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Abstract 1 

Astronomical variations in tidal magnitude can strongly modulate the severity of coastal 2 

flooding on the daily, monthly, and interannual timescales. Here, we present a new quasi-3 

nonstationary joint probability method (qn-SSJPM) that estimates interannual fluctuations in 4 

flood hazard caused by the 18.6 and quasi 4.4-year modulations of tidal properties. We 5 

demonstrate that the qn-SSJPM provides more precise and stable storm tide probability estimates 6 

compared with the standard practice of fitting an extreme value distribution to measured storm 7 

tides, which is often biased by the largest few events within the observational period. Applying 8 

the qn-SSJPM in the Gulf of Maine, we find significant tidal forcing of flood hazard by the 18.6-9 

year nodal cycle, whereas 4.4-year modulations and a secular trend in tides are small compared 10 

to interannual variation and long-term trends in sea-level. The nodal cycle forces decadal 11 

oscillations in the 1% annual exceedance probability storm tide at an average rate of ±13.5 mm/y 12 

in Eastport, ME; ±4.0 mm/y in Portland, ME; and ±5.9 mm/y in Boston, MA. Currently, nodal 13 

forcing is counteracting the sea-level rise-induced increase in flood hazard; however, in 2025, 14 

the nodal cycle will reach a minimum and then begin to accelerate flood hazard increase as it 15 

moves toward its maximum phase over the subsequent decade. Along the world’s meso-to-16 

macrotidal coastlines, it is therefore critical to consider both sea-level rise and tidal non-17 

stationarity in planning for the transition to chronic flooding that will be driven by SLR in many 18 

regions over the next century.  19 

Plain Language Summary 20 

Coastal management practices around flood risk often rely on estimates of the percent 21 

chance of a particular flood height occurring within a year. For example, U.S. flood insurance 22 

requires designating areas with a 1% annual flood probability (the “100-year flood zone”). When 23 

storms hit regions with large tides, the height and timing of high tide often determine flood 24 

severity. Thus, the relationship between flood height and annual probability can be altered by 25 

natural, daily-to-decadal cyclical variation in tide heights. Here, we present a new method for 26 

calculating annually-varying flood height–probability relationships based on known tidal cycles. 27 

Applying the new method in the Gulf of Maine, we find that an 18.6-year-long tidal cycle (the 28 

nodal cycle) forces decadal variation in the 1% annual probability flood at a faster rate than the 29 

historical average rate of sea-level rise over the past century. Currently, nodal cycle forcing is 30 

counteracting the sea-level rise-induced increase in flood hazard; however, in 2025, the nodal 31 

cycle will reach a minimum in the Gulf and then begin to accelerate flood hazard increase as it 32 

moves toward its maximum over the subsequent decade. It is therefore critical to consider sea-33 

level rise and tidal variation in long-term flood hazard planning.  34 

 35 

1 Introduction 36 

Extreme sea levels (ESLs) pose a growing hazard to coastal communities (e.g. Hallegatte 37 

et al., 2013; Neumann et al., 2015). Coastal management practices around flood risk often 38 

require estimates of ESL annual exceedance probability (AEP), or the percent chance of an ESL 39 

occurring in a given year. In the United States, for example, federal flood insurance and building 40 

codes depend on estimates of the current 1% AEP flood zone (Galloway et al., 2006; Hunter, 41 

2010; Buchanan et al., 2017).  ESL hazard, however, is not stationary. The relationship between 42 

flood height and AEP is approximately log-linear, so even small interannual variations in storm 43 
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surge, tides, waves, or mean sea-level (trends on the order of millimeters per year) can 44 

significantly alter ESL frequencies (e.g. Oppenheimer et al., 2019). Robust statistical methods 45 

for considering sea-level non-stationarity (Hunter, 2010; Buchanan et al., 2017; Wahl et al., 46 

2017) have been used to incorporate uncertain sea-level rise (SLR) projections into global (e.g. 47 

Lin et al., 2016; Garner et al., 2017; Oppenheimer et al., 2019) and local (e.g. NYC, 2013; 48 

Douglas et al., 2016; Griggs et al., 2017) hazard assessments. In this paper, we investigate the 49 

impact of quasi-deterministic variation in astronomical tides on low-probability, high-impact 50 

ESLs. 51 

Tidal magnitude modulates the severity of flooding in meso-to-macrotidal regions, and 52 

interannual variation in tides causing periods of enhanced flood risk is a well-known 53 

phenomenon (e.g. Eliot, 2010; Menéndez & Woodworth, 2010; Ray & Foster, 2016; Talke et al., 54 

2018; Peng et al., 2019; Haigh et al., 2020; Talke & Jay, 2020). In particular, the 18.6-year lunar 55 

nodal cycle and the 8.85-year cycle of lunar perigee influence high water globally on weekly, 56 

monthly, and annual timescales (e.g., Haigh et al., 2011; Peng et al., 2019). Ray and Foster 57 

(2016) showed that the perigean cycle modulates predicted future nuisance tidal flooding at a 58 

quasi 4.4-year period. For extreme flooding, Menéndez and Woodworth (2010) modeled global 59 

nodal and perigean astronomical modulations using a non-stationary location parameter in ESL 60 

probability distributions fit to satellite altimetry records 1970 to 2008. Over a longer, nearly 200-61 

year record from Boston, Massachusetts, Talke et al. (2018) also showed that the nodal cycle 62 

produces 10–20 cm of variation in ESLs with AEPs between 1% and 50%.  63 

On decadal to centennial timescales, non-astronomical factors also force local-to-global-64 

scale variations and trends in tides (Haigh et al., 2020; Talke & Jay, 2020). Changes in water 65 

depth, shoreline position, frictional resistance, and river flow have led to dramatic local-scale 66 

tidal amplification and reduction over the past two centuries, particularly in estuaries and tidal 67 

rivers (Winterwerp et al., 2013; Haigh et al., 2020; Talke & Jay, 2020). Spatially coherent, 68 

regional scale variation in tides has been driven by changes in ocean depth, shoreline position, 69 

sea ice extent, ocean stratification, non-linear interactions, and radiational forcing (e.g. 70 

Woodworth et al., 2010; Muller et al., 2011; Muller, 2012; Haigh et al., 2020).  71 

