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WebPanel 1. Description of the forecasted NEON lakes, overview of the FLARE configuration 1 
for each lake, meteorological driver data, mean day-of-year null model, and guide to 2 
reproducibility. 3 
 4 
NEON Lake temperature data 5 

We generated forecasts for the six NEON lakes in the conterminous USA (WebTable 1). 6 
The six forecast sites were two paired lakes in the Great Lakes NEON ecoclimatic domain 7 
(Crampton Lake, NEON site ID – CRAM; Little Rock Lake, NEON site ID - LIRO), two paired 8 
lakes in the Northern Plains domain (Prairie Lake, NEON siteID – PRLA; Prairie Pothole, 9 
NEON siteID - PRPO), and two paired lakes in the Southeastern domain (Barco Lake, NEON 10 
siteID – BARC; Suggs Lake, NEON siteID - SUGG). We excluded the seventh NEON lake site 11 
(Toolik Lake) since it was not part of a paired NEON set and it has major surface inflows, unlike 12 
the other lakes.  13 

Each lake had 5-10 water temperature sensors (Precision Measurement Engineering Inc. 14 
T-Chain RS 232/485 thermistors) deployed at various depths in the water column. The first 15 
sensor was deployed 0.05 m below the surface, with remaining depths dependent on the total 16 
depth of the lake. Generally, sensors were deployed at more frequent intervals within the upper 17 
1.05 m than at deeper depths. These discrete depth water temperature data are available from 18 
NEON (NEON 2022a, b), and were accessed using the neonstore R package, which creates a 19 
"store" of NEON data on a local computer and eases the iterative downloading of additional 20 
NEON data without re-downloading data already within the store (Boettiger et al. 2021).  21 

All data were filtered using the quality assurance codes provided by NEON. The 30-22 
minute data product was aggregated to the hour and only the 00:00-01:00 UTC hour was used 23 
each day for assimilation and evaluation. The NEON (NEON 2022a, b) data were exported using 24 
the neon_export function in the neonstore R package and archived at Thomas and Boettiger 25 
(2022). Gaps in NEON’s discrete depth water temperature dataset were filled using water 26 
temperature data collected by a YSI EXO2 multiparameter sonde as part of NEON’s water 27 
quality data product (Hensley 2022).   28 

 29 
FLARE and GLM configuration 30 

Adapting FLARE to NEON lakes required configuring six unique GLM models with 31 
each lake's bathymetry and physical specifications and developing functions to download and 32 
process NEON water temperature data. Across all six lakes, we used the same initial default 33 
GLM hydrodynamic parameters (Hipsey et al. 2019) and tuned the same set of three parameters 34 
governing lake water temperature during data assimilation (lw_factor, kw, and sed_mean_temp). 35 
Since none of the six NEON lakes have major surface inflows or outflows and prior applications 36 
at a reservoir in Virginia showed limited sensitivity of forecast uncertainty to inflows (Thomas et 37 
al. 2020), we parameterized each lake without inflows or outflows.  38 

We parameterized the process uncertainty in water temperature to be the same across 39 
sites and throughout the water column (standard deviation = 0.75℃). This value was based on 40 
the findings of Thomas et al. (2020), in which FLARE’s process uncertainty was estimated 41 
across water column depths at a reservoir in Virginia. The process uncertainty was added to each 42 
ensemble member and modeled depth at each daily timestep. Since we expect this uncertainty to 43 
be correlated with depth (e.g., if the modeled temperature at a certain depth was 1℃ warmer than 44 
observed, nearby depths should also likely be too warm as well), we included a correlation 45 
length that represents an exponential decay of correlations across depths (following Appendix A 46 
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in Lenartz et al. 2007). The decay in correlation results in stronger correlations in water 47 
temperature at closer depths than further away depths. This decorrelation length parameter was 48 
set to 2 m.  49 

Similarly, observation uncertainty in water temperature data was set to be the same across 50 
lakes and depths (standard deviation = 0.1℃), based on the FLARE application in Thomas et al. 51 
(2020). Since observation uncertainty represents sensor and sampling uncertainty, we did not 52 
expect observation uncertainty to be correlated with depth, and therefore the decorrelation length 53 
for this uncertainty source was set to 0 m. 54 

Parameter estimation using the ensemble Kalman filter (EnKF) uses the estimated 55 
correlation between parameter values and the size of the errors between the predicted and 56 
observed states across ensemble members (Evensen 2009). Ensemble members that require large 57 
adjustments in the states to be consistent with observations will also adjust parameters that are 58 
correlated with that error. One challenge with estimating parameters using the EnKF is that the 59 
variation in parameter values across ensemble members collapses over time. The small variance 60 
among ensemble members prevents the parameters from further adjusting to reduce new biases 61 
in the model predictions (i.e., the calibration does not change through time).  62 

