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1. Conservation of Energy

The first law of thermodynamics is

U̇ = Q̇+ Ẇ (1)

where U̇ is the rate of change of internal energy, Q̇ is the rate of change of energy supplied

through heat, and Ẇ is the rate of work done on volume Ω by the surrounding material.

The rate of change of internal energy can be found by:

U̇ =
D

Dt

∫
Ω

(ρcpT +
1

2
ρuiui + Enon-thermal)dV (2)

where D
Dt

is the material derivative, cp is the specific heat capacity of ice, T is ice temper-

ature, ui is the velocity of the ice, ρcpT is the thermal energy, and 1
2
ρuiui is the kinetic

energy and where repeating indices indicate summation. As defined in Ranganathan et

al. (2021), Enon-thermal can be approximated by the change in energy due to recrystalliza-

tion, assuming recrystallization is the dominant mechanism altering the strain and surface

energy state of the ice, such that Ėnon-thermal = Ėsurface − Ėstrain, in which Ėsurface is the

rate of change of surface energy during rotation recrystallization and Ėstrain is the rate of

change of strain energy during migration recrystallization, with the overdot denoting a

time derivative. Both Esurface and Estrain can be found by considering the grain size and

dislocation density within the grains, such that

Ėsurface − Ėstrain =
cγ

d
− 1

2

(D
d

) p
2 τ 2

s

µ
(3)
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where p is the grain-growth exponent, D is the characteristic length-scale, τs is the shear

stress, and d is the grain size. The full derivation is found in Ranganathan et al. (2021).

The rate of heat transfer by conduction can be found from Fourier’s Law as

Q̇ = −
∫
∂Ω

KT,j(−nj)ds (4)

where K is the thermal conductivity. The rate of work done by the surrounding material

is

Ẇ = −
∫
∂Ω

τijui(−nj)ds+

∫
Ω

ρgiuidV (5)

In this study, we assume incompressibility and we neglect kinetic energy, as we are in a

low Reynolds number regime and therefore kinetic energy is likely to be negligible. Thus,

internal energy U is approximately equivalent to enthalpy H such that Equation 2 can be

written in terms of enthalpy as

H = ρcpT +
cγ

d
− 1

2

(D
d

) p
2 τ 2

s

µ
+H0 (6)

where H0 is a constant offset. From the first law of thermodynamics, writing in terms of

enthalpy, we get

U̇ = Q̇+ Ẇ (7)

=⇒ D

Dt

∫
Ω

HdV = −
∫
∂Ω

KT,j(−nj)ds+−
∫
∂Ω

τijui(−nj)ds (8)

=⇒
∫

Ω

DH

Dt
dV =

∫
Ω

(KT,j + τijui),jdV (9)

=⇒ DH

Dt
= (KT,j),j + τijui,j (10)
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Equation 10 can be rewritten as

∂H

∂t
+ u · ∇H = K∇2T + τij ε̇ij (11)

in which the material derivative of enthalpy is the sum of the enthalpy flux and the work

put into the system by deformation. Equation 11 is the conservation of energy equation,

in which internal energy is a sum of change of energy from heat and the change in energy

due to work being done on the volume. This balance relates the change in surface, strain,

and thermal energy to the work rate. We can partition Equation 11 into:

cγ

d
− 1

2

(D
d

) p
2 τ 2

s

µ
= (1−Θ)τij ε̇ij (12a)

ρcp

(
∂T

∂t
+ u · ∇T

)
= K∇2T + Θτij ε̇ij (12b)

where Equation 12a is the non-thermal energy component found from Equation 3 and

Equation 12b is the thermal energy component (also known as the evolution of tempera-

ture equation). This relates the change in thermal energy (left hand side) to the change in

heat through heat conduction and the change in heat that originates from viscous dissipa-

tion (Θτij ε̇ij). For the purposes of ice-flow models, we generally neglect firn compaction,

air movement through firn, and melting/refreezing. In the case of this model, we also

neglect geothermal heat, as we are most interested in how heat generated during the de-

formation and movement of ice affects ice flow, since these may provide positive feedbacks

that amplify the effects during ice flow. Meyer & Minchew (2018) previously derived a

thermomechanical model from this energy balance to estimate ice temperature in shear

margins of Antarctic ice streams. The study presented here follows their model and the