In summary, interannual variations and long-term trends in tides have significant 72 

implications for flood hazard. Astronomical nodal and perigean cycles can significantly increase 73 

flood hazard compared to the long-term average during their positive phases (e.g. Talke et al., 74 

2018), and secular changes in tides driven by non-astronomical factors will either enhance or 75 

counteract the increase in flood hazard driven by SLR (e.g. Haigh et al., 2020). Given that the 76 

probability of flooding changes year-to-year, considering sea-level rise and tidal non-stationarity 77 

together is important to both short and long-term municipal planning and emergency 78 

management at the coast. However, as mentioned by Talke et al. (2018), no method for assessing 79 

tidally driven interannual variation in ESL hazard has yet been developed. In this paper, we 80 

describe a new method for estimating tidally driven non-stationarity in ESLs, using an adaptation 81 

of the measurement-based joint probability methods developed by Pugh and Vassie (1978, 82 

1980), Tawn and Vassie (1989), Tawn (1992), and Batstone et al. (2013). We apply and validate 83 

our methodology using century-long tide gauge records from the Gulf of Maine coast in the 84 

northwest Atlantic Ocean (Fig. 1), a region with significant tidal trends and nodal variability 85 

(Ray, 2006; Ray & Talke, 2019).  Under the assumption of stationary storm characteristics, this 86 

new quasi-nonstationary joint probability method provides separate statistical treatment of tides 87 

and surge and accounts for interannual variation in tides.  88 

 89 
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 90 

Figure 1. Gulf of Maine site map, including gauge locations mentioned in the text.  91 

 92 

2 Background 93 

2.1 Site description 94 

We apply this new quasi-nonstationary joint probability method to estimating ESL 95 

probabilities at the three longest running and most complete National Oceanic and Atmospheric 96 

Administration (NOAA) tide gauge records within the Gulf of Maine at Boston, Portland, and 97 

Eastport (Fig. 1). Table 1 shows their locations, measurement timespans, and relevant tidal 98 

datums. An additional record at St. John, New Brunswick (1893-present) is not included because 99 

of significant data gaps and unusual interannual variation in the amplitude of the M2 tidal 100 

constituent after 1980 (Ray & Talke, 2019). In addition to its multiple century-long tide gauge 101 

records, the Gulf of Maine’s large tide range and known local and regional tidal variation make it 102 

an ideal location for applying our statistical method. The region also hosts major cities and 103 

sensitive infrastructure that require careful flood risk assessment; for example, Hallegate et al. 104 

(2013) ranked Boston, Massachusetts as being at risk to suffer the eighth and seventeenth highest 105 

flood losses in the world in 2005 and 2050, respectively.  106 

The Gulf of Maine coast is vulnerable to flooding from both Tropical cyclones (TCs) and 107 

extratropical cyclones (ETCs), but ETCs have historically been the dominant flooding 108 

mechanism, as they are more frequent and more likely to intersect with high tide (e.g. Kirshen et 109 

al., 2008; Talke et al., 2018). The total still water level (i.e. not including waves) recorded during 110 

a storm, relative to some vertical datum, is called storm tide and represents the net impact of 111 

meteorological and tidal forcing. Here, we use annual mean sea level (MSL) as the vertical 112 

datum, such that storm tide time series do not include SLR. Storm surge is the meteorologically 113 

forced deviation from the predicted tide, calculated by subtracting the predicted tide from time 114 

series of measured storm tide values. Extreme storm surges reach ~1.3 m in the Gulf (e.g. Talke 115 

et al., 2018), and tides are significantly larger. The great diurnal tide range increases northward 116 

from 3.1 meters in Boston to ~16 meters in the Bay of Fundy’s northern embayments, making 117 

tides a primary control on most of the region’s extreme coastal flooding events. In Boston, for 118 
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example, Talke et al. (2018) found that 92 of the top 100 storm events occurring between 1825 119 

and 2018 coincided with a predicted high tide that exceeded modern mean higher high water. 120 

 Tides in the Gulf of Maine and Bay of Fundy are unusual in several respects. In addition 121 

to the well-known large tidal range, there is a natural resonance frequency in the Gulf near the 122 

frequency of the N2 tide (Garrett, 1972; Godin, 1993). Observed N2 amplitudes are larger than S2 123 

amplitudes, opposite of the tidal potential; thus, the classic fortnightly spring-neap modulation is 124 

relatively weak and is smaller than the monthly modulation induced by M2/N2 beating. The 125 

strongest astronomical tides during any month therefore occur near times of lunar perigee. 126 

Similar to many locations, there are additional modulations at semiannual, 4.4-year, and 18.6-127 

year periods (Haigh et al., 2011; Ray & Merrifield, 2019). The 4.4-year and 18.6-year 128 

modulations of the highest predicted tide are moderate at Boston and Portland (roughly 3–4 cm 129 

in amplitude) but get much larger (up to 15 cm in amplitude) inside the Bay of Fundy (Ray & 130 

Merrifield, 2019). The 18.6-year modulation is caused by the lunar nodal cycle, or a precession 131 

of the moon’s orbital plane around the ecliptic 360° every 18.6 years. The 4.4-year modulation is 132 

caused by perigean spring tides coinciding with the winter or summer solstice (when the diurnal 133 

tidal contribution is largest) twice per 8.85 years (see Ray & Foster, 2016 for an explanation).     134 

 Perhaps owing to the basin resonance being near N2, Gulf of Maine tides are sensitive to 135 

small changes in basin geometry, depth, and friction. Indeed, they display some of the largest 136 

secular tidal trends observed anywhere in the world for a regional body of water. Since the early-137 

20th century, the amplitude of the M2 tidal constituent has increased at an average rate of 0.77 ± 138 

0.08 mm/y at the Boston tide gauge, 0.59 ± 0.04 mm/y at Portland, and 0.25 ± 0.04 mm/y at 139 

Eastport (Ray & Talke, 2019). In comparison, rates of SLR measured at these tide gauges over 140 

the same time period are 2.83 ± 0.15 mm/y in Boston, 1.88 ± 0.14 mm/y in Portland, and 2.14 ± 141 

