
Improving Water-Energy-Climate Nexus Modeling
at the Metropolitan Scale

  Future plans of electricity capacity expansion often does not 
consider climate and water constraints.

  Recent studies analyzed the e�ect of these constraints over 
large regions such as the US (Miara et al., 2022). 

  However, such modeling e�orts: (1) disregard the e�ects of 
various water users; and (2) consider a large study domain that 
does not directly inform the power utility in charge of planning 
the capacity expansion.

Research question:
How do surface water availability and climate change a�ect 
power expansion at the metropolitan scale?

I. Background and Research Question

II. Study Area

Adil Mounir and Giuseppe Mascaro
School of Sustainable Engineering and the Built Environment, Arizona State University

Fig. 1 Study area.
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  The Phoenix Active Management Area (AMA): hybrid  
hydrogeological-political unit that includes Phoenix Metro Area.

  Water sources: (1) surface water managed by the Salt River 
Project (SRP); (2) surface water  through the Central Arizona 
Project canal; (3) groundwater; (4) reclaimed water.

  Energy provided by SRP and Arizona Public Service utilities, 
operating 9 power plants within the region boundary, along with 
22 large power plants outside this area.

III. Proposed Framework

Fig. 2 Integrated modeling of water, energy, and climate.

  Water Evaluation and Planning (WEAP) and Long-range Energy Alternatives 
Planning (LEAP) are coupled to simulate interactions of water-energy systems. 

  Statistical regression models generate monthly time series of water demand 
and supply and of energy demand that depend on climate.

V. Climate E�ect on Power Plant Water Use
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IV. Climate E�ect on Energy Demand

VI. Climate E�ect on Water Supply
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Fig. 4 Residential energy demand in Arizona.
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Fig. 3 Residential energy demand as a function of monthly mean temperature.

  Simulations of residential energy demand rely on a multiple regression model 
using as predictors cooling/heating degree days and the antecedent demand.

yt = α0+α1 . CDDt+α2 . HDDt+α3 . HDDt2+α4 . yt-1
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Fig. 5 Power plant water intensity.

  Simulations of power plants water intensities depend on 
Tmean (Rutberg et al., 2011).

  Stream�ow simulations for the SRP system are based on a 
multiple regression with precipitation, temperature, 
snowfall, and the antecedent stream�ow as predictors.

Fig. 6 Stream�ow simulations for the Horseshoe reservoir.
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Residential energy demand is 
nonlinearly related to monthly 
mean temperature, Tmean.