July 15, 2021, 1:45pm



: X - 5

assumptions from their model, including that there is no vertical shear. In other words,

the strain rates are constant throughout the ice column and the ice slips along its bed.

This implies that basal drag is negligible compared to drag along the lateral margins of

the ice streams. Therefore, the primary heat source would be viscous dissipation during

deformation.

While some fraction Θ of the mechanical work put into the ice during deformation gets

converted into thermal energy, which is then advected or diffused, the remainder of the

work gets converted into strain energy. Deformation increases the density of dislocations,

which increases the strain energy state of ice (De La Chapelle et al., 1998). As the density

of dislocations increases, the rate of deformation decreases due to pile-ups of dislocations

preventing further creep (called work-hardening or strain-hardening) (Wilson & Zhang,

1996). Recovery mechanisms, including dynamic recrystallization, reduce the density of

dislocations and allow for further creep. Recrystallization annihilates dislocations, either

by the outward migration of grain boundaries, which destroy dislocations in their path

(migration recrystallization), or by the subdivision of grains, during which new, strain-free

grains are formed (rotation recrystallization) (Rollett & Kocks, 1993; Wenk et al., 1997;

De Bresser et al., 1998; De La Chapelle et al., 1998; Montagnat & Duval, 2004).

Thus, during deformation, mechanical energy is converted to strain energy, and rotation

recrystallization converts strain energy into surface energy, stored within grain boundaries

(Derby & Ashby, 1987; Derby, 1992; De La Chapelle et al., 1998; Montagnat & Duval,

2000). Both mechanisms also destroy dislocation pileups, allowing dislocations to advect

through dislocation creep, which functionally converts some of that strain energy back into

mechanical energy. Finally, much of the strain energy is released during fracture events.
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Therefore, as dislocations (and thus, strain energy) move with the strain-hardened ice

downstream, eventually that energy is converted into surface energy during fracture and

calving. We assume in this study that no other mechanisms are altering the energy state.

It is unknown at the moment whether processes convert energy directly from surface and

strain energy into heat, or whether all strain energy gets transferred back to mechanical

energy or stored in grain boundaries or subgrain walls. Without further work suggesting

otherwise, we assume this is not the case and reserve for future work an exploration of

other mechanisms that may change the energy states.

However, the amount of mechanical energy converted to strain energy (1−Θ) remains

unknown. Constraining Θ is clearly necessary to fully understand the thermodynamics

and energetics of ice flow and deformation, and thus the focus of this study is to constrain

Θ.

2. Thermomechanical Model

Meyer & Minchew (2018) derived a thermomechanical model to compute ice temperature.

Since their model only considered one column of ice, they simplified the heat equation to

−ρcpa
∂T

∂z
= K

∂2T

∂z2
+ Θτij ε̇ij (13)

where vertical velocity of ice w = −a and lateral advection of ice is neglected. Note that

they assumed Θ = 1, and here we will rederive the model including this parameter Θ.