0.17 mm/y in Eastport. New tide estimates derived from 19th-century water level measurements 142 

show that the M2 trend began sometime in the late-19th or early-20th century, coincident with the 143 

transition to modern rates of SLR (Ray & Talke, 2019). Numerical models show that SLR has 144 

only caused part of the observed increase in M2 amplitude in the Gulf of Maine (Muller et al., 145 

2011; Greenberg et al., 2012; Schindelegger et al., 2018), suggesting that ocean stratification 146 

driven by sea-surface temperature warming has also played a role in the increase (Muller, 2012).   147 

2.2 Review of ESL statistical methods 148 

ESL AEPs can be estimated from data or models. In both cases, an extreme value 149 

probability distribution is fit to a set of measured or simulated ESLs assumed to be representative 150 

of the possible flood scenarios in a region. Hydrodynamic simulations have the advantage of 151 

providing spatially continuous flood elevations and flow velocities, but they are computationally 152 

intensive, take time to develop, and as with all models, rely on uncertain parameterizations, 153 

bathymetry, and assumptions (e.g. Vousdoukas et al., 2016; Lin et al., 2010). At gauged 154 

locations with multi-decadal records, estimating ESL AEPs from data is a simpler alternative that 155 

will be the focus of this paper.  156 

 The two most commonly used extreme value distributions are the Generalized Extreme 157 

Value distribution (GEV) and the Generalized Pareto Distribution (GPD). The GEV is fit to 158 

block maxima data, or the n-largest measurements per some time interval (e.g. the largest event 159 

each year), and the GPD is fit to peaks-over-threshold data, or all measurements over some 160 

threshold value. The GPD approach is more robust because it uses more available extreme 161 

observations (e.g. NERC, 1975; Coles et al., 2001; Tebaldi et al., 2012; Buchanan et al., 2017). 162 

In Boston, for example, only 46 of the top 100 storm tides recorded at the NOAA gauge occurred 163 
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in distinct years, and a GEV using annual block maxima would therefore omit more than half of 164 

the top-100 events. Compared with the GEV, however, the GPD requires higher data quality and 165 

is more difficult to fit automatically because of its sensitivity to the choice of threshold (Coles, 166 

2001; Arns et al., 2013). ESL statistics published by NOAA, for example, are derived from GEV 167 

fits because choosing a GPD threshold can be subjective, and NOAA requires a method that can 168 

be quickly applied and periodically updated at over 100 gauges (Zervas, 2013). Nonetheless, a 169 

comparison of GEV and GPD fits to Boston extreme storm tides yielded similar AEP estimates 170 

(Talke et al., 2018). 171 

 In meso-to-macrotidal regions, where tides are a primary control on flooding, a joint 172 

probability approach that convolves separate tide and surge distributions can capture more 173 

extreme storm surges within a temporally limited tide gauge record (e.g. Pugh & Vassie, 1979, 174 

1980). For example, in 63 of the 100 years in Boston’s record, the largest storm surge of the year 175 

did not coincide with any of the year’s top-3 storm tides; thus, a GPD fit to measured Boston 176 

storm tides would exclude two-thirds of the largest storm surges (assuming a GPD threshold that 177 

was exceeded, on average, three or fewer times per year). The first two published ESL joint 178 

probability methods were the Joint Probability Method (JPM; Pugh & Vassie, 1978, 1980) and 179 

the Revised Joint Probability Method (RJPM; Tawn & Vassie, 1989; Tawn, 1992). The JPM 180 

separates measured water levels into the predicted tide and a non-tidal residual (measured minus 181 

predicted water level at a given time), fits an empirical probability distribution to each 182 

component, and obtains the joint ESL distribution by a convolution of the two component 183 

distributions. The RJPM improves upon the JPM by 1) fitting a GEV distribution to extreme 184 

non-tidal residual values in order to model events exceeding the observed maximum, and 2) 185 

applying an extremal index that accounts for dependence of non-tidal residuals occurring close 186 

together in time (the extremal index will be further explained in section 3.2).  187 

 The primary shortcoming of the JPM and RJPM is the assumed independence between 188 

the predicted tide and the non-tidal residual. Storm surge and tides interact; storm surge increases 189 

water depth, and tidal wave speed increases in deeper water (Horsburgh and Wilson, 2007). The 190 

non-tidal residual time series of measured minus predicted water level therefore often includes 191 

an “illusory” surge during storm events, which is an artifact of the difference in the predicted tide 192 

and the phase-shifted tide. Furthermore, the amplitude, timing, and timescale of the surge wave 193 

impacts its frictional interaction with tides (Familkhalili et al., 2020).  194 

The Skew Surge Joint Probability Method (SSJPM; Batstone et al., 2013) improves upon 195 

the JPM method by eliminating the bias introduced by the uncertain timing of the tidal prediction 196 

during storm conditions. Skew surge is defined as the difference between the maximum 197 

measured water level and the predicted high water within each tidal cycle. Williams et al. (2016) 198 

found statistical independence between predicted high water and skew surge at 77 Atlantic tide 199 

gauges in the United States and Europe. They concluded that this skew surge independence 200 

enables a simplified joint probability approach for calculating ESL AEPs that does not require 201 

the inclusion of an empirical relationship between tide and the non-tidal residual to account for 202 

tide-surge interaction. The argument is primarily statistical and not dynamical, as the absence of 203 

correlation does not indicate the absence of effect; rather, in observational records, natural 204 

variability in storm systems dominates over tidally driven variation in surge. We address this 205 

issue by using primarily coastal, and not estuary, locations, such that frictional interaction effects 206 

are likely less prominent.  207 

 These joint probability methods have lowered bias in ESL AEP estimates (compared to 208 

GPD or GEV fits to data) in regions where tides are large relative to meteorological forcing, 209 
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particularly for short data series (Dixon & Tawn, 1999; Haigh et al., 2010); however, none has 210 

accounted for year-to-year fluctuations or secular trends in tidal properties. In the following 211 

sections, we describe a new, quasi-nonstationary (qn) modification of the SSJPM called the qn-212 

