References
Ahuja, L., Naney, J.W., & Williams, R.D. (1985). Estimating Soil Water Characteristics from Simpler Properties or Limited Data. Soil Science Society of American Journal , 49 (5), 1100-1105. doi:10.2136/sssaj1985.03615995004900050005x.
Alastal, K. (2012). Oscillatory flows and capillary effects in partially saturated and unsaturated porous media: applications to beach hydrodynamics. (Ecoulements oscillatoires et effets capillaires en milieux poreux partiellement saturés et non satu‑rés: applications en hydrodynamique côtière). Doctoral thesis of Institut National Polytech. de Toulouse / niv. de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse, France, 226 pp.
Assouline, S. & Or, D. (2014). The concept of field capacity revisited: Defining intrinsic static and dynamic criteria for soil internal drainage dynamics. Water Resources Research , 50(6), 4787-4802.
Brooks, R. H. & Corey, A.T. (1964). Hydraulic properties of porous media, Hydrol. Paper No. 3, Colorado State Univ., Fort Collins, CO.
Campbell, G.S. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Science , 117 (6). 311-314.
Carsel, R.F. & Parrish, R.S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research , 24. 755-769.
Chirico, G.B., Medina, H. & Romano, N. (2010). Functional evaluation of PTF prediction uncertainty: An application at hillslope scale.Geoderma , 155. 193–202.
Christiaens, K. & Feyen, J. (2001). Analysis of uncertainties associated with different methods to determine soil hydraulic properties and their propagation in the distributed hydrological MIKE SHE model.Journal of Hydrology , 246. 63–81.
Clapp, R.B. & Hornberger, G.M. (1978). Empirical Equations for some soil hydraulic properties. Water Resources Research , 14 (4). 601-604.
Cornelis, W.M., Ronsyn, J., Van Meirvenne, M. & Hartmann, R. (2001). Evaluation of Pedotransfer Functions for Predicting the Soil Moisture Retention Curve. Soil Science Society of America Journal , 65. 638–648.
Cosby B.J., Hornberger, G.M., Clapp, R.B. & Ginn, T.R. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research , 20. 683-690.
Donatelli, M., Wösten, J.H.M. & Belocchi, G. (2004). Evaluation of pedotransfer functions. In: Y. Pachepsky and W.J. Rawls (Eds.) Development of Pedotransfer functions in soil hydrology. Elsevier, Amsterdam. p. 357–362.
Ek, M.B. & Holtslag, A.A.M. (2004). Influence of Soil Moisture on Boundary Layer Cloud Development. Journal of Hydrometeorology , 5, 86–99. https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2
Espino, A., Mallants, D., Vanclooster, M. & Feyen, J. (1995). Cautionary notes on the use of pedotransfer functions for estimating soil hydraulic properties. Agricultural Water Management Journal , 29. 235-253.
Feddes, R.A., Bresler, E., & Neuman, S.P. (1974). Field test of a modified numerical model for water uptake by root systems. Water Resources Research , 10. 1199-1206.
Grant, C.D. & Groenevelt, P.H. (2015). Weighting the differential water capacity to account for declining hydraulic conductivity in a drying coarse-textured soil. Soil Research . 53, 386–391. doi:10.1071/SR14258.
Groh, J., Vanderborght, J., Pütz, T., Vogel, H.J., Gründling, R., Rupp, H., Rahmati, M., Sommer, M., Vereecken, H., & Gerke, H.H. (2020). Responses of soil water storage and crop water use efficiency to changing climatic conditions: A lysimeter-based space-for-time approach.Hydrology and Earth System Sciences , 24 (3). https://doi.org/10.5194/hess-2019-411.
Guber, A.K., Pachepsky, Y.A., van Genuchten, M.Th., Rawls, W.J., Simunek, J., Jacques, D., Nicholson, T.J. & Cady, R.E. (2006). Field-Scale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water Retention. Vadose Zone Journal , 5(1). 234-247. doi: 10.2136/vzj2005.0111.
Haghighi, E., Shahraeeni, E., Lehmann, P., & Or, D. (2013). Evaporation rates across a convective air boundary layer are dominated by diffusion.Water Resources Research , 49(3). 1602-1610.
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E. Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B.T., Kersebaum, K.-C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal, H., Roggero, P.P., Rötter, R.P., Siebert, S., Specka, X. , Tao, F. Teixeira, E., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J., & Ewert, F. (2016). Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLOS ONE.doi:10.1371/journal.pone.0151782.
Holtan, H.N., England, C.B., Lawless, G.P., & Schumaker, G.A. (1968). Moisture-tension data for selected soils on experimental water-sheds, Rep. ARS 41-144. Agric. Res. Serv., Beltsville, Md. 609 pp.
