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Introduction  

This supporting information provides more details on the data, methods and results presented in 
the main text. Text S1 and Table S1 give details on HMASR and the eight global snow products 
examined for the intercomparison. Text S2 to Text S6 (along with Table S2 and Figure S1 to Figure 
S3) provide more clarifications on the methods. Text S7 to Text S9 (along with Table S3 to Table 
S4; Figure S4 to Figure S6) provide supplementary information for the results.  
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Text S1. Data: Description of HMASR and eight global snow products 
The High Mountain Asia Snow Reanalysis (HMASR) and the eight global snow products are 

evaluated in this research. Characteristics for each dataset are summarized in Table S1 with details 
provided as follows:  

HMASR (Liu et al., 2021a) is a snow-specific reanalysis dataset, providing daily estimates of 
SWE at 1/225° (~500 m) resolution, available from Water Years (WYs) 2000 to 2017. Among all 
datasets examined in this work, HMASR is unique as it was specifically designed for snow 
estimation in HMA, leveraging remotely sensed fractional snow-covered area (fSCA) and an 
advanced ensemble-based data assimilation framework. It is directly constrained by snow 
observations, offering the potential of SWE evaluation at high elevations and over complex 
terrain, where in-situ stations do not exist.  

ERA5 (Hersbach et al., 2020) is the 5th generation product of ECMWF’s atmospheric 
reanalyses that provides hourly estimates at 0.25° resolution. Both in-situ snow depth 
observations and binary snow cover data from the Interactive Multi-Sensor Snow and Ice Mapping 
System (IMS) are used in its snow data assimilation (optimal interpolation) system, where snow 
cover is not used at elevations above 1500 m in the ERA5 snow scheme (Bian et al., 2019). In 
addition to the ERA5 product itself, the ERA5-land (Muñoz-Sabater et al., 2021) dataset at finer 
resolution (0.1°) is derived from the same ERA5 forcing and Land Surface model (LSM), but 
without data assimilation.  

MERRA2 (Gelaro et al., 2017) is the 2nd version of NASA’s Global Modeling and Assimilation 
Office (GMAO) reanalysis product, providing hourly estimates at 0.625° x 0.5° resolution. The 
Catchment model (CLSM) is used as the LSM and no snow data assimilation is performed. MERRA2 
uses a bias-corrected precipitation field for precipitation inputs (Reichle et al., 2017) to derive its 
land surface state estimates including SWE.  

JRA55 (Kobayashi et al., 2015) is the latest version of the Japan Meteorology Agency (JMA) 
reanalysis product that provides sub-daily (e.g. 3-hour snowfall and 6-hour SWE and air 
temperature) estimates. We selected its highest resolution (~0.5625° x 0.5616°) outputs for this 
work. JRA55 uses the Simple Biosphere (SiB) model as the LSM in deriving its estimates. Station 
observed snow depth and satellite retrieved binary snow cover from the Special Sensor 
Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) are used to 
update snow depth using the data assimilation (optimal interpolation) method. SWE estimates 
are converted from snow depth estimates by assuming a constant snow density (200 kg/m3; Onogi 
et al., 2007). The JRA55 product assimilates snow depth data from the stations over the Tibetan 
Plateau, while ERA5 does not (Onogi et al., 2007; Bian et al., 2019; Orsolini et al., 2019). 

GLDAS-2.1 (Rodell et al., 2004) is a global land data assimilation product generated by the 
NASA Goddard Space Flight Center, providing estimates at sub-daily (3-hour) and 0.25° or 1° 
resolution, available from January 2000 to present. It contains four datasets: two Noah model 
driven datasets at 0.25° and 1° resolution, one Variable Infiltration Capacity (VIC) model driven 
dataset at 1° resolution, and one Catchment (CLSM) model driven dataset at 1° resolution, 
denoted as GLDAS-Noah (0.25°), GLDAS-Noah (1°), GLDAS-VIC (1°) and GLDAS-CLSM (1°) 
hereafter. All of the GLDAS-2.1 products are generated using the same set of meteorological 
forcing inputs, without any snow data assimilation. 
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Table S1. Characteristics of the snow data products used in this study. For the globally available snow products, in addition to SWE, other forcing 

variables such as precipitation (P), air temperature (Ta) and snowfall (S) are also used. 1 Liu et al., 2021a; 2 Muñoz-Sabater et al., 2021; 3 Hersbach 

et al., 2020; 4 Rodell et al., 2004; 5 Gelaro et al., 2017; 6 Kobayashi et al., 2015 

