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Abstract 38 

The National Ecological Observatory Network (NEON)'s standardized monitoring program 39 

provides an unprecedented opportunity for comparing the predictability of ecosystems. To 40 

harness the power of NEON data for examining environmental predictability, we scaled a near-41 

term, iterative water temperature forecasting system to six NEON lakes. We generated 1 to 35-42 

day ahead forecasts using a process-based hydrodynamic model that was updated with 43 

observations as they became available. Forecasts were more accurate than a null model up to 35-44 

days ahead among lakes, with an aggregated 1-day ahead RMSE (root-mean square error) of 45 

0.60℃ and 35-days ahead RMSE of 2.17℃. Water temperature forecast accuracy was positively 46 

associated with lake depth and water clarity, and negatively associated with catchment size and 47 

fetch. Our results suggest that lake characteristics interact with weather to control the 48 

predictability of thermal structure. Our work provides some of the first probabilistic forecasts of 49 

NEON sites and a framework for examining continental-scale predictability. 50 

 51 

Introduction 52 

 A primary goal of the National Ecological Observatory Network (NEON) is to 53 

“understand and forecast continental-scale environmental change” (National Research Council, 54 

2004). With standardized data available across multiple sites, NEON is uniquely positioned to 55 

advance the emerging discipline of near-term, iterative environmental forecasting – i.e., the 56 

prediction of future environmental conditions with specified uncertainty that are updated when 57 

observations are available (Dietze et al. 2018). However, NEON data have yet to be broadly used 58 

for forecasting, a major gap in realizing the potential of the network.  59 



 4 

In particular, forecasting the same environmental variables across sites has the potential 60 

to reveal gradients of predictability at multiple temporal and spatial scales, a fundamental 61 

ecological challenge (Petchey et al. 2015; Houlahan et al. 2017). While it has been established 62 

that forecast accuracy (i.e., realized predictability) declines with horizon (i.e., time into the 63 

future), it remains unknown how far into the future different ecological variables can be 64 

predicted, and how predictability varies among different sites (Adler et al. 2020; Lewis et al. 65 

2021). It is likely that both site-level characteristics (e.g., lake depth) and regional-scale 66 

characteristics (e.g., weather) affect forecast accuracy at different horizons, but the drivers and 67 

gradients of predictability remain unknown and may differ among environmental variables.  68 

Lake water temperature is a promising first forecast variable for fulfilling NEON’s 69 

mission of forecasting environmental change. NEON currently has high-frequency water 70 

temperature sensors deployed in six lake sites in the conterminous U.S., providing a range of 71 

water temperature dynamics to forecast. Water temperature is a fundamental property of lakes 72 

that governs water chemistry, habitat for biota, and other ecological interactions, yet varies 73 

substantially throughout a year as a function of lake morphometry, hydrology, ecology, and 74 

weather (Wetzel 2001), making it an ideal forecasting case study. Moreover, lake water 75 

temperature forecasts have practical benefits, as they could help managers choose which depths 76 

to extract water for treatment or preemptively apply interventions to mitigate water quality 77 

impairment (Carey et al. 2021). 78 

Here, we developed the first known standardized, network-wide forecasts of NEON sites 79 

across the U.S. We applied an open-source forecasting system that uses forecasted weather data 80 

and a process-based hydrodynamic model to generate future predictions of lake water 81 

temperature for 1-35 days ahead. These iterative forecasts were updated with NEON data when 82 
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they became available. We analyzed the forecasts to address two research questions: 1) How 83 

accurately can we predict variability in lake water temperature 1-35 days into the future? and 2) 84 

How does forecast accuracy vary among lakes with different site-level characteristics and 85 

regional-scale weather?  86 

 87 

Methods 88 

Forecasting framework 89 

 We developed water temperature forecasts for the six NEON lake sites across three 90 

NEON-defined ecoclimatic domains in the conterminous U.S. (Figure 1) using standardized 91 

configurations of FLARE (Forecasting Lake And Reservoir Ecosystems), an open-source 92 

forecasting system (Thomas et al. 2020; Daneshmand et al. 2021). The lakes vary in multiple 93 

characteristics, including morphometry (depth, volume, surface area, fetch); hydrology 94 

