The concepts of resistance, recovery, and resilience are in diverse fields from behavioral psychology to planetary ecology. These “three Rs” describe some of the most important properties allowing complex systems to survive in dynamic environments. However, in many fields—including ecology—our ability to predict resistance, recovery and resilience remains limited. Here, we propose new disturbance terminology and describe a unifying definition of resistance, recovery, and resilience. We distinguish functional disturbances that affect short-term ecosystem processes from structural disturbances that alter the state factors of ecosystem development. We define resilience as the combination of resistance and recovery—i.e., the ability of a system to maintain its state by withstanding disturbance or rapidly recovering from it. In the Anthropocene, humans have become dominant drivers of many ecosystem processes and nearly all the state factors influencing ecosystem development. Consequently, the resilience of an individual ecological parameter is not an inherent attribute but a function of linkages with other biological, chemical, physical, and especially social parameters. Because every ecosystem experiences multiple, overlapping disturbances, a multidimensional resilience approach is needed that considers both ecosystem structure (configuration of linkages) and disturbance regime. We explore these concepts with a few case studies and recommend analytical tools and community-based approaches to strengthen ecosystem resilience. Disregarding cultural and social dimensions of disturbance regimes and ecosystem structures leads to undesirable outcomes, particularly in our current context of intensifying socioecological crises. Consequently, cultivating reciprocal relationships with natural disturbance regimes and ecosystem structures is crucial to Earth stewardship in the Anthropocene.