SSJPM, which calculates a separate set of ESL AEPs for winter and summer storm seasons using 213 

that season’s known high tides. We fit separate summer and winter distributions because the 214 

region’s large storm events mostly occur in the winter season (e.g. Talke et al., 2018), while 215 

summertime tides are larger on average (Ray & Foster, 2016).  216 

3 Methods 217 

3.1 Tide gauge data processing 218 

At the Eastport, Portland, and Boston NOAA gauges, we use hourly water level data 219 

from NOAA, downloaded from the University of Hawaii Sea Level Center database for pre-2016 220 

data (Caldwell et al., 2010) and from NOAA’s website for post-2016 data 221 

(https://tidesandcurrents.noaa.gov). We remove the annual MSL trend by subtracting a one-year 222 

moving average of all hourly water level measurements (following Arns et al., 2013).  223 

 We fit a six-minute cubic spline function to the hourly data (six-minute data are only 224 

available from NOAA beginning in 1996) to reduce the peak truncation caused by using hourly 225 

records. For example, hourly-based high waters from Boston in 2018 were an average of 4.1 cm 226 

lower than 6-minute resolution records, and the six-minute spline fit reduces this bias to 0.7 cm. 227 

Since the precision of individual, pre-digital measurements varies from 0.015 m(due to rounding) 228 

to 0.05–0.1 m or more during periods with timing or gauge problems (e.g., Talke et al., 2018, 229 

2020), this small bias is less than other sources of error. An alternate, bias-free approach (used 230 

by Talke et al. 2018) is to use the monthly maxima water levels tabulated by NOAA; however, 231 

this approach precludes the use of two or more maxima that occur within a month. For all these 232 

reasons, all subsequent calculations use this MSL-adjusted six-minute spline fit to the hourly 233 

data.  234 

 We estimate the tidal contribution to each water level measurement using the MATLAB-235 

based harmonic analysis program r_t_tide (Pawlowicz et al., 2002; Leffler and Jay, 2009). We 236 

calculate tidal constituents independently for each year from a 369-day analysis that includes 67 237 

constituents. The 369-day analysis enables estimation of the semiannual and annual constituents, 238 

as well as the seasonal sidelines to M2 (often called MA2 and MB2, but labeled H1 and H2 in 239 

r_t_tide). Since we are interested in the effect of the nodal cycle, no nodal corrections were 240 

applied. r_t_tide also applies nodal corrections based on the astronomic potential, rather than the 241 

empirically measured and slightly smaller correction observed in practice (e.g. Ku et al., 1985; 242 

Ray & Foster 2016; Ray & Talke, 2019).     243 

 We calculate the skew surge parameter by subtracting maximum predicted water level 244 

from maximum observed water level within each tidal cycle. Following Williams et al. (2016), 245 

we test for statistical independence between predicted high water and the top 1% of skew surge 246 

at all sites using the rank-based Kendall’s Tau correlation test (Kendall, 1938), where the criteria 247 

for significant correlation are |tau| > 0.1 and p < 0.05. We do not find significant correlation 248 

between predicted high water and skew surge at any of the three sites (Tab. 2).  249 

 Prior to the joint probability analysis, we divide tides and skew surges into the winter 250 

storm season (defined as 31 October to 30 April) and the more quiescent summer season (1 May 251 

to 30 October) Wahl and Chambers, 2015; Thompson et al., 2013). Including 31 October in the 252 

winter storm season avoids exclusion of a 1991 storm (Talke et al., 2018). In all subsequent 253 

http://uhslc.soest.hawaii.edu/data/
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analyses, we only include seasons where the set of measured water levels is at least 75% 254 

complete (Menéndez and Woodworth, 2010; Wahl and Chambers, 2015).   255 

3.2 Quasi-nonstationary joint probability analysis (qn-SSJPM) 256 

 Each winter or summer ESL distribution is calculated by convolving probability 257 

distributions of that season’s predicted high waters and all winter or summer skew surges 258 

recorded over the length of the tide gauge record. We model winter and summer extreme skew 259 

surge probabilities with a GPD, following Batstone et al., (2013). For skew surges above a 260 

threshold µ, the GPD cumulative distribution function (CDF) 𝐺𝑠𝑠(𝑥) takes the form  261 

𝐺𝑠𝑠(𝑥)  =  1 −  (1 +  𝜉
𝑥 − 𝜇

𝜎
)

−1
𝜉⁄
                                            (1) 262 

with shape parameter 𝜉 ≠ 0 and scale parameter 𝜎 > 0. To account for uncertainty in the skew 263 

surge GPD, we sample 1,000 pairs of 𝜉 and 𝜎 from the covariance matrix of their maximum 264 

likelihood estimates with Latin hypercube sampling (Buchanan et al., 2016, 2017). We choose 265 

the GPD threshold that defines extreme skew surges by minimizing the root mean square error of 266 

the GPD versus the empirical distribution 𝐹̃𝑠𝑠(𝑥) (commonly called the plotting position; Arns et 267 

al., 2013). We calculate empirical AEPs using the Weibull formula  268 

𝐹̃𝑠𝑠(𝑥𝑖)  =  (
𝑛

𝑛𝑢𝑚_𝑦𝑟𝑠
) (

𝑖

𝑛+1
)                           (2) 269 

where i is the rank of event x, n is the total number of events, and num_yrs is the number of years 270 

in the record. We find that setting the threshold as the 99.7th percentile of skew surges for both 271 

the winter and summer seasons minimizes error across all sites, and past studies have used a 272 

similarly high threshold (Menéndez and Woodworth, 2010; Arns et al., 2013). This 99.7th 273 

percentile threshold samples an average of 1.1 events per season. Following Batstone et al. 274 

(2013), we assume there are sufficient observations to use the empirical distribution 𝐹̃𝑠𝑠(𝑥) 275 

(equation 2) for skew surges below the threshold, such that the CDF of all skew surges 𝐹𝑠𝑠(𝑥) is  276 

𝐹𝑠𝑠(𝑥) = { 
𝐹̃𝑠𝑠(𝑥),                                                  𝑥 <  𝜇
(1 − 0.997)  ∗  𝐺𝑠𝑠(𝑥)  +  0.997, 𝑥 ≥  𝜇

                                               (3)  277 

We then calculate the joint CDF of storm tides 𝐹𝑆𝑇(𝑥) for each season following the 278 

