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1 Atmospheric model construction

Similar to Brissaud et al. (2023), atmospheric models are built as the combination of ERA-5
reanalysis models up to 80 km altitude together with MSIS and HWM14 models for upper background
atmospheric conditions and winds up to 120 km altitude. In order to account for unresolved wind
perturbations in the stratosphere, we construct gravity-wave perturbations using Gardner’s model.
Gardner’s model characterizes the horizontal wave number spectra of wind perturbations assuming
that both saturated and unsaturated waves obey the polarization and dispersion relations, and that
the vertical wave number and temporal frequency are separable. The implemented horizontal wave
number spectrum allows calculating the horizontal correlation lengths of the wind perturbations.
Random realizations of range dependent perturbation terms are obtained and superimposed to the

effective sound speed profiles in the propagation plane.

2 TL inversion methodology

Transmission Loss (TL) distributed over the region close to epicenter provides good insight of how the
seismo-acoustic coupling may have happened during the event. We can obtain TLs in the near-field,
assuming a direct linear propagation, by backprojecting infrasound amplitudes over a grid around the

epicenter. For inversion, we have used the following characteristic information of the minequake: origin
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time at 01:11:56.2 UTC with an error +3 m/s, sound velocity ¢, = 330+ 8 m/s, and backazimuth
error ep,, = +5 degrees. The epicenter is located at (67.83965°N, 20.20759°E) and the station KRIS
is located at (67.8549°N, 20.4220°E). To incorporate the possible error in backazimuth and origin
time, we have perturbed our input parameters with a uniform distribution with 10 realizations. For
the errors in backpropagation velocity, we have used normal distribution with 330 £8 m/s having a
standard deviation 0.008 m/s and 15 realizations. The amplitudes and backazimuths are obtained
from PMCC analysis (i.e., pixels in PMCC) of station KRIS between 01:12:15 - 01:12:50 UTC. To
correct for the propagation in solid earth, we have used Ad = \/% where Ad is the distance
correction for the propagation time in solid earth, h is the focal depth, v, is the seismic velocity, v,
is the acoustic velocity. The corrected propagating distances were used to correct amplitudes for
spherical spreading and converted to Transmission Loss (TL) using the formula T'L = 20log19(A/A;)
where A is the distance corrected amplitude, A, is the reference amplitude (1 Pa) (Walker et al.,
2011). Computed TL over multiple distances and probabilities were grouped over the predefined
mesh and sorted according to their probabilities in each grid. TL having the maximum probability is

chosen and plotted over the map.

3 Geometrical spreading correction

Waveforms are simulated in 2d using SPECFEM-DG and therefore require a phase and amplitude
correction due to 3d geometrical spreading effects. We adopt a simple procedure described in Miksat
et al. (2008) that consists of convolving 2d waveforms with a time- and velocity-dependent correction.
This formulation relies on the assumptions that the media are homogeneous, and that the sources,
for both acoustic and seismic waves, are point sources in space.

In a homogeneous acoustic medium, the ratio of 3d-to-2d Green’s functions (equivalent to a 3d-to-2d
ratio of fundamental-mode Rayleigh waves) gives us the correction factor C' in the frequency domain

(see eq. (13) in Miksat et al. (2008)),

C(w) = MB_M7 (1)

2mer
where w =27 f, where f (Hz) is the frequency, ¢ (m/s) is the medium velocity, and r (m) is the

source-receiver distance. We can then compute the 3d corrected waveform as,
s3a(t,r) =F 1 (C(w)F(s24(t,7))), (2)

where s94 (Pa) is the waveform from 2d simulations, F is the Fourier transform, and s34 (Pa) is the

3d-corrected waveform.
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Because this procedure depends on the medium velocity, we perform the scaling of seismic waves and
acoustic waves independently by assuming a seismic wave velocity of ¢s = 3.5 km/s, and an acoustic
wave velocity of ¢, =0.34 km/s. The seismic velocity is taken as an upper bound of the Rayleigh
wave velocity in the frequency range of interest as Rayleigh waves dominate the recordings at KRIS.
Although surface wave velocity is frequency dependent, the impact of small variations in seismic
velocities (£0.5 km/s) in the scaling procedure, described in eq. 1 and 2, impact the phase amplitude
by less than 10%.

