes (e.g., Fig. 4a) are satisfactory, and
no additional action is needed. But we usually prefer to
use the prototypes determined in the first pass to reassign
all dataset members, based on the nearest (or most similar)
prototype. This is a simple, efficient operation based on a
reduction of the original matrix S to a # ×" matrix S′,
where " is the number of classes found, and the columns
correspond to the class prototypes. It is only necessary to
find, for each row, the column corresponding themaximum
similarity. This is accomplished with just one line of code
using the Python/Numpy argmax() function. The results
of this reconsolidation are shown in Fig. 4b. As long
as the complete set of original prototypes is retained, the
new classes are guaranteed to satisfy the original similarity
threshold ) . After reassignment, classes might or might
not still be ordered according to descending size, so sorting
and relabeling classes by size is an optional additional step.

(iii) Disposition of outliers The value of having 20
classes for 3000 points may be questionable when the first
10 classes, say, account for 98% of the dataset. An im-
portant consideration with application of this algorithm to
almost any natural data set—as with many other cluster-
ing algorithms—is what to do with “outlier” classes—i.e.,
those containing very few members. Possibilities include
the following:

1. Discard the associated data elements as unwanted out-
liers.

2. Retain even the smallest classes, perhaps in order
to single them out as interesting examples of “rare”
phenomena (see Section 4b).

3. Truncate the valid list of classes to the largest : and
reassign all members of the discarded classes to a
single catch-all (: +1)th class.

4. Truncate the list of classes to the largest : and reas-
sign the members of discarded classes to the retained
classes based on the nearest (most similar) prototype..
Note that that the expanded classes will no longer
be sharply deliminated by the prescribed similarity
threshold ) , as seen in Fig. 4c.

The option chosen will depend on the needs of the ap-
plication. For example, in PL’s application discussed in
Section 4a, it is necessary that all land grid cells remain in
play, which eliminates option 1. It is also necessary that
classes contain enough grid cells to occupy a meaningful
land area in order to permit adequate satellite sampling,
which eliminates option 2. Finally, the purpose of PL’s
classification is to ensure that noise statistics for each grid
cell are well captured by the class mean and covariance,
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Fig. 5. Field of data elements consisting of unit vectors pointing at the
red dot positioned above the plane.

which would likely not be the case for the catch-all class.
This leaves option 4 as the optimal choice for their appli-
cation.

(iv) Expanding the dataset size As previously noted,
computer memory constraints typically become significant
as # approaches ∼105. Much larger datasets are easily
accommodated by first classifying a representative subset
and then assigning the remaining #full dataset members
based on similarity to the class prototypes. For example,
if we choose to retain : = 10 classes, then the memory
requirement for the #full× : similarity matrix is just 40#full
bytes, or about 37 GB for #full = 109. Much larger datasets
still could be accommodated with the help of memory-
mapped arrays.

If we consider the data set in Fig. 2 to be a random subset
of a larger data set with #full = 3×104, then the resulting
assignments can be seen in Fig. 4d. With resorting of
the classes based on the new class sizes, some relabeling
occurs, leading to the change of plotted color seen for some
classes.

b. Classification based on generalized similarity

The next example is intended to illustrate the ability of
the algorithm to classify data elements based on properties
other than relative positions in a coordinate space. It is
also a case for which there are no distinct modes of the
type that would be sought out by a traditional clustering
algorithm. For this purpose, we construct a 160×160 grid
of elements (# = 25 600) in a 2-dimensional plane, each
of which is associated with a unit vector. Each vector is
directed toward a common point depicted as a red dot in
Fig. 5.

Using the similarity criterion given by (2), the results for
one value of ) are shown in Fig. 6a. For the chosen thresh-
old, the first four classes (dark blue, light blue, dark orange,
light orange) capturemost of the data elements, leaving rel-
atively few for the remaining classes to pick up. Also, there
is no direct competition among the four; they all wind up
with the same number of members. In this example, there

a) Initial classification

b) After reassignment to nearest prototype

Similarity  u1 u2

Fig. 6. Results of the classification of the grid elements in Fig. 5
according to the similarity criterion (2). a) Initial classes. b) Classes
after reconsolidation.

is no significance to the initial ordering of classes, and the
highly unequal distribution of classes sizes beyond the first
four isn’t necessarily meaningful either. This illustrates
particularly well the desirability in many cases of recon-
solidating classes as described earlier, producing the final
classifications shown in Fig. 6b. With all members now
being assigned to the “nearest” prototype, the numerical
distribution among classes is now more equitable, with the
initially much smaller classes having claimed “territory”
back from the larger classes.