 

Dataset Spatial 
resolution 

Temporal  
coverage   

Temporal 
resolution 

Land 
Surface 
Model 

Assimilated snow 
observations 

Available 
variables used in 
analysis 

HMASR1 

(reference) 

1/225° x 

1/225° 
1999/10 -2017/09 Daily SSiB3 Fractional snow-covered 

area from Landsat and 

MODSCAG 

SWE 

ERA5-Land2 0.1° x 0.1° 1950 - present Hourly H-TESSEL - SWE, P, Ta, S 

ERA53 0.25° x 0.25° 1950 - present Hourly H-TESSEL In situ snow depth; IMS 

snow cover (binary) 

SWE, P, Ta, S 

GLDAS-Noah (0.25°)4 0.25° x 0.25° 
 

2000/01 - present 

 

3-hour 

 

Noah - SWE, P, Ta, S 

MERRA25 0.625° x 0.5° 1979 - present Hourly Catchment - SWE, P, Ta, S 

JRA-556 0.5625° x 

0.5616° 
1958 - present  3- or 

6-hour 

 

SiB In-situ snow depth, 

SSM/I, SSMIS snow cover 

(binary) 

SWE, P, Ta, S 

GLDAS-Noah (1°) 1° x 1° 2000/01 - present 

 

3-hour 

 

Noah - SWE, P, Ta, S 

GLDAS-VIC (1°) VIC  

GLDAS-CLSM (1°) Catchment  
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Text S2. Methods: Definition of the snow accumulation season 
The snow accumulation season is defined at the pixel scale, from day of water year (DOWY) 

1 (!!) through the pixel-wise peak SWE DOWY (!"#$%; Figure S1). Defining these quantities at the 

pixel-scale isolates accumulation-season processes, while doing so at the basin or larger scale 

inevitably mixes accumulation season and melt season processes due to significant elevational 

variations within the region examined. Spatial variations in !"#$% are indicative of seasonal and 

elevational patterns in climatology, but are also a function of model-specific inputs and process 

representation. 

 

Figure S1. Maps of the 17-year climatology of pixel-wise peak SWE DOWY ("&'()) for each dataset. 
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Text S3. Methods: Snow mass balance at the pixel-scale during accumulation season 
Snow mass balance at the model pixel scale can be described as the relationship between 

SWE (denoted as swe in m), snowfall (s, in m/day) and ablation (a, in m/day): 

					 **+ $%& = $ − )	                               (S1)  

The snow accumulation season is defined at the pixel scale, from day of water year (DOWY) 

1 (!!) through the pixel-wise peak SWE DOWY (!"#$%; Figure S2): 

  ∫ + **+ $%&, -!
+!"#$
+% = ∫ [$ − )]-!+!"#$

+%             (S2) 

$%&"#$% = $$,, − )$,,            (S3) 

where $%&"#$% characterizes the net added SWE within the accumulation season at a specific 

pixel. The $$,,  and )$,, 	terms denote the cumulative snowfall and snow ablation integrated over 

the accumulation season. The variables $%&"#$% 	and $$,, 	are directly obtained from each snow 

product. Since different LSMs across products represent and handle ablation processes 

differently, )$,,  is obtained herein as the difference between $$,, 	and $%&"#$% (similar to Xu et 

al., 2019): 

)$,, = $$,, − $%&"#$%           (S4) 