SSJPM (Batstone et al., 2013), which assumes that there is an equal probability of a given skew 279 

surge occurring at any high tide in a season: 280 

𝐹𝑆𝑇(𝑥)  =  [∏ 𝐹𝑠𝑠(𝑥 −  𝑃𝑡)𝑁
𝑡=1 ]1 𝑁⁄                 (4) 281 

where 𝑃𝑡 is the predicted high water in tidal cycle 𝑡, and 𝑁 is the total number of high waters in 282 

the season. To account for statistical uncertainty in the skew surge GPD parameters, tides are 283 

convolved with all 1,000 skew surge GPDs (𝐹𝑠𝑠). The 50th quantile of the resulting 1,000 storm 284 

tide distributions (𝐹𝑆𝑇) represents the central estimate, and the 5th and 95th quantiles provide a 285 

90% uncertainty range. We convert storm tide cumulative probabilities to AEPs by 286 

𝐴𝐸𝑃(𝑥)  =  [𝑁 ∗  𝜃(𝑥)]  ∗  [1 −  𝐹𝑆𝑇(𝑥)]                 (5) 287 

where 𝜃(𝑥) is the extremal index, which effectively reduces the number of high waters per 288 

season to the number of independent high waters per season to account for events that span 289 

multiple high tides (Leadbetter, 1983; Tawn, 1992). The extremal index is the inverse of mean 290 
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cluster size (the mean number of storm tides exceeding a certain height that are associated with a 291 

single event) and calculated as a function of storm tide, following Ferro and Segers (2003): 292 

1

𝜃(𝑥) 
 =  

2[∑ (𝐼(𝑥)𝑖 − 1)
𝐸(𝑥)−1
𝑖=1 ]

2

(𝐸(𝑥) − 1) ∗ ∑ [(𝐼(𝑥)𝑖 − 1) ∗ (𝐼(𝑥)𝑖 − 2)]
𝐸(𝑥)−1
𝑖

              (6) 293 

where E(x) is the number of measured storm tides exceeding x, and I(x) is interexceedance time. 294 

We find that the extremal index reduces storm tide magnitudes in the 1 to 30-year return period 295 

(~3 to 100% AEP) range; thus, it is likely that these water levels are sometimes exceeded 296 

multiple times during a single storm event, while the most extreme water levels with AEPs less 297 

than 3% are generally independent.    298 

 At each site, the final products of the qn-SSJPM calculations include: 299 

1. An ESL AEP curve for each summer and winter season 300 

2. Annual ESL AEP curves, calculated by adding the expected number of summer and 301 

winter exceedances in a given year for each storm tide height (where, for example, 10% 302 

AEP = 0.1 expected exceedances per year) 303 

3. Two time-integrated ESL AEP curves (one winter, one summer), calculated using winter 304 

or summer tides over the full length of the historical record 305 

4. A combined winter-summer, time-integrated ESL AEP curve    306 

4 Results and discussion 307 

4.1 qn-SSJPM results and validation 308 

 309 

Figure 2. Seasonality of Gulf of Maine flood hazard. Historical time-integrated qn-SSJPM ESL 310 

AEP curves for the winter season (thin solid lines), summer season (dashed lines), and full year 311 

(thick solid lines) at Eastport (black), Portland (green), and Boston (blue).  312 

 313 

We focus our discussion on winter storm season results because extreme flooding is 314 

primarily a winter hazard in the Gulf of Maine. A comparison of the historical time-integrated 315 

qn-SSJPM ESL AEP curves for winter, summer, and the full year (Fig. 2) shows that storm tides 316 

from the full-year curves are, at most, 1.5 cm higher than winter curves at AEPs below 10%. 317 

Thus, when viewing the full-year curve, it is important to do so with the caveat that summer 318 

floods are only a minor contributor to total flood hazard.   319 
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Figure 3 shows the historical annual and time-integrated winter-season ESL AEP curves 320 

for Eastport, Portland, and Boston. The spread among annual curves represents deterministic 321 

tidal variability and is thus greatest in Eastport where tide range and nodal cycle amplitude are 322 

the largest; for example, depending on the year, 1% AEP winter storm tides range 4.20–4.50 m 323 

in Eastport, 2.56–2.74 m in Portland, and 2.83–2.99 m in Boston (all storm tides are relative to 324 

annual MSL). The 90% uncertainty region (blue shading in Fig. 3) encompasses both 325 

deterministic tidal variability and statistical uncertainty in the skew surge GPD parameters.  326 

We also compare qn-SSJPM ESL AEP distributions to a GPD fit to the top 0.3% of storm 327 

tides in each record (Fig. 3). This is a common approach for deriving ESL AEPs (see section 328 

2.2), hereafter referred to as GPDST, and we fit GPDST following the same methods described in 329 

section 4 for fitting the skew surge GPD. In Boston, the GPDST method estimates significantly 330 

higher winter storm tides at AEPs <10% compared to the qn-SSJPM. Given the disagreement, 331 

we test the two statistical approaches using a Monte Carlo validation. We create a 10,000-year 332 

synthetic time series of winter-season high waters by splicing together the 1921-2018 Boston 333 

winter-season predicted high waters 102 times (102 times the 98-year record ≈ 10,000 years) and 334 

combining each predicted high water with a skew surge randomly sampled from the CDF of 335 

Boston winter skew surge probabilities.  336 

 337 

 338 

 

 

 

 

 

 

 

Figure 3. Comparison of winter-

season ESL AEP curves for the qn-

SSJPM and a GPD fit to measured 

storm tides. Thin blue curves show qn-

SSJPM-derived curves for each winter 

storm season in the tide gauge record, 

and bold blue curves are the time-

integrated qn-SSJPM curves based on 

the entire tide gauge record. Black 

curves are a GPD fit to the top 0.3% of 

storm tides in each tide gauge record 

(GPDST), and + signs are empirical 

AEPs (see equation 2). Lines represent 

central estimates (50th quantile), and 

filled regions show the 90% 

uncertainty range (5th–95th quantiles) 

for each method.