The constitutive relation describing the flow of ice relates the stress to the strain rate as

τij = A
−1
n

(
1

2
ε̇klε̇kl

) 1−n
2n

(14)
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where n is the exponent in the constitutive relation commonly taken to be n = 3, from

borehole studies and laboratory measurements and A is the prefactor in the flow law,

also known as the flow rate parameter. A describes the dependence of viscosity to a

number of factors including temperature, fabric, porosity, liquid water content. From the

constitutive relation, we can then approximate

Θτij ε̇ij = 2ΘA−
1
n ε̇

n+1
n (15)

where ε̇ is the lateral shear strain rate. We can further define two nondimensional numbers:

Brinkmann number represents the rate of dissipative heating to heat conduction:

Br =
Θτij ε̇ijH

2

K∆T
(16)

where ∆T is the difference between the melting temperature and the surface temperature,

and the Peclet number represents the ratio of accumulation to diffusion and is found as

Pe =
ρcpaH

K
(17)

where a is accumulation and H is ice thickness. The critical shear strain rate to form a

temperate zone (a zone of temperate ice, heated by viscous dissipation) is

ε̇∗ =

( 1
2
Pe2

Pe− 1 + exp{−Pe}

) n
n+1
[

K∆T

ΘA
−1
n H2

] n
n+1

(18)

The thickness of this temperate zone is found by
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ξ

H
=

{
1− Pe

Br
− 1

Pe
[1 +W(−exp{−Pe2

Br
− 1})], ε̇ > ε̇∗

0, ε̇ ≤ ε̇∗
(19)

where f(W) = WeW is the product logarithm, i.e. the Lambert-W function. They then

solve Equation 13 for ice temperature to find the following closed-form expression for ice

temperature in the single column of ice:

T =

{
Ts + ∆T Br

2
[1− z

H
+ 1

Pe
exp{Pe( ξ

H
− 1)} − 1

Pe
exp{Pe( ξ−z

H
)}], ξ ≤ z ≤ H

Tm, 0 ≤ z ≤ ξ
(20)

The model defined by Equations 18, 19, 20 enables an estimate of ice temperature with

depth, the existence of a temperate zone, and its thickness if one exists. Neither Meyer &

Minchew (2018) nor our study accounts for geothermal heating in order to focus the study

on the role of viscous dissipation, but it is feasible to represent the effects of geothermal

heating through the boundary conditions of this thermomechanical model.

Meyer & Minchew (2018) apply this model to ice streams in Antarctica to show that

active temperate zones may exist in many ice streams in Antarctica. However, we will

recall that they assume Θ = 1, thereby neglecting any other processes that may be

resultant from the work done during ice deformation in shear margins. Here we seek to

determine whether other processes may be significant and if this alters the estimates of

ice temperature and temperate zones produced by Meyer & Minchew (2018), among other

studies.

3. Steady State Grain Size Model

The steady-state grain size model was derived in Ranganathan et al. (2021) and fol-

lows the watt-meter derived by Austin & Evans (2007) and further explored and used
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by Behn et al. (2009, 2020). Steady-state grain size is found by assuming three recrys-

tallization mechanisms - normal grain growth, rotation recrystallization, and migration

recrystallization - operate independently such that (Austin & Evans, 2007)

ḋ = ḋrot + ḋmig + ḋnor (21)

The change in grain size due to normal grain growth is typically parameterized by (Alley

et al., 1986)

dpnor = dp0 + kt (22)

where d is grain size, d0 is initial grain size, p is the grain-growth exponent, and k is

the grain growth rate. Rotation and migration recrystallization recrystallization are both

activated by deformation and alter surface and strain energy, respectively. Therefore, to

find the change in grain-size, we can estimate the change in surface and strain energy that

occurs as ice deforms. Rotation recrystallization alters the surface energy by subdividing

grains, and therefore the change in surface energy due to rotation recrystallization is found

by (Austin & Evans, 2007)

Ėsurface =
−cγ
d2

ḋrot (23)

where c is a geometric constant, d is grain-size, and γ is grain-boundary energy. Migration

recrystallization alters strain energy by annihilating dislocations. The change in strain

energy and grain size due to migration recrystallization is derived by Ranganathan et al.