It should also be noted that while most snow products showed consistency between 

integrated positive SWE increments and snowfall (Figure 1b in the main text), JRA55 consistently 

exhibits SWE changes lower than expected relative to snowfall (i.e. data assimilation increments 

appear to be mostly negative). For this reason, the diagnosed ablation (defined herein as the 

difference between $$,, 	and $%&"#$% ; Equation S4) for JRA55 is likely a mix of model-specific 

ablation processes and non-negligible data assimilation corrections. This explains why JRA55 has 

higher snowfall estimates, but among the lower SWE estimates among the datasets in Figure 1b.  
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Text S4. Methods: Seasonal, ephemeral, and persistent snow masks 
As in Liu et al. (2021b), the HMASR dataset is used to derive masks for persistent snow/ice, 

seasonal snow, and ephemeral (intermittent) snow (Figure S2). The persistent snow mask (derived 

in Liu et al., 2021b) is used to remove areas that are likely glacierized or with significant carry-over 

snow storage from one WY to the next. Seasonal and ephemeral snow pixels are distinguished 

using a threshold of 0.05 m in climatological peak SWE, where the distinction is made due to the 

expected differences in their accumulation-season characteristics (e.g. seasonal snow lasts longer, 

ephemeral snow is intermittent with shorter duration, and the latter does not have a distinct 

accumulation season). Other work uses the Sturm et al. (1995) classification that identifies 

ephemeral snow as that with the snow duration less than 60 days and snow depth below 50 cm 

(e.g. Petersky and Harpold, 2018; Wrzesien et al., 2019).  

For the purpose of assessing the peak snow storage in HMA, seasonal snow is emphasized 

in this work. Ephemeral snow is also assessed due to its vast coverage and non-negligible 

volumetric contribution to the total storage. Both are examined in this work so that the 

accumulation/ablation processes in the accumulation season are properly characterized for each 

snow regime. Moreover, areas under 1500 m elevation are screened out within the whole HMA 

domain and in all three masks (seasonal, ephemeral and persistent snow), to emphasize the focus 

on areas that are more likely to have snow (above 1500 m elevation).  

For consistency, we applied the three HMASR-derived masks to all other datasets, by 

aggregating them from the original HMASR resolution (~500 m) to the coarser resolution grids in 

each product (Figure S2). The masked areas were carefully examined to make sure they are 

comparable across datasets (Table S2). Seasonal snow regimes mainly cover the northwestern 

mountain regions (dominated by winter westerlies, covering ~23% of the total area), while 

ephemeral snow mainly covers the vast area in the central and eastern regions (dominated by 

summer monsoons, covering ~69% of the total area), with the highest mountains covered by 

persistent snow/ice (covering ~8% of the total area).  
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Figure S2. The derived seasonal snow, ephemeral snow, and persistent snow/ice masks shown 

at the native resolution of each dataset. 
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Table S2. The total domain area (above 1500 m elevation) and the area of seasonal snow, 

ephemeral snow, and persistent snow/ice in all datasets. 

Dataset 

Total Domain Area 

(above 1500 m 

elevation) 

(106 km2) 

Seasonal Snow 

Area (106 km2) 

Ephemeral Snow 

Area (106 km2) 

Persistent 

snow/ice area 

(106 km2) 

HMASR 4.14 1.00 2.88 0.26 

ERA5-land  4.13 0.97 2.78 0.38 

ERA5 4.11 0.98 2.77 0.36 

GLDAS-

Noah 

(0.25°) 

4.14 0.87 2.90 0.37 

MERRA2 4.10 0.88 2.90 0.32 

JRA55 4.14 0.97 2.81 0.35 

GLDAS-

Noah (1°) 
4.15 0.95 2.90 0.30 

GLDAS-VIC 

(1°) 
4.15 1.01 2.84 0.30 

GLDAS-

CLSM (1°) 
4.15 1.06 2.79 0.30 

Average 4.13 0.97 2.84 0.33 

Percentage 

relative to 

total area 

100% 23% 69% 8% 
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Text S5. Methods: Spatial and elevational integration 
The pixel-scale quantities of $%&"#$% , $$,,  and )$,,  are further aggregated to the full HMA 

domain and at subregional scales, with persistent snow pixels (Text S4; Figure S2) masked out 

prior to the integration. Spatial integration of these quantities yields the same relationship as 

Equation (S3): 

123"#$% = 1$,, − 4$,,            (S5) 

where 123"#$% is the pixel-wise peak SWE volume, and 1$,,  and 4$,, 	respectively denote the 

cumulative snowfall and snow ablation volume integrated over the accumulation season. All three 

quantities are aggregated across the HMA-scale or subregional-scale domain. 