We treat empirical ESL AEPs calculated from the 10,000-year record (using equation 2) 339 

as the “truth.” We then run 1,000 trials of randomly selecting 100 of the 10,000 years and 340 

calculating ESL AEP distributions with a 67% uncertainty range for those 100 years using both 341 

the qn-SSJPM and GPDST methods. We use the 99.7th percentile storm tide and skew surge as 342 
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GPD thresholds, and for the qn-SSJPM calculation, we only generate a single time-integrated 343 

ESL AEP distribution for the 100 years (i.e. we do not calculate annual distributions). For each 344 

trial, we then determine 1) whether or not the truth (based on empirical AEPs) falls within the 345 

central 67% ranges of the 10%, 1%, and 0.2% storm tide estimates for the two methods, and 2) 346 

the bias of the estimates, calculated as the difference between the truth and the central qn-SSJPM 347 

and GPDST estimates of the 10%, 1%, and 0.2% AEP storm tides.  348 

We find that the synthetically-generated truth falls within the central 67% range of 349 

estimates 55–65% of the time for the qn-SSJPM and 59–67% of the time for GPDST (Fig. 4a). 350 

Both methods’ overlap with the truth generally increases for lower-AEP storm tides because 351 

uncertainty range also increases with decreasing AEP. The lower coverage of qn-SSJPM error 352 

ranges indicates that the method’s estimate errors are more overconfident than GPDST estimate 353 

errors; however, both the qn-SSJPM and GPDST have reasonable coverage.   354 

Comparing biases in qn-SSJPM and GPDST estimates of the 10%, 1%, and 0.2% AEP 355 

storm tides reveals that qn-SSJPM estimates are more precise and stable (i.e. consistently closer 356 

to the truth). Box plots in Figure 4b show the each method’s biases for all 1,000 trials. The 357 

interquartile ranges increasing (i.e. the boxes getting larger) at lower AEPs reflects the expected 358 

trend of AEP estimate instability (i.e. variability) increasing at lower AEPs for a given record 359 

length (e.g. Haigh et al., 2010). Mean bias is close to zero for both methods at all three AEPs; 360 

however, for the 1% and 0.2% AEP storm tides, both the interquartile range and total range in 361 

biases is significantly narrower for the qn-SSJPM estimates compared to GPDST estimates. This 362 

result indicates that for a 100-year observational record, both methods will, on average, provide 363 

accurate ESL estimates for storm tides with AEPs between 0.2 and 10%; however, GPDST 364 

estimates of storm tides with return periods nearing the record length (e.g. the 100-year return 365 

period or 1% AEP storm tide for a 100-year-long record), are more susceptible to being biased 366 

by the largest few events within the observational period. This finding is consistent with past 367 

studies that have shown GPD and GEV fits to observed storm tides (often called “direct 368 

methods” of estimation) are more unstable to historical outlier events than joint probability 369 

distributions that incorporate large historical storm surges that did not necessarily coinciding 370 

with high tides (e.g. Tawn and Vassie, 1989; Tawn, 1992; Haigh et al., 2010).  371 

This instability to historical outliers partially explains the disagreement between the qn-372 

SSJPM and GPDST curves for Boston (Fig. 3). Boston’s highest three recorded flood events all 373 

occurred in years with unusually large tides (Talke et al., 2018). For example, the Blizzard of 374 

1978 (the storm tide of record), happened to coincide with the year that, on average, had the 375 

largest-magnitude high waters over the past century (represented by the right-most blue curve in 376 

Fig. 3). Thus, the GPDST method in part overestimates Boston flood hazard because it does not 377 

account the Blizzard of 1978’s 3.05-meter flood having had a lower probability of occurrence 378 

during any of the other 97 winters of record. 379 

Comparing our Boston qn-SSJPM and GPDST winter ESL AEP curves to the to the Talke et al. 380 

(2018) flood frequency curve also highlights the influence of the most extreme historical events 381 

on the GPDST method (Fig. 5). Talke et al. (2018) reconstructs 200 years of Boston water levels 382 

1825–2018 and fits a GPD to measured winter high waters (red curve in Fig. 5). This extended 383 

record includes three additional storm tides in 1830, 1851, and 1909 that nearly equal or exceed 384 

the 2018 storm tide (the second-highest within the NOAA record after the Blizzard of 1978). 385 

These additional storms lead to a GPDST fit that is more consistent with the qn-SSJPM fit, as 386 

indicated by the similarity of the blue and red curves in Fig. 5. Talke et al. (2018) also uses a 387 

higher GPDST threshold of 2.4 meters, compared to our 99.7th-percentile threshold of 2.31 388 
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meters. Re-calculating the GPDST curve for the 1925-2018 NOAA data with a 2.4-meter 389 

threshold produces a significantly different result compared to the 2.31-meter threshold (gray 390 

dashed line, compared to gray solid line in Fig. 5). This sensitivity to threshold selection 391 

highlights one of the key challenges in relying on a GPD fit to storm tides (e.g. Arns et al., 392 

2013).  393 

 394 

 395 

 

 

 

 

 

 

Figure 4. Validation results. (a) Percent of 

the 1,000 validation trials that contain the 

truth (empirical value) within the central 

67% range of the 10%, 1%, and 0.2% AEP 

storm tide estimates for the qn-SSJPM 

method (blue) and the GPDST method 

(gray). (b) Box plot showing the distribution 

of qn-SSJPM and GPDST biases for the 

1,000 validation trials at the 10%, 1%, and 

0.2% AEP levels. Biases are calculated as 

the difference between the truth (based on 

the empirical distribution calculated from 

the 10,000-year synthetic record) and the 

central qn-SSJPM estimates (blue) or GPDST 

estimates (gray). Central marker is the 

median (with the * symbol showing the 

mean), and bottom and top box edges are the 

25th and 75th quartiles. Values plotted as 

outliers (+ markers) fall outside the central 

99.3% range. 