As a result, parameter estimation methods using the EnKF need to use a technique to 63 
prevent a collapse in variance. Here, we use a method called variance inflation, in which the 64 
variance in parameter values among the ensemble members is increased at each time-step when 65 
data assimilation occurs. The variance inflation increases the spread in the parameters among 66 
ensemble members while maintaining the rank order of ensemble members. We used the same 67 
variance inflation factor across all parameters and lakes (0.04).  68 

The FLAREr R package that contains FLARE functions can be found in the Zenodo 69 
repository (Thomas et al. 2022b), as well as the scripts for running FLARE at the six NEON 70 
lakes (Thomas et al. 2022a). All analyses were conducted in R software version 4.1.1 (R Core 71 
Team 2021). 72 
 73 
Meteorological inputs 74 

The forecasts were driven by numerical meteorological forecasts produced by NOAA’s 75 
Global Ensemble Forecasting System (GEFS) version 12 (Li et al. 2019). We automated the 76 
downloading of ensemble members (n=31 total) from the NOAA GEFS output for each 77 
0.5°×0.5° grid cell that included a NEON lake. NOAA GEFS generates weather forecasts at 78 
multiple times per day (00:00, 06:00, 12:00, and 18:00 UTC), which vary in their forecast 79 
horizon length (i.e., days into the future). We focused on the GEFS weather forecast that started 80 
at 00:00 UTC each day, as 30 of its 31 ensemble members extended 35 days into the future on a 81 
6-hour time step and included all meteorological variables required by the GLM as model driver 82 
data. The 6-hour output resolution of each of the 30 ensemble members was temporally 83 
disaggregated to 1-hour resolution for use in the GLM following Thomas et al. (2020).  84 

We used a “stacked” GEFS product during the 1-month spin-up period. One challenge 85 
when using data assimilation to set initial conditions and tune parameters is a potential mismatch 86 
between the meteorological data used in the spin-up and data used for generating future 87 
forecasts. Since observed and forecasted meteorology are rarely a 1:1 match, a smooth transition 88 
from data assimilation to forecasting requires either the forecasted meteorology to be corrected 89 
for the site or past meteorological forecasts to be used in place of observed meteorology for data 90 
assimilation. Here, we used the latter option because NEON meteorological data has a 1.5-month 91 
latency and often has gaps for some of the required meteorological variables. To develop a 92 
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“stacked” GEFS product, we also downloaded the 0-hour and 6-hour horizon of the forecasts that 93 
were initiated every six hours at 06:00, 12:00, and 18:00 UTC each day (the 0-hour and 6-hour 94 
for the 00:00 UTC forecast were already downloaded as part of the full 35-day horizon). We then 95 
combined the temperature, relative humidity, and wind speed from the 0-hour horizon for all 96 
NOAA GEFS forecasts. The flux variables (precipitation, longwave radiation, and shortwave 97 
radiation) required using the 6-hour horizon because they integrate the 0th to 6th hour. The 0 and 98 
6-hour horizons were used because they directly follow data assimilation in the GEFS, and 99 
therefore are most closely aligned with observed meteorology. The resulting “stacked” product 100 
was a 6-hr time-step meteorology product because the time step between the initiation of new 101 
forecasts was six hours. The stacked data product was updated each time new GEFS forecasts are 102 
available, and thus was near-real time.   103 

To estimate the 10-day variance in air temperature that was used in the predictability 104 
correlation analysis, we calculated the running standard deviation over a rolling 10-day window 105 
between 18 May 2021 and 31 October 2021 from the “stacked” GEFS product. We used the 106 
mean of the 10-day running standard deviation to represent air temperature variance for each 107 
lake during the period that forecasts were generated. 108 

All NOAA GEFS 1-hour forecasts and “stacked” products for the six NEON lakes are 109 
archived at Thomas et al (2022b). 110 

 111 
Mean Day-of-Year Null Forecast 112 

We note that while the 1 to 3.5 years of data at the NEON lakes available for this day-of-113 
year (DOY) null model (see WebTable 1) is a shorter duration than the ~30 years of data 114 
typically used in weather forecasting null climatology models, it still included all NEON data 115 
available for each lake. Moreover, the DOY null model for the lake with just one year of data 116 
(PRLA) performed similarly to the DOY null model for its paired lake (PRPO), which had three 117 
years of data (Figure 2b). 118 
 119 
Guide to Reproducibility 120 