4. Applications to Earth Sciences Problems

a. Land surface classification based on microwave covari-
ances

Here we adapt the procedure utilized by PL for TRMM
to the newerGlobal PrecipitationMeasurement (GPM)Mi-
crowave Imager (GMI) 2014 (Hou et al. 2014). The starting
point consists of precipitation-free microwave brightness
temperatures for nine channels (10, 19, 23, 36, and 89
GHz in two polarizations) accumulated over the six-year
period from 1 June 2014 through 31May 2020. Multichan-
nel “pseudoemissivities” were computed for each satellite
pixel, defined as the brightness temperatures divided by
the local surface skin temperature as reported by the ERA5
Reanalysis (Hersbach et al. 2020).
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Unsupervised Classification Based on Microwave Emissivity Covariance from GMI

1

2

3

4

5

6

Fig. 7. Results of the classification of geographic grid boxes using similarity criterion (3) applied to means and covariances of multichannel
microwave pseudoemissivity.

From the nine-channel pseudoemissivities, a single
global mean and covariance was first computed for the
combined land area. The first three eigenvectors of the
covariance matrix, accounting for over 98% of the total
variance, were then utilized to transform the individual ob-
servations from nine to only three dimenions. For each
1◦×1◦ latitude-longitude grid cell containing land, means
and 3× 3 covariances were constructed from the trans-
formed data.

After excluding ocean-only grid cells and polar regions
not covered by the satellite swath, the warm-season data set
consisted of # = 64,800 grid cells requiring classification.
Additional smaller data sets were constructed for transi-
tional (# = 9,799) and cold-season (# = 7,055) grid-cells,
defined according to skin-temperature thresholds of 278 K
and 268 K, respectively. Only the warm-season results are
discussed here.

The similaritymetric (3) was used to compute thematrix
S. By trial and error, a threshold ) = 0.55 was found to
yield useful groupings of land areas in the early (largest)
classes, though the initial pass yielded 45 distinct classes,
some with only a single member. The six largest classes
were retained, and all remaining grid boxeswere reassigned
based on the most similar class prototype.

The result of the above procedure is depicted in Fig. 7.
The six classes visibly capture geographically meaning-
ful distinctions. Class 1, the largest class, encompasses
most moderately vegetated land areas (e.g., savannah and
agricultural lands) on every continent. Class 2 is clearly
identified with grid cells containing significant fractions
of open or standing water, including all coastlines as well
as some wetter interior portions of northern Canada and
Asia. Class 3 is found in the arid interiors of Australia and
Asia, as well as on the margins of the African and Arabian
deserts. Class 4 appears to be associated primarily with

heavily forested areas, not only the rain forests of African,
South American, southeast Asia, and Indonesia, but also
the extensive temperate and boreal forests of North Ameri-
can and Asia. Class 5 is found primarily in the Saharan and
Arabian deserts as well as the largely sand dune-covered
Taklimakan Desert in western China. Finally, Class 6 is
mostly found at the transitions from Class 1 (moderate
vegetation cover) to Class 3 (arid).

It must be emphasized that the physical descriptions of-
fered above are unimportant for the purposes of this clas-
sification and need not be validated or defended. The
sole practical value in this particular exercises lies in the
grouping of land areas according to their multichannel mi-
crowave brightness temperature variability for the purpose
of characterizing the noise background for precipitation
retrievals. Nevertheless, it is reassuring that this rather
esoteric concern appears to lead to classifications that are
readily associated with known geographic characteristics.

b. Clustering of Meteorological Analyses

As an example of an entirely different geophysical ap-
plication, we turn our attention to the unsupervised classi-
fication of weather maps. For the sake of illustration, we
utilize 500 hPa height fields over the continental United
States from the National Center for Environmental Pre-
diction (NCEP) Reanalysis 1 (Kalnay et al. 1996), cov-
ering the period 1 January 1948 through 31 December
2021 at 6-hourly intervals. The sample thus consists of
# = 108,116 gridded maps of geopotential height. The
maps are low-pass filtered (smoothed) to reduce the im-
portance of small-scale features in the comparisons. The
goal is to assign classes that group similar maps together.