(residence time, catchment size); ecology (water clarity); and weather (air temperature, 95 

precipitation; Figure 1, see WebTable 1 for lake metadata). FLARE has previously been 96 

deployed on a reservoir in Virginia, USA with similar sensor infrastructure to a NEON site but 97 

heretofore had not been deployed on other lakes (Thomas et al. 2020). FLARE forecasts water 98 

temperature at multiple depths in the water column using the General Lake Model (GLM), an 99 

open-source hydrodynamic model (Hipsey et al. 2019).  100 

FLARE's iterative forecasting cycle is summarized as: 1) each day, the output from the 101 

previous day's forecast is used to initialize a forecast of the current day’s water temperature; 2) 102 

FLARE updates the current day’s forecast to be consistent with observations using data 103 

assimilation (ensemble Kalman filter; Evensen 2009); and 3) after updating the forecast, a 1 to 104 

35-day-ahead forecast of the future is generated, for which no observations are yet available for 105 
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assimilation (WebFigure 1). The forecasts into the future were driven by 35-days-ahead 106 

meteorological forecasts from NOAA’s Global Ensemble Forecasting System (Li et al. 2019). 107 

Altogether, the ensemble-based forecasts from FLARE included uncertainty in initial water 108 

temperatures when the forecast is initiated, future meteorology, GLM parameters, and GLM 109 

model equations (Thomas et al. 2020). We used NEON’s water temperature data (Hensley 2022; 110 

NEON 2022a, b) for data assimilation and forecast evaluation (WebPanel 1).  111 

Our application of FLARE for each lake was initiated on 18 April 2021, the first date 112 

when all six lakes had consistent data availability after ice-off. Water temperature data were 113 

assimilated but no forecasts were generated from 18 April–18 May 2021, a spin-up period for 114 

initial parameter tuning. Beginning on 18 May 2021, 35-day forecasts were produced every day 115 

for each lake through 22 October 2021, when data availability ended at the Northern Plains lakes 116 

for the year. This iterative forecasting cycle resulted in 159 unique 35-day forecasts, each with 117 

200 ensemble members, for each of the six lakes. We forecasted water temperature at every 118 

sensor depth within a lake: our results below focus on the top 1 m (hereafter, surface) though 119 

forecasts for all depths are reported in WebFigure 2.  120 

 121 

Evaluation of forecasts 122 

We evaluated forecast performance for each day in the 1–35 day horizon using root-mean 123 

square error (RMSE) of the ensemble forecast mean for all depths. Furthermore, we quantified: 124 

1) forecast accuracy, defined as RMSE for the first day of the forecast, and 2) accuracy 125 

degradation, defined as the difference in maximum and minimum RMSE across the 35-day 126 

forecast horizon. We used Spearman rank correlations to quantify the relationships between 127 

morphometric, hydrological, ecological, and weather characteristics and mean forecast accuracy 128 
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and accuracy degradation for each lake. To ease interpretation of the correlation coefficient, we 129 

negated RMSE so positive correlations were associated with higher accuracy. Our analyses only 130 

included dates for a given lake when forecasts were available at all 1–35 day horizons.  131 

Additionally, we compared the forecasts generated using FLARE to null model forecasts 132 

that assumed the forecasted mean water temperature for a date and depth was equal to the mean 133 

water temperature observed historically on that day of year (DOY). The null model evaluated 134 

whether FLARE had higher forecast accuracy than a simple historical mean. The DOY null 135 

model was based on all available historical NEON data for a lake (WebTable 1). 136 

 137 

Results 138 

 Overall, aggregated across the forecasting period, the forecasts were able to accurately 139 

predict surface water temperature within 2.60℃ RMSE (root-mean square error) 1 to 35 days-140 

ahead for all six lakes (Figure 2a). The forecasts performed better than a DOY null model at least 141 

35 days-ahead for the Northern Plains domain lakes; at least 30 days-ahead for the Great Lakes 142 

domain lakes; and at least 10 days-ahead for the Southeast lakes (Figure 2b). The forecasts for 143 

surface water temperature in each lake had similar accuracy when aggregating forecasts across 144 

all depths with observations and when using other evaluation metrics (WebFigure 2).   145 