We have provided all code used to generate forecasts, analyze forecasts, and recreate 121 
figures in this manuscript as a GitHub repository that has been archived on Zenodo (Thomas et 122 
al. 2022a). There are three steps to the analysis that are documented as separate R scripts within 123 
the repository. First, the “01_combined_paper_workflow.R” in the “workflows/neon_lakes_ms/” 124 
directory of the repository obtains the NEON data and NOAA GEFS weather forecasts and then 125 
runs FLARE on the six sites. Since this script runs 159 separate 35-day horizon forecasts for the 126 
six lakes, the time required to generate all forecasts depends on the number and speed of 127 
computer processors available and can be a multi-day execution. This first step produces a set of 128 
output files for the GLM-based and day-of-year null forecasts in a “forecasts” directory.  129 

Second, each ensemble forecast from the first step is aggregated to a mean with 130 
predictive intervals and scored (by matching to the corresponding observation, if available), with 131 
the summary statistics and observations saved as a set of scored files (one per output file) in a 132 
“scores” directory in the repository. The scoring is generated by the “02_score_forecasts.R” 133 
script located in the “workflows/neon_lakes_ms/” directory of the repository. While the scores 134 
can be generated using output files from the first step, we also provide the output files as an 135 
additional Zenodo repository (Thomas et al. 2022b) that can be downloaded and scored using the 136 
script without needing to re-run the forecasts.  137 
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Third, the scored files are analyzed using an Rmarkdown script located in the main 138 
directory of repository (“analysis_notebook.Rmd“) to produce the figures and data reported in 139 
the text. The Rmarkdown script can use the scored files produced by the second step or the 140 
scores files available in the additional Zenodo repository (Thomas et al. 2022b). 141 
 Our analysis can be reproduced by downloading the Zenodo GitHub repository and 142 
running the three scripts associated with the steps described above. Re-running the full analysis 143 
requires downloading R, Rstudio, and all the required packages, and as noted above, can take 144 
multiple days of execution, depending on the computation available. We provide a script that 145 
downloads the required packages (“install.R” in the main directory of the repository). However, 146 
there is no guarantee that other versions of R and packages will produce the same results as 147 
presented here.  148 

To enable greater reproducibility, we adapted the GitHub repository (Thomas et al. 149 
2022a) to generate a Binder that is produced by mybinder.org (Jupyter et al 2018). Mybinder.org 150 
provides a web-based version of Rstudio for re-running our GitHub repository code that uses the 151 
same version of R and R packages that we used in this analysis 152 
(https://mybinder.org/v2/zenodo/10.5281/zenodo.6267616/?urlpath=rstudio). As a result, there is 153 
more confidence that the analysis can be reproduced by harnessing the Binder infrastructure, 154 
which directly re-runs the analysis on a remote server and provides an Rstudio interface via a 155 
web browser for running the scripts described above for each of the three analysis steps.   156 

There are important caveats to using the Binder. First, at the time of this analysis, 157 
mybinder.org is free to use, and therefore its computational resources have limits and processing 158 
times can be slow. Consequently, we do not recommend running the full generation of the 35-159 
day forecasts in the Binder. The Binder is ideally suited for exploring the scored forecasts and 160 
reproducing the figures and values presented in the text (i.e., the “analysis_notebook.Rmd” script 161 
described in the third step above). Second, at the time of this analysis, the Binder does not 162 
always consistently launch when accessing the Binder link and occasionally the connection times 163 
out. It may require accessing the Binder link again to get a successful launch of the R studio 164 
interface. 165 
 166 
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WebTable 1.  Metadata of the six conterminous U.S. lake sites in the National Ecological Observatory Network. Variables that were 207 
included in the predictability correlation analysis included: latitude, maximum lake depth, fetch, volume, surface area, mean Secchi 208 
depth, mean annual temperature, mean annual precipitation, variance in air temperature, mean hydrological residence time, and 209 
catchment size. 210 

siteID Lake 
name 

NEON 
Ecoclimatic 
domain 

Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Maximum 
lake depth 
(m) 

Fetch 
(m) 

Volume 
(m3) 

Surface 
area 
(km2) 

BARC Barco 
Lake 

Southeast 29.675982 -82.008414 27 6 425 256888 0.12 

SUGG Suggs 
Lake 

Southeast 29.68778 -82.017745 32 3 867 415356 0.31 

CRAM Crampton 
Lake 

Great Lakes 46.209675 -89.473688 509 19 782 889734 0.26 

LIRO Little 
Rock 
Lake 

Great Lakes 45.998269 -89.704767 501 10 623 466757 0.19 

PRLA Prairie 
Lake 

Northern 
Plains 

47.15909 -99.11388 565 4 1010 389429 0.23 

PRPO Prairie 
Pothole 

Northern 
Plains 

47.129839 -99.253147 579 4 511 158520 0.11 

 211 
  212 
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WebTable 1.  Continued 213 
siteID Mean 

Secchi 
depth (m) 