There are different measures of similarity that could be
employed, and they lead to different results. One possi-
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Fig. 8. Class size vs. class number resulting from application of
the classification algorithm to 500 hPa height maps from the NCEP
Reanalysis. a) Initial results. b) Following reconsolidation. c) Following
sorting by class size.

bility is the root-mean-squared difference between gridded
maps, which favors matches for which both the amplitudes
and shapes of the height fields are similar. It is also the
traditional Euclidean distance in a high-dimensional space.
For this demonstration, we chose instead to use the Pearson
correlation coefficient, and thus (4) as the similarity met-
ric, because the # ×# correlation matrix can be computed
in a single operation using the efficient Python/Numpy
corrcoef() routine.

The matrix S in this case was near the upper limit of
what could be accommodated by the 128 GB of RAM
on our desktop workstation. Nevertheless, the algorithm
completed the classification in about 20 minutes, using a
threshold ) that corresponded to a correlation coefficient
A = 0.992 according to (4).

The initial pass resulted in 2,178 prototypes and asso-
ciated classes ranging in size from 8,114 members to just
one, with almost 500 classes in the latter category (Fig. 8a).
Memberswere then reconsolidated as usual, leading to sub-
stantial changes in the membership of each class (Fig. 8b),
including many additions to previously small classes. Fi-
nally, the modified classes were sorted by size, yielding
the distribution showing in Fig. 8c, with Class 1 now con-

taining only 2,197 members, and only the final 13 classes
containing one member.

The prototypes for Classes 1 through 6, encompassing
the most common height patterns in the dataset and ac-
counting for 7.9% of the total, are depicted in Fig. 9. We
thus observe that the most commonly occurring patterns
exhibit north-south height gradients generally consistent
with the time of year but without pronounced wave struc-
ture.

Figure 10 allows us to examine six of the 13 single-
member classes. Each of these is notable in being “dis-
similar” (A < 0.992) from every other map in the dataset.
An interesting potential application of the classification al-
gorithm lies in its ability to easily find not only maps that
are analogs of one another but also to single out cases for
study that for whatever reason are extremely rare.

Finally, Fig. 11 depicts all members of a single randomly
chosen six-member class. Interestingly, it does not consist
of six independent occurrences of the same height pattern
scattered over 74 years but rather a single episode that
persisted over at least 30 consecutive hours. Thus, the
occurrence of the pattern in question is as rare as that of any
single-member class but is, unlike the others, apparently
prone to some degree of persistence.

The point here is not to undertake a in-depth meteoro-
logical analysis of the classification results but rather to
illustrate the potential utility of the algorithm for objec-
tively identifying common and rare weather patterns for
further study. Whether examining 500 hPa heights over
North America or some other variable and some other re-
gion, one could easily examine whether certain patterns
of interest have occurred with greater or lesser frequency
during a selected period.

5. Conclusions

This paper presented a remarkably simple yet flexible
and robust unsupervised classification algorithm for effi-
ciently partitioning a multivariate data set into compact,
non-overlapping groups or classes based on mutual sim-
ilarity. It does not resemble any other classification or
clustering algorithm known to the author.

Unlike clustering algorithms, the algorithm does not as-
sume that there are “natural” clusters—i.e., multiple den-
sity modes—present in the dataset. It also does not require
data objects to be referenced to any coordinate system, as
required for example for the determination of Euclidean
distance. Rather, the user has the freedom to define pair-
wise similarity arbitarily, subject only to the basic rules
outlined at the beginning of Section 2. As long as those
rules are satisfied, it does not appear to be possible for the
algorithm to fail, and it requires just one iteration per class
found, starting with the largest.

The sole significant practical limitation is the computer
memory required for the # × # similarity matrix, which
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Fig. 9. Prototypes of the most-populous six classes of 500 hPa height patterns identified in the 74-year NCEP Reanalysis record.
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Fig. 10. Six of the 13 single-member classes of 500 hPa height patterns identified in the 74-year NCEP Reanalysis record.
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begins to pose a problem for many desktop computers as
the dataset size approaches 105. But much larger data
sets can easily be accommodated by retroactively assign-
ing new members to classes previously determined from
a representative subset, based on the most similar class
prototype.

It was shown that the algorithm could be meaningfully
applied to four very different data sets, including two non-
trivial geoscientific datasets, using very different similarity
metrics. It was also demonstrated that a simple reconsoli-
dation of classes following the initial classification usually
leads to a more meaningful distribution of classes.

When applied to statistics of microwave multichannel
brightness temperature variability obtained from extended
satellite observations of the Earth, the resulting classifi-
cations bore obvious relationships to known regions of
desert, forest, coastlines, etc. And when applied to a 74-
year record of gridded weather data, the method readily
identified both very common and very rare patterns of
500 hPa height fields.
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