(2021) as
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Ėstrain = −1

2

τ 2
s

µ

p

2

D
p
2

d
p
2

+1
ḋmig (24)

ḋstrain = MFmig =
1

2

τ 2
s

µ

D
p
2

d
p
2

M (25)

where τ is deviatoric shear stress, µ is the shear modulus, p is the grain-growth exponent,

M is grain-boundary mobility, and D is a characteristic length-scale. Equations 23 and

24 can be applied to estimate ḋrot by applying the equation for non-thermal energy found

in Text S1 (Enon-thermal = Esurface − Estrain) and noting that Ėnon-thermal = (1 − Θ)τij ε̇ij.

Then, we can apply this to Equation 21 to find steady-state grain size:

dss =

[Normal grain growth︷ ︸︸ ︷
4kp−1cγµ2 +

Migration recrystallization︷ ︸︸ ︷
τ 4
sD

p
(p

2

)
M

8(1−Θ)τsε̇sµ
2︸ ︷︷ ︸

Rotation Recrystallization

] 1
1+p

(26)

4. Computing Θ

To accurately predict ice temperature, the presence of temperate zones, and grain-

sizes in shear margins, we must constrain Θ, the fraction of deformational work that

is dissipated as heat, to gather a more complete understanding of the energy budget in

glacier shear margins. We consider the balance of energy density in a given control volume

between thermal energy density, surface and grain-boundary energy density, and elastic

strain energy density, such that Θ can be written as

Θ(ε̇, D, p, n) =
|Ėthermal(Θ, ε̇, n, T (Θ, ε̇, n))|

|Ėthermal(Θ, ε̇, n, T (Θ, ε̇, n))|+ |Ėsurface(d(Θ, ε̇, D, p, n))|+ |Ėstrain(d(Θ, ε̇, D, p, n), D, p, T (Θ, ε̇, n))|
(27)
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where Ėthermal represents the change in internal energy density due to change in thermal

energy density due to viscous dissipation, Ėsurface represents the change in surface energy

density due to the reduction in grain size during rotation recrystallization, and Ėstrain

represents the change in elastic strain energy density due to migration recrystallization.

The increase in internal surface energy density due to the reduction in grain size is

presented in Equation 23 and each of the terms are defined below. Note that during

implementation, the rates of change are discretized (Ė =⇒ ∆E).

Ėsurface =
−cγ
d2

ḋrot (28)

For example, for a discrete increase in grain size from about 2 mm at the surface to 40 mm

at the bed, the magnitude of ∆Esurface ≈ 103 J m−3. We approximate elastic strain energy

from our interpretation of the dynamics occurring during migration recrystallization, so

that that elastic strain energy density can be approximated by the change in energy due

to an increase in dislocation density (Equation 24):

Ėstrain = −1

2

τ 2
s

µ

D
p
2

d
p
2

+1
ḋmig (29)

For a discrete increase in grain size from 2 mm to 40 mm, the magnitude of ∆Estrain ≈ 107

J m−3 for µ = 3e9 Pa, D = 0.05 m, p = 9. Finally, the change in thermal energy density

can be found by

Ėthermal = ρicpṪ (30)
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Since for ice, ρi ≈ 917 kg m−3 and cp ≈ 2000 J kg−1 K−1 (Giauque & Stout, 1936), for a

discrete increase in temperature from 248 K to 273 K, the magnitude ∆Ethermal ≈ 107 J

m−3.

Since these internal energies are dependent upon temperature and grain size, which are

both dependent upon Θ, Equation 27 becomes a nonlinear equation that is solved using

the Trust-Region-Dogleg method.