Mixing 
regime 

Mean annual 
temperature 
(°C) 

Mean annual 
precipitation 
(mm) 

Variance in air 
temperature 
(10-day 
standard 
deviation, °C) 

Mean 
hydrological 
residence time 
(yrs) 

Catchment 
size (km2) 

Number of 
years in 
time series 
for day-of-
year null 
model 

BARC 4.08 Polymictic 20.9 1308 1.09 3.3 0.8 2.4 

SUGG 0.43 Polymictic 20.9 1308 1.09 1.6 36.9 3.4 

CRAM 4.16 Dimictic 4.3 794 2.86 4.9 0.6 2.3 

LIRO 4.37 Dimictic 4.4 796 2.86 3.4 0.9 3.1 

PRLA 0.33 Polymictic 4.9 490 3.34 3.8 4.5 1.0 

PRPO 0.40 Polymictic 4.9 494 3.39 3.2 1.4 2.0 
  214 
  215 
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WebTable 1.  Continued 216 
siteID Catchment land cover Depths with sensor observations  

(value is top of 0.25 m thick bin) 
NEON Website 

BARC shrub/scrub 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 2.00 2.50, 3.00 

https://www.neonscience.org/field-sites/barc 

SUGG evergreen/forest; woody wetlands 0.00, 0.25, 0.50, 0.75, 1.00 https://www.neonscience.org/field-sites/sugg 

CRAM woody wetlands 0.00, 0.25, 0.50, 0.75, 1.00, 1.75, 
2.00, 2.50, 3.25, 3.50, 4.25, 4.75, 
5.00, 6.25, 6.50, 6.75, 7.75, 8.00, 
8.50, 9.25, 9.50, 10.25, 10.75, 11.00 
12.00, 12.50, 13.50, 14.00, 15.50 

https://www.neonscience.org/field-sites/cram 

LIRO deciduous forest; mixed forest 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 2.00, 2.25, 2.50, 2.75, 3.00, 
3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 
5.00, 5.75, 6.00, 6.75 

https://www.neonscience.org/field-sites/liro 

PRLA grassland/herbaceous 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 1.75, 2.00 

https://www.neonscience.org/field-sites/prla 

PRPO grassland/herbaceous 0.00, 0.25, 0.50, 0.75, 1.00 https://www.neonscience.org/field-sites/prpo 

217 
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WebTable 2. Forecast accuracy, defined as root-mean square error (RMSE) at 1-day ahead, and 218 
forecast accuracy degradation, defined as the difference in maximum and minimum RMSE 219 
across the 35-day forecast horizon. We used Spearman rank correlations to quantify the 220 
relationships between morphometric, hydrological, ecological, and meteorological characteristics 221 
and mean forecast accuracy and accuracy degradation for each lake. To ease interpretation of the 222 
correlation coefficient, we negated RMSE so positive correlations are associated with higher 223 
accuracy. Given the extremely limited sample size of lakes (n=6), which is too small for reliable 224 
p-values for rho, we focused our interpretation on Spearman rho correlations |≥| 0.5 (included 225 
here). 226 

variable metric rho  

Catchment size accuracy -0.94  

Fetch accuracy -0.71  

Maximum depth accuracy 0.81  

Water clarity (Secchi depth) accuracy 0.60  

Mean annual air temperature degradation -0.79  

Water clarity (Secchi depth) degradation 0.60  

Volume degradation 0.60  

 227 
  228 
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 229 
WebFigure 1. Example 35-day forecasts of surface water temperature that were initiated on 230 
2021-06-15 and 2021-07-01. The shaded region represents the 10% and 90% quantiles. The 231 
observations (black dots) are provided for reference.   232 
  233 
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 234 

 235 
 236 

WebFigure 2. Forecast accuracy for water temperature at all depths in each lake aggregated 237 
together. Accuracy is defined by RMSE (root-mean square error in oC), calculated separately for 238 
each 1 to 35-days ahead (horizon) at the six NEON lakes. 239 
  240 
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 241 
 242 
WebFigure 3. Relationships between forecast accuracy (y-axis) and the morphometric, 243 
hydrological, ecological, and weather characteristics included in Figure 3 (x-axis). We negated 244 
RMSE (root-mean square error in oC), so positive correlations are associated with higher 245 
accuracy. WebTable 1 includes the units for each variable. 246 
 247 
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 248 
 249 
WebFigure 4. Relationships between forecast accuracy degradation (y-axis) and the 250 
morphometric, hydrological, ecological, and weather characteristics included in Figure 3 (x-251 
axis). Degradation is defined as the difference in RMSE (root-mean square error in oC) between 252 
the maximum and minimum RMSE over the 35-day forecast horizon. WebTable 1 includes the 253 
units for each variable. 254 