 396 

 397 

Figure 5. Comparison of Boston ESL AEP estimates. Curves represent the following 398 

distributions: (blue curve) time-integrated qn-SSJPM for 1925-2018; (solid gray curve) GPD fit 399 
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to measured storm tides (GPDST) for 1925-2018, calculated with 2.31-m (99.7th percentile) 400 

threshold; (gray dashed curve) same as solid curve, but calculated with Talke et al. (2018) 2.4-m 401 

threshold; (red curve) 1825-2018 Talke et al., (2018) ESL estimates (calculated using GPDST 402 

method with a 2.4-m threshold); (+ signs) empirical AEPs. Solid curves are central estimates, 403 

and filled regions show 95% uncertainty ranges.  404 

 405 

4.2 Interannual variation in ESL probabilities 406 

Interannual variation in tides forces changes flood hazard on annual-to-decadal 407 

timescales that should be considered in coastal management practices tied to ESL AEP estimates. 408 

We quantify the tidal modulation of flood hazard using the time series of winter storm season 1% 409 

AEP storm tides (hereafter referred to as ST1%) over the past century (Fig. 6). To represent the 410 

three dominant sources of interannual tidal variability in the region (see Ray & Foster, 2016), we 411 

fit a harmonic function to the time series with an 18.6-year period, a 4.4-year period, and a linear 412 

trend, where ST1% values are relative to annual MSL, so the linear trend is the increase in tides 413 

above SLR. The ranges (twice the amplitudes) of the 18.6 and 4.4-year harmonics represent the 414 

magnitudes of the tidal cycles’ forcing of flood hazard. Table 3  compares 18.6 and 4.4-year 415 

modulations of ST1% and of the highest predicted tide (the highest tide in a 6-month interval), 416 

which are computed directly from harmonic constants at the gauges. The 18.6 and 4.4-year 417 

cycles’ forcing of ST1% is perhaps smaller than that of the highest predicted tide because ST1% is 418 

calculated from observations rather than predictions. Observed water level data include 419 

atmospheric effects, which introduce variability that could interfere with tidal modulations. The 420 

exclusion of summer-season tides in the winter ST1% values also likely reduces 4.4-year 421 

periodicity in predicted water levels (e.g. Talke et al., 2018).  422 

The secular increase in tides observed in the M2 tidal constituent (e.g. Ray & Talke, 423 

2019) has driven roughly a 0.6 mm/y increase in ST1% in Eastport and Portland. In Boston, 424 

however, there is a slight negative linear trend in ST1% of -0.08 mm/y. Thus, the increase in tides 425 

has had a minimal decadal-timescale impact on ST1% compared to other forcings; however, in 426 

Eastport and Portland, the total secular increase in ST1% over the length of the tide gauge record 427 

is comparable to nodal variability. There is likely to be a future increase in high water levels with 428 

SLR (Greenburg et al., 2012; Pelling & Green, 2013; Schindelegger et al., 2018) and increasing 429 

tidal range (Greenberg et al., 2012), but there are no detailed projections for Gulf of Maine tides 430 

that consider additional forcing mechanisms, such as changes in stratification and flooding 431 

(Haigh et al., 2020). 432 

 433 
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Figure 6. Interannual variation in 

the 1% AEP winter storm tide. Time 

series of the qn-SSJPM derived 

annual 1% AEP winter storm tide 

values (black line) with a least 

squares best-fit harmonic function 

that represents the region’s 

dominant tidal forcings (gray 

curve), which includes an 18.6-year 

period, a 4.4-year period, and a 

linear trend. Legends show the 

ranges (i.e. double the amplitude) of 

the best-fit sinusoids and the slopes 

of the linear trends. 

 The significance of the 4.4 and 18.6-year tidal modulations of ST1% can best be illustrated 435 

by converting the tidal cycle forcing ranges to rates and comparing them to rates of SLR.  In 436 

Eastport, for example, the average range in 18.6-year forcing of ST1% is 126 mm (Fig. 6). The 437 

18.6-year forcing can be positive or negative, so over any half nodal period in Eastport, the 438 

average rate of nodal forcing of ST1% is ±126 mm per 9.3 years, or ±13.5 mm/y. Applying the 439 

same calculation to Portland and Boston, the average 18.6-year tidal forcing rates are ±4.0 mm/y 440 

and ±5.9 mm/y, respectively. 4.4-year tidal forcing rates are a slower ±3.0 mm/y in Eastport and 441 

Boston and ±4.0 mm/y in Portland. In practice, however, interannual variation in winter MSL 442 

(which has historically been on the order of tens of mm) would drown out this shorter-period 443 

4.4-year tidal modulation.  444 

Figure 7 provides a visualization of the impact of 18.6-year forcing in the context of 445 

SLR. Historically at the three Gulf of Maine sites, on decadal timescales, the natural variability 446 

in ST1% (and therefore flood hazard) driven by the nodal cycle has been larger than non-447 

stationarity driven by the ~100-year average rate of SLR (black triangles versus asterisks in Fig. 448 

7). In the future, even as SLR accelerates to equal or exceed rates of ST1% nodal modulation, the 449 

nodal cycle will continue to force significant decadal-scale variability in the rate of flood hazard 450 

increase. We illustrate this effect through 2100 by adding the ST1% nodal forcing rate to the 451 

projected mean rate of SLR over 9.3-year periods when nodal forcing will be trending positively 452 

(i.e. moving from a minimum toward a maximum). Over 9.3-year periods when the nodal cycle 453 

will be trending negatively, we subtract nodal forcing from projected SLR. We use Kopp et al. 454 

(2014) probabilistic local SLR projections, but we modify the ice sheet contributions by 455 

replacing the Church et al. (2013) likely ranges with Oppenheimer et al. (2019) likely ranges. 456 
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The nodal cycle is currently in its negative phase in the Gulf, and until it reaches its minimum in 457 

2025, negative nodal forcing will counteract the SLR-induced increase in flood hazard. Between 458 

2025 and 2034 (and in all decades when the nodal cycle is moving from a minimum to a 459 

maximum), however, positive nodal forcing will accelerate the flood hazard increase. Thus, it is 460 

critical to consider SLR and nodal cycle forcing together in planning for the transition to chronic 461 

flooding that will be driven by SLR in many coastal regions over the next century (e.g. Ray & 462 

Foster, 2016; Buchanan et al., 2017; Kopp et al., 2017; Talke et al., 2018; Oppenheimer et al., 463 

2019). 464 

 465 

 466 

Figure 7. Joint impact of tidal forcing and sea-level rise on future flood hazard increase. (Top 467 

panel) 18.6 and 4.4-year components of the best-fit harmonic function to the winter ST1% time 468 

series from Fig. 6. (Bottom panel) Gray curves show projected rates of local RCP8.5 SLR 469 

modified from Kopp et al. (2014) (line = 50th quantile of samples, shading = central 90% range). 470 