4.1. Binary Behavior of Θ

In nearly every case of strain rate and n value, there are two distinct solutions for

different p and D values, because in almost all cases, Esurface is much less than Estrain

and in some cases Esurface is much less than Estrain. If these two criteria are true, we can

rewrite Equation 27 as

Θ =

[
1 +

∆Estrain

∆Ethermal

]−1

(31)

Thus, when ∆Estrain

∆Ethermal
<< 1, Θ = 1 and otherwise, Θ < 1. From Equations 29 and 30,

Θ = 1 when

−1
2
σ2
s

µ
D

p
2

d
p
2+1

∆d

ρicp∆T
<< 1 (32)

Considering general values of grain size (∼ O(10mm)), temperature (∼ 255−270K), shear

modulus (3× 109 Pa), and stress (∼ O(105Pa)), this simplifies to Θ = 1 when

(
D

d
)
p
2 << 107 (33)
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Equation 33 provides the basis for Θ being binary. When, for example, p ≈ 2, Equation

33 holds and Θ = 1 for all strain rates. However, when p ≈ 9, (D
d

)
p
2 ≈ 107 and Θ < 1.

This binary behavior of Θ allows us to completely map the possible values of Θ in glacier

shear margins by considering two cases: Regime A (in which D = 0.05 and p = 2) and

Regime B (in which D = 0.05 and p = 9). These two regimes cover the possible values of

Θ for varying values of D and p.

5. Estimates of Θ for a Full Parameter Space

Equation 26 gives a steady-state grain size model, dependent on the fraction of work

that is dissipated as heat in deforming glacier ice (the parameter Θ). We use the thermo-

mechanical model derived by Meyer & Minchew (2018) to compute ice temperature, with

Θ accounted for in the Brinkmann number (the ratio of heating to conduction). Both

models assume steady-state creep, and the full ice column of shear margins are likely in

steady state due to the speed of deformation driving a short time (< 10 years) to steady

state.

This parameter Θ is currently unknown but controls both the steady state ice temper-

ature and the steady state grain size. Figure S1 presents profiles of ice temperature and

grain size for varying Θ. We show the variation in temperature and grain size profiles for

ranges of reasonable strain rates seen within Antarctic ice streams (excluding very large

or very small strain rates).

The fraction Θ controls how much ice temperature increases with increasing strain rate

and, consequently, how much grain sizes grow. The grain size at the bed is largely con-

trolled by Θ, the characteristic length scale D, and the grain-growth exponent p. As Θ

decreases, zones of temperate ice disappear and temperature and grain size profiles ap-
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proach approximately constant values with depth (Θ = 0.01). Furthermore, strain rates

play a significant role in determining the magnitude of grain growth and temperature

increases. For large strain rates (dotted lines), temperate zones remain quite large for

smaller Θ and grains becomes coarse rapidly ∼ 30 mm. However, for low strain rates

(dashed lines), grains remain roughly constant with temperature for all Θ and tempera-

tures never reach the melting point, even for Θ = 0.99. Finally, for moderate strain rates

(solid lines), a zone of temperate ice forms for Θ = 0.99 but for Θ <∼ 0.9, the temperate

zone disappears. The most dramatic grain growth occurs for moderate strain rates at

approximately halfway down the ice column.

The rapid growth of grains is due to temperatures approaching −10◦C, when enough

strain energy has built for grain boundaries to migrate through migration recrystalliza-

tion. Below approximately 500 meters height above the bed, grain sizes become roughly

constant with depth, due to strain and temperature increasing enough such that creep and

subsequent grain reduction due to rotation recrystallization becomes more active. Once

ice temperature reaches the melting point and temperate zones form, recrystallization

processes likely change due to the presence of significant liquid water in between grain

boundaries. This liquid water likely makes grain boundaries even more mobile, encourag-

ing coarsening of grains. Extremely coarse grains have been found in temperate glaciers

(Tison & Hubbard, 2000), though further theoretical and experimental work is needed to

consider in depth the effect that recrystallization may have on temperate ice.

The parameter Θ is dependent upon the values of D, the characteristic grain size, and p,

the grain-growth exponent, as well as strain rate and n, the exponent in the constitutive
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relation. Figure S2 shows Θ for the full D-p parameter space, for varying strain rate and

n.