Spatial integration over elevation bands is also detailed here (Figure S3). The DEM for each 

dataset (at the native resolution) is shown for a representative tile 34°N, 66°E in Figure S3a. The 

hypsometry over the whole domain (Figure S3b) shows how the areal distribution of elevation 

varies across datasets. For elevational distributions of variables (e.g. 123"#$% 	and 1$,, ), the 

native DEMs for each dataset were used to integrate into volumes by discretizing elevation bands 

using intervals of 1000 m (centered on 1500, 2500, 3500, 4500, and 5500 m). Compared with 

HMASR, all snow product DEMs have less area below 2000 m or above 3500 m, and more area in 

between (2000 – 3500 m). The hypsometry is generally consistent above 3500 m, and most 

different around 2500 m across snow products, with GLDAS (1°) showing the highest area, 

followed by JRA55 and MERRA2, while ERA5 and GLDAS (0.25°) show the least area (yet slightly 

higher than HMASR). 
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Figure S3. Illustration of dataset-specific a) DEMs for a representative tile (34°N, 66°E) at the 

native resolution and b) hypsometry over the HMA domain (masked with seasonal and ephemeral 

snow areas shown in Figure S1, with persistent snow and areas under 1500 m elevation excluded), 

integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 4500, and 5500 m). 
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Text S6: Methods: Linear regression  
As shown in many previous studies, precipitation (in particular snowfall) is often regarded 

as the key variable affecting peak SWE estimation (Clark et al., 2011; Magnusson et al., 2015; Xu 

et al., 2019; Cho et al., 2022). Along these lines, we use a simple linear regression to examine the 

relationship between 123"#$% and 1$,,: 

123"#$% = β ∗ 1$,, + 8           (S6) 

where 123"#$% and 1$,,  are available for each snow product and each WY. In the analysis below, 

the regression is used to examine both global (i.e. across all snow products and WYs) and local 

(i.e. for a single snow product across all WYs) variations.  

The β term is the regression coefficient (slope), and is derived either globally (β-./0$.) or 

locally (β1). The slope physically represents the fraction of cumulative snowfall that remains in the 

snowpack at !"#$%. In the limit of no ablation the slope would be ~1, while the occurrence of 

accumulation-season ablation will generally lead to values < 1. The ε term is the random noise, 

which is assumed to be independent of the predictor (1$,, ). To avoid collinearity, 4$,, 	is not 

explicitly included as a predictor in the linear regression, as it is simply computed as the difference 

between 1$,, 	and 123"#$% 	(Similar to Equation S4). The coefficient of determination (R2 ) is 

often used to measure the goodness of fit for the linear model, and its value can be interpreted 

as the fraction of the explained variance. The above approach provides a mechanism to determine 

the relative role of snowfall vs. ablation in contributing to peak snow storage (through the slope) 

as well as explain the variation in peak storage relative to snowfall.  
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Text S7. Results: Climatology and uncertainty in HMA-wide peak snow storage 
As referenced in the main text, Table S3 shows the 17-year climatology of 123"#$% in the 

eight global snow products, and their percent difference compared with those in HMASR.  

Table S3. 17-year climatology of ;<=&'() and the percent difference in the eight snow products 

compared to those in HMASR, over the full HMA domain and over the areas with seasonal and 

ephemeral snow.  

  HMA Seasonal Ephemeral 

Dataset 
;<=&'() 

(km3)  

% 

difference 

from 

HMASR 

;<=&'() 

(km3) 

% 

difference 

from 

HMASR 

;<=&'()
(km3) 