4 Impact of topography, source location, and subsurface properties on near-field

infrasound signals

Various frequency-dependent contributions along the seismo-acoustic propagation path can affect
the infrasound waveforms (Brissaud et al., 2021): Topography through wave scattering, subsurface
seismic velocities that affects the coupling efficiency, and focal depth and epicenter. In order to assess
their influence in the case of the Kiruna minequake, we considered various scenarios: (1) low- and
high- frequency simulations without topography to investigate the impact of topography vs frequency,
(2) a low-frequency simulation with a source South of the mine which differs from the dominating
collapse event epicenter, and (3) a high-frequency simulation with a sedimentary layer to showcase
the impact of unconsolidated material on wave transmission. Simulation parameters are shown in
Table 1 and seismic velocity models are described in Supp Section 5.

Owing to the smoothness of the local topography, it has an insignificant impact on both amplitude
and phase of low-frequency signals (Fig. 1) but impacts the later seismic and acoustic arrivals at
higher frequencies (Fig. 2). Epicenter location mostly delays the arrival of both seismic and acoustic
waves by increasing the travel time (Fig. 1) since the collapse source is dominated by its isotropic
component. At high frequencies, focal depth significantly impact the amplitude of both seismic and
acoustic arrivals with shallower sources transmitting more energy to the atmosphere (Fig. 2). A
sedimentary layer drastically increase the amplitude of both seismic and acoustic waves by exciting

trapped waves in the shallow sedimentary layer.

5 Seismic velocity model

The 1D seismic velocity model used for moment-tensor inversion and seismo-acoustic full-waveform
simulations is described in Table 2. The 1D model with a sedimentary layer used in Section 4 is

described in Table 3.
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Figure 1. Simulated acoustic waveforms at KRIS for a low-frequency source at focal depth 0.5 km located

North of the mine with topography (black) and without (light pink), and for a source located South of the

mine (purple). Simulations parameters can be found in Table 1.

Source location
North
North
South
South
North
North
North

Corner frequency (Hz) Focal depth (km)

0.75
0.75
0.75
1.75
1.75
1.75
1.75

0.5
0.5
0.5
0.5
0.5
0.5
0.1

Topography
No

Yes

Yes

Yes

No

Yes

Yes

Sediments  Reference

No light pink Fig. 2

No black Fig. 1

No purple Fig. 1

No dark blue Fig. 1

No dark green Fig. 2
Yes green Fig. 2

No red Fig. 2

Table 1. Simulation parameters used for the sensitivity analysis in Supplementary Sec. 4. North source

location refers to latitude and longitude (67.8397°N, 20.2076°E). South source location refers to latitude

and longitude (67.8251°N, 20.1891°E). The source time function is a Gaussian function. The moment tensor

model corresponds the solution presented in the moment tensor analysis in the main text.
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Figure 2. Simulated acoustic waveforms at KRIS for a high-frequency source at focal depth 0.5 km (dark
blue, green, light purple) or 0.1 km (light red), without topography (light purple), and with a sedimentary
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Thickness (km) Vs (km/s) V, (km/s) p (kg/m®) Qs Qs

0.01 0.55 2.00 1.93 500 1000
1.96 2.70 5.00 2.55 500 1000
3.94 3.70 6.50 2.85 500 1000
13.76 4.05 7.10 3.05 500 1000
1000 4.28 7.68 3.17 500 1000

Table 2. 1D seismic velocity derived from CRUST1.0. V, (km/s) is the shear velocity. V,, (km/s) is the

compressional velocity. p is the density. Qs and Q, are the shear- and compressional-wave quality factors.

Thickness (km) Vs (km/s) V, (km/s) p (kg/m®) Qs Qs

0.25 0.55 2.00 1.93 500 1000
1.96 2.70 5.00 2.55 500 1000
3.94 3.70 6.50 2.85 500 1000
13.76 4.05 7.10 3.05 500 1000
1000 4.28 7.68 3.17 500 1000

Table 3. 1D seismic velocity derived from CRUST1.0 with sedimentary layer. V, (km/s) is the shear velocity.
V, (km/s) is the compressional velocity. p is the density. Qs and Q, are the shear- and compressional-wave

quality factors.

6 Details about the moment-tensor inversion

In this Section, we provide more details about the best moment tensor solution described in Sec. 2 in
the main text. Figure 3 shows all waveform fits for our best moment-tensor solution. A summary
of the distribution of moment tensor solutions and corresponding accuracies to reproduce observed

waveforms is show in Fig. 4.
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