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l. Background Il. Data and Methods
® Coastal cities are facing recurrent Legend Preprocess: Hourly groundwater table, — — Model: Recurrent (RNN) and Long
flooding from relative sea level rise and S X /S . "RV” Gavee tide, and rainfall data from 2010-2018. / oW // // Tide / / Archive / / Short-Term Memory (LSTM) neural
more frequent extreme storm events 1 ’ ﬁt‘ s TideGauge || Appropriate groundwater table - networks were created using the Keras
® During storms, the groundwater table " —y -t Il response lags found with cross Fiter | around vel f°é§‘éﬁiffeﬁ” and Tensorflow Python libraries. The
can quickly rise toward the land surface correlation analysis. ‘*gd : ' ' models were trained on each of the
® High groundwater table level decreases v Two forms of training data: i observed data into new est 1000 bootstrap data sets of the “full”

i ) . Optimize hyperparameters gwi(t-lag)...gwi(t+18) c o .. .
storage capacity and increases run(_)ff, * Full data set — cleaned continuous s R and storm_ c_lata sets to minimize the
stormwater system load, and flooding fime series vy  te(fag)..Aide() RMSE. Training was carried out in a

® _ - - - Circular Block Fg\(/jvitﬁglrr]]sg T;;n rain(t+1)...rain(t+18) - -
]Ici)ata drtl_ven mbodelmg agprotpn?t% I1‘0r * Storm data set — only time periods e It HPC environment with a GPU.
orecasting urban groundwater table ~ storm length pootirap. “ .
J J ' o where groundwater table response Postprocess: After training, a number

Two neural networks were used to model |f R3 to storm events was identified 3 [ﬁr;fgﬂi’,ﬁ}: [C of test sets were presented to each
groundwater table in Norfolk, VA, using Data sets were bootstrapped for model = storms, forecast f | forecast ) model. A t-test was used to evaluate
historical and forecast data. Neural Virginia " N | evaluations: ) <g'g.,egate —r ) the significance of the differences in
network perfor_me_mce with two tralmng e A e Circular Block Bootstrapping Qemercs s paies S e modeedeions Y| THeE mean I_?I\/ISE between model types
data SEtS IS StatIStlcaI Iy evaluatEd Wlth ; and other contributors ® 1000 replicates Of eaCh data Set o <3I0t bootstrap metrics ) and tralnlng data Setsl
bootstrapping and t-tests. Figure 1. Gauge locations in Norfolk, Virginia. Figure 2. Study workflow.

I1l. Results IV. Conclusions
I PWW R ] ® This study fills a gap by creating hourly groundwater

05 |||-|-|""| |
15 4 .
B Model- BNN, Trn: full, Tst: full A B Model: BNM, Trn: full, Tst: fost E
0.4 -+ Model: LSTM, Trn: full, Tst: full Model: LSTM, Trin: full, Tst: fcst

Fuud

- 10

table predictions using both observed and forecast data

=
|

nfall {mm}

1.0

0.3 4 - 15

Tide Level (m)

- I I N I I \ I I \ I in a “real-time” scenario

01 - | . . . . . . ® LSTM networks have a slight but significant

0o 1 ] I | I I aauyl l — j L] I I L I I I | I ) B : performance advantage over the vanilla RNN

04 { mmm LSTM, storm, stonm i I A F ® Models trained with storm data have a significantly
Y e e lower RMSE than models trained with the full data set,
) especially when tested on forecast data

;| : ® Performance difference may relate to the number of
dry/wet days In the full and storm data sets

_JMW%&Q- Future work: Groundwater table forecasts could be

01 - Incorporated into a 2D hydrodynamic model for increased

NEARUENED I l \ I LA e ppp i o T~ ’ flood prediction accuracy.
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Figure 5. Groundwater table forecasts at GW1 from Author Affl | iations

Figure 3. Mean RMSE values for model type/training data set at each  Figure 4. Mean RMSE values for model type/training data set at each LSTM models trained with full and storm training
well/forecast period. All comparisons significant with p < 0.001. we.II/fore.cas-t.period .when tested on forecast input data. All sets. The t+1 (B), t+9 (C), and t+18 (D) forecasts are 1 Dept. of Engineering Systems and Environment
comparisons significant with p < 0.001 (except GW3 t+9 and GW6 t+1) shown with the observed level. 2 Dept. of Computer Science *bdb3m@virginia.edu