Over 9.3-year-intervals where the nodal cycle is moving from a minimum to a maximum 471 

(indicated by red shading), the average nodal forcing rate (black triangle on y-axis) is added to 472 

the average projected rate of SLR over the same 9.3 years (red circles, with bars representing 473 

SLR uncertainty). Over intervals when the nodal cycle is trending negatively, nodal forcing is 474 

subtracted from the rate of SLR (blue circles and bars). The historical rate of SLR over the past 475 

century is also shown for reference (black asterisk on the y-axis).  476 



Manuscript submitted to JGR: Oceans 

 

4.3 Limitations 477 

We demonstrate that the qn-SSJPM provides more precise and stable ESL AEP estimates 478 

than a GPD fit to measured storm tides. However, there are sources of uncertainty in the method, 479 

and there are additional forcings of interannual ESL variation that we do not account for. The 480 

skew surge GPD is a significant source of uncertainty, as GPD parameters are sensitive to both 481 

the choice of threshold (e.g. Coles, 2001; Arns et al., 2013) and the largest observed skew surge 482 

values (e.g. Tawn and Vassie, 1989; Tawn, 1992; Haigh et al., 2010). Furthermore, the accuracy 483 

of skew surge values depends on the accuracy of tidal predictions. The r_t_tide software does not 484 

include minor constituents (for example, our Boston r_t_tide predictions use 67 constituents, 485 

compared to the 108 used by Ray and Foster, 2016), and our calculations do not include tide 486 

prediction errors. The errors, however, are small; for example, M2 amplitude errors are on the 487 

order of 0.1%.   488 

The qn-SSJPM also does not incorporate climatic variability that may impact ESL hazard 489 

relative to annual MSL. For example, the North Atlantic Oscillation drives interannual variation 490 

in New England sea levels via northeasterly wind stress anomalies on the upper ocean (Goddard 491 

et al., 2015). In the future, increasing sea surface temperatures and changing atmospheric 492 

circulation patterns may also drive changes in storm intensity and frequency, but there is low 493 

confidence in site-specific projections of future storm behavior (e.g. Knutson et al., 2010; 494 

Emanuel et al., 2013), making it difficult to incorporate storm non-stationarity into flood hazard 495 

assessment. Finally, the qn-SSJPM does not consider the impact of wave processes on flood 496 

hazard. Wave set-up can be a significant contributor to flooding (e.g. Wolf, 2008, 2009), but tide 497 

gauges are generally established in sheltered embayments and therefore do not include wave set-498 

up in their water level measurements.  499 

5 Conclusions 500 

We present a new quasi-nonstationary joint probability method for calculating ESL AEPs 501 

(the qn-SSJPM) and apply it along the Gulf of Maine coast, where tides are large and vary year-502 

to-year. In addition to providing separate statistical treatment of tides and surge, the qn-SSJPM 503 

calculates distinct annual ESL hazard curves that account for interannual variation in tides. Each 504 

year’s ESL hazard curve is a convolution of 1) predicted high water probabilities, which are 505 

known based on that year’s tide predictions, and 2) skew surge probabilities determined from a 506 

GPD fit to all skew surges recorded over the length of a tide gauge record.   507 

We use a Monte Carlo validation to compare the qn-SSJPM to the commonly used 508 

method of fitting a GPD to times series of measured storm tides. We find that the qn-SSJPM 509 

provides more precise and stable ESL AEP estimates because it is less susceptible to being 510 

biased by the largest few events within the observational period. At the three Gulf of Maine sites, 511 

we also find that interannual variation in tides significantly impacts design-relevant ESLs, such 512 

as the 1% AEP winter storm tide (ST1%). The 18.6-year nodal cycle forces decadal oscillations in 513 

ST1% at a rate of 13.5 mm/y in Eastport, 4.0 mm/y in Portland, and 5.9 mm/y in Boston. In 514 

comparison, the average historical rate of local SLR over the past century has been between 1.89 515 

and 2.86 mm/y at the three sites. Nodal forcing is currently counteracting the SLR-induced 516 

increase in flood hazard; however, in 2025, the nodal cycle will reach a minimum and then begin 517 

accelerating flood hazard increase as it moves toward its maximum phase over the subsequent 518 

decade.  519 

SLR is driving a transition to severe chronic flooding in many coastal regions (e.g. 520 

Oppenheimer et al., 2019). Flooding becomes severe when water elevations cross thresholds 521 
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defined by local topography and flood defense structures. The nodal cycle entering a positive 522 

phase my drive flood heights above these thresholds sooner than SLR would alone. Thus, 523 

considering tidal non-stationarity and SLR together is key to long-term municipal planning and 524 

emergency management along meso-to-macrotidal coastlines. 525 
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Table 1. Gulf of Maine NOAA tide gauge station info.  

Station;  

NOAA station no.  

Approximate 

location 
Timespan 

Mean high 

water (m)a  

Mean higher 

high water (m)a  

Great diurnal 

range (m)a  

Eastport, ME; 

8410140 

44°54.2’N 

66°59.1’W 
1929–present  2.771 2.916 5.874 

Portland, ME; 

8418150 

43°39.3’N 

70°14.8’W 
1910–present 1.380 1.513 3.019 

Boston, MA; 

8443970 

42°21.2’N 

71°3.0’W 
1921–present 1.411 1.545 3.131 

a Tidal datums are relative to 1983-2001 mean sea level  

 

Table 2. Results of Kendall’s tau correlation test, using the top 1% of skew surges and their 

associated predicted high waters.  

 Summer Winter 

tau p-value tau p-value 

Eastport 0.02 0.59 -0.02 0.58 

Portland -0.01 0.80 -0.08 0.03 

Boston 0.05 0.14 0.01 0.75 

 
 

Table 3. Ranges of 18.6 and 4.4-year tidal cycle modulations of the 1% AEP storm tide (ST1%) 

and the highest predicted tide. 

 18.6-year modulation range 

(mm) 

quasi 4.4-year modulation 

range (mm) 

ST1% highest 

predicted tide 

ST1% highest 

predicted tide 

Eastport 126 196 28 78 

Portland 37 66 37 68 

Boston 55 72 28 62 

 