The value of the flow-law exponent n describes the sensitivity of strain rates to stresses

and generally corresponds to the mechanism of ice flow. Values higher than 3 suggest a

dislocation-creep regime, in which ice flow occurs through line defects called dislocations

(Goldsby & Kohlstedt, 1997). In an n = 4 regime, Θ = 1 for high strain rates, suggesting

that thermal energy is higher in magnitude than elastic strain energy for most cases except

very high strain rates ε̇ ≈ 10−8 s−1, for large values of D (large characteristic length-scale

for elastic strain energy), and for high values of p (large grain growth exponents). Thus,

in an n = 4 regime, Θ < 1 only for very rapidly deforming glaciers.

A constitutive relation with n = 2 corresponds to a flow regime in which the dominant

creep mechanism is grain-boundary sliding (Goldsby & Kohlstedt, 1997). If n = 2, Θ

becomes close to 0, suggesting very little heating, for almost all physically-reasonable

strain rates. At very low strain rates (ε̇ ≈ 10−10 s−1), Θ ≈ 1
5

for much of the parameter

space, likely due to strain rates being so low that most deformation is not occurring.

Values of the flow exponent closer to n = 3 more accurately describe a combination of

dislocation creep and grain-boundary sliding, a mechanism that is grain-size dependent

and generally occurs in fine-grained materials (Ashby, 1972).

Further, the boundary between the two regimes changes based on the value of n and

the strain rate. In particular, for low strain rates, ∆Eelastic is low, and therefore it is not

necessarily much greater than ∆Esurface. Thus, the assumption made to simplify Equation

27 to Equation 31 does not necessarily hold. This results in a more diffuse boundary and

less defined binary behavior.
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6. Results for Other Outlet Glaciers

Results for Bindschadler and MacAyeal Ice Stream are found in Figure S3 and results

for Byrd Glacier are found in Figure S4.
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Figure S1. Ice temperature profiles, computed from the model derived in (Meyer &

Minchew, 2018), and steady-state grain sizes profiles, computed from the model derived

in this study, for varying values of Θ and varying lateral shear strain rates. A range of

temperatures and grain sizes are plotted for low lateral shear strain rates (ε̇ = 6× 10−10

s−1, dashed line), moderate strain rates (ε̇ = 1.3 × 10−9 s−1, solid line), and high strain

rates (ε̇ = 6 × 10−9 s−1, dotted line). We use the constitutive relation to compute the

work rate.
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Figure S2. Estimated values of Θ for varying characteristic length scale for migration

recrystallization, D, grain growth exponent, p, flow law exponent, n, and lateral shear

strain rate. For most cases, there are two clear regimes for varying D and p, which we

label Regime A and Regime B (middle panel).
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Regime A Regime B

Figure S3. Strain rates computed from surface velocity fields derived from Landsat

7 and 8 (Gardner et al., 2018) and thickness computed from REMA surface elevation

(Howat et al., 2019) and BedMachine bed topography (Morlighem et al., 2020) in the first

row. Second and third rows show estimated values of Θ, the depth-averaged flow-rate

parameter, steady-state depth-averaged grain size, and the thickness of temperate zones

as a fraction of ice thickness in Bindschadler and MacAyeal Ice Streams for both regimes

(Regime A: D = 0.05 mm, p = 2, Regime B: D = 0.05 mm, p = 9).
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Regime 1 Regime 2

Figure S4. Strain rates computed from surface velocity fields derived from Landsat

7 and 8 (Gardner et al., 2018) and thickness computed from REMA surface elevation

(Howat et al., 2019) and BedMachine bed topography (Morlighem et al., 2020) in the first

row. Second and third rows show estimated values of Θ, the depth-averaged flow-rate

parameter, steady-state depth-averaged grain size, and the thickness of temperate zones

as a fraction of ice thickness in Byrd Glacier for both regimes (Regime A: D = 0.05 mm,

p = 2, Regime B: D = 0.05 mm, p = 9).
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