 Forecast accuracy decreased as the forecast horizon increased among all lakes (Figure 146 

2a). At 1 day-ahead, the mean RMSE of all lakes’ forecasts was 0.61℃ (range across lakes: 147 

0.41-0.90℃); at 7 days-ahead, the mean RMSE of all lakes' forecasts was 1.21℃ (range: 0.68-148 

1.55℃); at 21 days-ahead, the RMSE of all lakes' forecasts was 2.03℃ (range: 1.20-2.45℃); and 149 

at 35 days-ahead, the RMSE of all lakes' forecasts was 2.17℃ (range: 1.14-2.60℃). Forecast 150 

accuracy degraded over the 35-day horizon by 41% more in the northern lakes (Northern Plains 151 
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and Great Lakes domains) than the Southeast domain lakes (Figure 2a). The Southeast and 152 

Northern Plains domain lakes exhibited near-linear decreases in forecast accuracy until ~15-20 153 

days-ahead, when the declines in accuracy saturated (Figure 2a). In comparison, the Great Lakes 154 

domain lakes exhibited a more constant decrease in accuracy throughout the 35-day horizon.  155 

 Differences in water temperature forecast accuracy and accuracy degradation among 156 

lakes were associated with multiple lake morphometric, hydrological, ecological, and weather 157 

characteristics. Although our inference space is extremely limited with n=6 lakes, we observed 158 

that forecast accuracy was positively correlated to maximum depth and water clarity, and 159 

negatively correlated to fetch and catchment size (Figure 3, WebTable 2, WebFigure 3). In 160 

contrast, accuracy degradation was positively correlated to volume and water clarity, and 161 

negatively correlated to mean annual air temperature (Figure 3, WebTable 2, WebFigure 4).   162 

 163 

Conclusions 164 

 Here, we present the first continental-scale forecasts of lakes uniquely enabled by NEON. 165 

We applied the same forecasting framework to six NEON lakes (i.e., the hydrodynamic model 166 

was configured identically among lakes, all lakes had the same initial model parameters, each 167 

lake received similar amounts of data for assimilation), thus creating a standardized analysis that 168 

can shed light on differences in realized predictability (i.e., forecast accuracy) among sites. 169 

Overall, our forecasts had high accuracy among lakes, with consistent patterns in degradation of 170 

forecast accuracy with horizon. Below, we explore gradients in accuracy observed among lakes, 171 

as well as how our study provides a framework for future NEON forecasting efforts. 172 

 Among lakes, water temperature forecast accuracy was high overall, with a mean 1-day-173 

ahead RMSE of 0.62℃ and 35-day-ahead RMSE of 2.21℃. Data assimilation resulted in high 174 
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accuracy at shorter horizons, with decreased forecast accuracy at longer horizons likely due to 175 

degradation in weather forecast accuracy. Regardless of horizon, we observed an overall high 176 

level of accuracy despite using forecasted, not observed, meteorological data as model inputs. 177 

Our forecast accuracy compares favorably to other multi-lake modeling studies that used 178 

observed meteorology as inputs: for example, Kreakie et al. (2021) predicted upper water 179 

column temperatures with an RMSE of 1.48℃ for lakes across the U.S with a random forest 180 

model. Similarly, Read et al. (2014) predicted upper water column temperatures with an RMSE 181 

of 1.74℃ for Wisconsin, USA lakes with a prior version of the GLM model. By comparing our 182 

forecasts to these studies and a DOY null, FLARE’s use of automated sensors, data assimilation, 183 

and iterative forecasting adds substantial predictive power, especially for the northern lakes 184 

where the forecasts all beat the null model >27 days ahead.   185 

 186 

Environmental drivers of predictability 187 

 The correlation analysis reveals potential relationships between forecast accuracy and 188 

environmental drivers that inform future research. Lake maximum depth, catchment size, fetch, 189 

and water clarity exhibited relationships with forecast accuracy. Deeper lakes have stronger 190 

thermal stratification and more resistance to wind-driven mixing (Gorham and Boyce 1989), 191 