% 

difference 

from 

HMASR 

HMASR  239 - 210 - 30 - 

ERA5-land 341 43% 249 19% 93 210% 

ERA5 288 20% 198 -5% 90 200% 

GLDAS-Noah 

(0.25°) 
120 -50% 84 -60% 36 20% 

MERRA2 54 -77% 35 -83% 18 -38% 

JRA55 93 -61% 64 -69% 29 -3% 

GLDAS-Noah (1°) 114 -53% 76 -64% 37 25% 

GLDAS-VIC (1°) 179 -25% 113 -46% 65 119% 

GLDAS-CLSM (1°) 98 -59% 61 -71% 38 26% 

Mean (excluding 

HMASR) 
161 - 110 - 51 - 

Standard Deviation 

(excluding HMASR) 
102 - 74 - 28 - 

Mean Difference - -33% - -47% - 70% 

Root Mean Square 

Difference 
- 52% - 58% - 113% 
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Text S8. Results: Elevational distribution in the volumetric fraction of ;(33, >(33 and ;<=&'() 
climatology over the full HMA domain 

The elevational distribution of 1$,, , 4$,,  and 123"#$%  climatology over the full HMA 

domain is shown in Figure S4, with volumes normalized by total 1$,,  to present the volumetric 

fraction. Given the significant differences in snowfall across snow products, the normalization 

reflects how, for the same amount of snowfall, each snow product distributes snowfall across 

elevation and how that fraction is partitioned into 4$,,  and 123"#$% .  The elevational 

distribution over the full HMA domain exhibits a generally consistent pattern with that over the 

seasonal and ephemeral snow regimes. For convenience, we define the elevation bands centered 

on 2500 m, 3500 m and 4500 m as low-, mid- and high-elevation herein.  

The fractional 1$,,  distribution over elevation is generally consistent across snow products, 

except that MERRA2 exhibits a slightly higher fraction	at low-elevation and a lower fraction at 

high-elevation. ERA5 and ERA5-land exhibit higher 1$,,  fractions at mid-elevation (5% more than 

MERRA2) and lower fractions at high-elevation (comparable to MERRA2). The GLDAS products 

exhibits the lowest fractions at low-elevation (~ 5-8% less than MERRA2) but the highest fractions 

at high-elevation (~8% more than MERRA2).   

The fractional 4$,,  distribution is significantly more distinct across snow products. At low- 

and mid-elevation, both ERA5-land and GLDAS-VIC stand out as having the lowest fractions, while 

ERA5 and the other GLDAS products show moderate fractions (8% more than ERA5-land), and 

MERRA2 shows the highest fraction (20% more than ERA5-land). At high-elevation, ERA5-land and 

GLDAS-VIC show the least fractional 4$,,, but ERA5 exhibits a comparable fraction compared to 

ERA5-land. The other GLDAS products and MERRA2 show the highest fractions (8% more than 

ERA5-land). The extremely low ablation in ERA5-land and ERA5 at high-elevation is discussed in 

Hersbach et al. (2020) and is attributed to its single layer snow model not producing enough melt. 

The other three GLDAS products only exhibit minor difference with ~2% less fractional 4$,,  in 

GLDAS-Noah (0.25°) and 1% less fractional 4$,,  in GLDAS-Noah (1°) compared to GLDAS-CLSM at 

low-elevation, but barely exhibit any difference at mid- or high-elevation. 

The elevational distribution of fractional 123"#$%  is a direct result of fractional 1$,,  and 

4$,, . In general, ERA5-land exhibits the highest fractional 123"#$% , while MERRA2 has the 

lowest fraction, primarily because MERRA2 consistently has higher fractional 4$,, . Their 

differences are the largest (13%) at mid-elevation where MERRA2 exhibits less fractional 1$,,, and 

the smallest (5%) at low-elevation where MERRA2 exhibits more fractional 1$,,. Compared with 

ERA5-land, GLDAS-VIC shows ~7% less fractional 123"#$%  at mid-elevation, but ~6% more at 

high-elevation, primarily because of the difference in fractional 1$,,  distribution. Again, the other 

three GLDAS products exhibit a relatively consistent distribution in fractional 123"#$%, except 

for the 0.25° product, which shows a slightly higher fraction (~3%) at mid-elevation due to the 

fractional 1$,,  difference compared with other products. GLDAS also exhibits more fractional 