thereby stabilizing their temperatures and increasing their predictability. In contrast, lakes with 192 

larger catchments experience greater inflow volumes (Messager et al. 2016) and lakes with 193 

greater fetch have greater wind-driven mixing (Rueda and Schladow 2009), both potentially 194 

resulting in more variable water temperatures and lower predictability. We observed a positive 195 

relationship between forecast accuracy and water clarity, as highlighted in the contrast between 196 

the two Southeast lakes: Barco had much greater transparency than Suggs, and much higher 197 
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corresponding forecast accuracy (Figure 2a, WebTable 1). Deeper penetration of solar radiation 198 

may result in more uniform heating of the surface waters (following Richardson et al. 2017), 199 

though this mechanism remains unknown.  200 

Forecast degradation was negatively related to mean annual temperature and positively 201 

related to water clarity and volume. The colder northern lakes (Northern Plains and Great Lakes 202 

domains) exhibited 41% greater degradation than the warmer Southeast lakes, likely driving the 203 

relationship between air temperature and forecast degradation. The patterns between degradation 204 

and water clarity/volume may be an artifact of the lakes in the analysis, as the Great Lakes 205 

domain lakes had the greatest water clarity and volume and were the only lakes for which 206 

forecast accuracy did not saturate with horizon (Figure 2a, WebTable 1). We did not observe 207 

correlations between forecast accuracy/degradation and the other lake characteristics (Figure 3), 208 

though as noted above, our inference space with six lakes was limited. However, this initial 209 

analysis helps develop hypotheses on the drivers of lake water temperature predictability that can 210 

be tested in future work. 211 

 212 

Using FLARE to forecast NEON lakes 213 

 Our application of FLARE to the NEON lakes both extends its current application from 214 

one reservoir in Virginia (Thomas et al. 2020) to six lakes across the USA, as well as increases 215 

its maximum forecast horizon from 16 days in the prior application to 35 days. FLARE forecasts 216 

of water temperature in the Virginia reservoir have similar accuracy as observed for the lakes in 217 

this study (RMSE of 0.52℃ at 1 day-ahead and 1.62℃ at 16 days-ahead at 1-m depth), and 218 

similar degradation of water temperature forecast accuracy with horizon (Thomas et al. 2020). 219 

This study also provides more evidence that FLARE can generate accurate forecasts rapidly, 220 
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with only 1 month of spin-up following spring sensor deployment at the NEON lakes and 221 

initiating the spin-up with default model parameters. Interestingly, this study reveals that water 222 

temperature forecast degradation may saturate at longer horizons for some lakes (Figure 2a), 223 

which was only made possible by the recently extended duration of the NOAA meteorological 224 

forecasts as FLARE inputs.  225 

 We note caveats of this work. First, forecast accuracy/degradation is related to the ability 226 

of the GLM to simulate water temperature, so using a different model may influence the 227 

relationships we observed between the lake characteristics and accuracy/degradation (Figure 3). 228 

Second, our DOY null was limited to <4 years of data, depending on site (WebTable 1). As 229 

additional data become available, this null will potentially become more accurate, and may 230 

outcompete the forecasts at more horizons. Third, the correlation analyses were constrained by 231 

low sample size, low variability in characteristics within an ecoclimatic domain (e.g., the 232 

Northern Plains lakes are similar along many axes of potential variation), and collinear variation 233 

across domains (e.g., the deep lakes and dimictic lakes are only in the Great Lakes domain; 234 

WebTable 1), an inherent limitation of the NEON sampling design. Supplementing future NEON 235 

cross-lake forecast comparisons with other lakes (e.g., those in the Global Lake Ecological 236 

Observatory Network; Weathers et al. 2013) would extend key environmental gradients as well 237 

as evaluate whether our observed patterns are supported by a larger sample of forecasts.  238 

  239 

Power and limitations of NEON for cross-lake forecasting 240 

 Similar to weather forecasting, which exhibited a large increase in the number of 241 

forecasts and prediction accuracy after an increase in data availability from sensors and satellites, 242 

improved models, and advanced data assimilation techniques (Bauer et al. 2015), we envision 243 
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that NEON could catalyze a leap in continental-scale environmental forecasting. NEON’s 244 

standardized measurements, well-documented metadata, and rigorous data QA/QC provide a 245 

critical foundation for forecasting. However, we note that data latency currently limits the ability 246 

to generate real-time forecasts. An automated near-term, iterative forecasting system assumes 247 

that data are available in near real-time. Given the 2-week–1.5-month lag in data availability in 248 

NEON's current pipeline, our analysis here was based on hindcasts – i.e., generating forecasts 249 

using forecasted drivers to the perspective of the model but for a past date (Jolliffe and 250 

Stephenson 2012). Unless NEON's data latency decreases, forecast analyses such as ours are 251 

limited to predicting the past.   252 

 Our study provides a framework that can be adapted for additional lakes - as well as 253 

terrestrial NEON sites - for forecasting a range of environmental variables and exploring the 254 

drivers of predictability. Next steps for this work include forecasting water temperature in future 255 

years for the NEON lakes, as well as adding in forecasts for additional water quality variables 256 

that NEON monitors, such as dissolved oxygen and chlorophyll-a. Following Dietze and Lynch 257 

(2019), the future is bright for forecasting in ecology, in large part due to observatory networks 258 

like NEON.  259 
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Figure captions 342 

Figure 1. Map showing the locations of the six NEON (National Ecological Observatory 343 

Network) lakes forecasted in this study. The inset figures show a year of water temperature depth 344 

profiles, as measured by sensors deployed from a buoy at each lake. The inset table provides 345 

each lake’s NEON Site ID, lake name, and NEON ecoclimatic domain. Summary statistics of 346 

each lake’s morphometry, hydrology, ecology, and weather characteristics are in WebTable 1. 347 

 348 

Figure 2. (a) Surface water temperature (top 1 m) forecast accuracy, defined by RMSE (root-349 

mean square error in oC), for 1 to 35-day ahead (horizon) forecasts at the six NEON lakes. (b) A 350 

skill score of the RMSE (in oC) of the null day-of-year model vs. forecasts generated by the 351 

FLARE (Forecasting Lake And Reservoir Ecosystems) system for each lake. Positive values 352 

indicate that FLARE forecasts outperformed the null at a given horizon, zero indicates that the 353 

forecasts and null performed similarly, and negative values indicate that the null outperformed 354 

the forecasts. 355 

 356 

Figure 3. Spearman correlations between two metrics defining predictability at the six lakes: 357 

forecast accuracy (red points), defined as RMSE at 1-day ahead, and forecast accuracy 358 

degradation (blue points), defined as the difference in maximum and minimum RMSE across the 359 

35-day forecast horizon. To ease interpretation of the correlation coefficient, we negated RMSE 360 

so positive correlations are associated with higher accuracy. Given the extremely limited sample 361 

size of lakes (n=6), which is too small for reliable p-values for rho, we focused our interpretation 362 

on Spearman rho correlations |≥| 0.5 (above the dashed line). WebFigures 3 and 4 show the 363 

relationships as scatterplots.  364 
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Figure 1. Map showing the locations of the six NEON (National Ecological Observatory 368 
Network) lakes forecasted in this study. The inset figures show a year of water temperature depth 369 
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Figure 2. (a) Surface water temperature (top 1 m) forecast accuracy, defined by RMSE (root-376 
mean square error in oC), for 1 to 35-day ahead (horizon) forecasts at the six NEON lakes. (b) A 377 
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FLARE (Forecasting Lake And Reservoir Ecosystems) system for each lake. Positive values 379 
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the forecasts.  382 
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forecast accuracy (red points), defined as RMSE at 1-day ahead, and forecast accuracy 385 
degradation (blue points), defined as the difference in maximum and minimum RMSE across the 386 
35-day forecast horizon. To ease interpretation of the correlation coefficient, we negated RMSE 387 
so positive correlations are associated with higher accuracy. Given the extremely limited sample 388 
size of lakes (n=6), which is too small for reliable p-values for rho, we focused our interpretation 389 
on Spearman rho correlations |≥| 0.5 (above the dashed line). WebFigures 3 and 4 show the 390 
relationships as scatterplot 391 