123"#$% than MERRA2, with the largest difference (8%) at high-elevation where GLDAS obtains 

more fractional 1$,,  but equivalent fractional 4$,, , and the smallest difference (<1%) at low-

elevation where GLDAS exhibits less fractional 1$,,  and less fractional 4$,,. These highlight the 

important role of ablation in removing snowfall differently with elevation, leading to a distinct 

distribution in fractional 123"#$% rather than just reproducing the fractional 1$,,  distribution. 
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Figure S4. Volumetric fraction of accumulation-season snowfall (;(33), ablation (>(33) and peak 

SWE (;<=&'()), integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 4500, 

and 5500 m) over the full HMA domain. The fractional distribution is obtained for each snow 

product by normalizing the distribution by the product-specific total ;(33 across all elevations. 

The top panel displays the cumulative volumetric fraction across elevation bins, and the bottom 

panel displays the absolute volumetric fraction within elevation bins. Note that the fractional 

ablation and SWE in JRA55 are not displayed here, due to its diagnosed ablation being 

overestimated as a result of its snow data assimilation updates.  
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Text S9. Results: Explanations of peak snow storage variations from accumulation-season 
snowfall and ablation 

As referenced in the main text, Table S4, Figure S5 and Figure S6 presented in this 

supplementary information are used to explain peak snow storage variations from accumulation-

season snowfall and ablation.  

Table S4 shows the linear regression statistics between 123"#$% and 1$,,  across WYs 2001-

2017, with volumes integrated over the full HMA domain, seasonal and ephemeral snow regimes. 

As introduced in Text S6, regression is performed locally (for each snow product) and globally 

(across all snow product), with the exception of JRA55, which is not included in the global linear 

regression, due to its diagnosed ablation being overestimated as a result of its snow data 

assimilation updates.  

Figure S5 shows the linear regression between 123"#$% and 1$,,  across WYs 2001-2017, 

with volumes integrated over the full HMA domain. The snow products are partitioned into two 

groups (subsets) (subset 1: GLDAS products and MERRA2, subset 2: ERA5 and ERA5-land), based 

on the notable gap between ERA5 and GLDAS seen from 1$,, , where the linear statistics are 

obtained separately within each subset as shown on Figure S5.  

Figure S6 shows the linear regression between 1$,,  and @$,,  (accumulation-season 

precipitation) across WYs 2001-2017, with volumes integrated over the full HMA domain, to 

examine how much 1$,,  variations are explained by precipitation vs. rain-snow partitioning 

across snow products. 
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Table S4: Linear regression statistics of slope (A) and B2, from global and local (snow product-

specific regressions), where all regressions are statistically significant with p-values < 0.05. Note 

that JRA55 results are only displayed here (with statistics greyed-out in the table) but not included 

in the global linear regression due to its diagnosed ablation being overestimated as a result of its 

snow data assimilation updates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slope (C) D4 
 

HMA-

wide 

Seasonal Ephemeral HMA-wide Seasonal Ephemeral 

Global 0.54 0.71 0.35 0.88 0.88 0.80 

ERA5-land 0.61 0.83 0.35 0.58 0.94 0.25 

ERA5 0.53 0.67 0.36 0.53 0.70 0.32 

GLDAS-

Noah 

(0.25°) 

0.45 0.59 0.29 0.48 0.76 0.36 

MERRA2 0.35 0.46 0.24 0.48 0.62 0.42 

JRA55 0.25 0.30 0.17 0.61 0.77 0.33 

GLDAS-

Noah (1°) 

0.45 0.58 0.29 0.46 0.76 0.35 

GLDAS-VIC 

(1°) 

0.58 0.76 0.41 0.60 0.83 0.48 

GLDAS-

CLSM (1°) 

0.44 0.55 0.33 0.46 0.66 0.37 
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Figure S5. Regression of peak SWE volume (;<=&'()) and accumulation-season snowfall (;(33) 

across WYs 2001-2017, with volumes integrated over the full HMA domain. Regression is 

performed over two subsets of datasets (subset 1: GLDAS products and MERRA2, subset 2: ERA5 

and ERA5-land).  
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Figure S6. Regression of accumulation-season snowfall (;(33) vs. precipitation (E(33) across WYs 

2001-2017, with volumes integrated over the full HMA domain. 
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