Iwema, J., Rosolem, R., Rahman, M., Blyth, E., & Wagener, T. (2017). Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration, Hydrology and Earth System Science , 21. 2843–2861. https://doi.org/10.5194/hess-21-2843-2017.
Jaynes, D.B. & Tyler, E.J. (1984). Using soil physical properties to estimate hydraulic conductivity. Soil Science , 138. 298-305.
Kuhnert, M, Yeluripati, J., Smith, P., Hoffmann, H., van Oijen, M., Constantin, J., Coucheney, E., Dechow, R., Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ogle, S., & Ewert, F. (2017). Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy , 88. 41-52. doi: EURAGR-25545.
KAK. (1994). Bodenkundliche Kartieranleitung. 4thedition. E. Schweizerbart’sche Verlagsbuchhandlung. Stuttgart.
Koster, R.D. & Suarez, M.J. (2001). Soil Moisture Memory in Climate Models. Journal of Hydrometeorolgy , 2. 558–570. https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>.
Klute, A.J. (1952). Some theoretical aspects of the flow of water in unsaturated soils. Soil Science of America Proceedings , 16. 144–148.
Latorre, B., Moret-Fernández, D., Lassabatere, L., Rahmati, M., López, M.V., Angulo-Jaramillo, R., Sorando, R., Comín, F. & Jiménez, J.J. (2018). Influence of the β parameter of the Haverkamp model on the transient soil water infiltration curve. Journal of Hydrology , 564. 222-229.
Lehmann, P., Assouline, S. & Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media. Physical Review E , 77(5). 056309. doi:10.1103/PhysRevE.77.056309.
Lehmann, P., Merlin, O., Gentine, P., & Or, D. (2018). Soil texture effects on surface resistance to bare soil evaporation.Geophysical Research Letters , 45. 10,398–10,405. https://doi.org/10.1029/2018GL078803.
Morel-Seytoux, H.J., Meyer, P.D., Nachabe, M., Touma, J., van Genuchten, M.T., & Lenhard, R.J. (1986). Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive. Water Resources Research , 32(5). 1251-1258.
Moret-Fernández, D., Latorre, & Angulo-Martínez, M. (2017). Comparison of different methods to estimate the soil sorptivity from an upward infiltration curve. Catena , 155. 86-92.
Neyshaboury M.R., Rahmati, M., Rafiee Alavi, S.A.R., Rezaee, H., & Nazemi, A. H. (2015). Prediction of unsaturated soil hydraulic conductivity by using air permeability: Regression approach.Indian Journal of Agricultural Research , 49 (6). 528-533.
Parlange, J.Y. (1975). On solving the flow equation in unsaturated flow by optimization: horizontal infiltration. Soil Science Society of America Journal , 39. 415–418.
Philip, J.R. (1957). The theory of infiltration: 1. The infiltration equation and its solution. Soil Science , 83. 345-358.
Pinheiro, E.A.R., de Jong van Lier, Q., & Metselaar, K. (2018). A matric flux potential approach to assess plant water availability in two climate zones in Brazil. Vadose Zone Journal , 17.1600 83. doi:10.2136/vzj2016.09.0 083.
Pullan, A.J. (1990). The quasilinear approach for unsaturated porous media flow. Water Resources Research , 26.1219–1234. doi:10.1029/WR026i006p01219.
Raats, P.A.C. (1977). Laterally confined, steady flows of water from sources and to sinks in unsaturated soils. Soil Science Society of America Journal , 41. 294–304. doi:10.2136/sssaj1977.03615995004100020025x.
Rahmati, M., Groh, J., Graf, A., Pütz, T., Vanderborght, J., and Vereecken, H. (2020). On the impact of increasing drought on the relationship between soil water content and evapotranspiration of a grassland. Vadose Zone Journal , 19. e20029. https://doi.org/10.1002/vzj2.20029.
Rahmati M., Latorre, B., Lassabatere, L., Angulo-Jaramillo, R., Moret-Fernández, D. (2019). The relevance of Philip theory to Haverkamp quasi-exact implicit analytical formulation and its uses to predict soil hydraulic properties. Journal of Hydrology , 570.: 816–826.
Rahmati, M., & Neyshaboury, M.R. (2016). Soil Air Permeability Modeling and Its Use for Predicting Unsaturated Soil Hydraulic Conductivity.Soil Science Society of America Journal , 80(6). 1507-1513.
Rahmati M., Neyshabouri, M.R., Doussan, C., & Behroozinezhad, B. (2013). Simplified estimation of unsaturated soil hydraulic conductivity using bulk electrical conductivity and particle size distribution.Soil Research , 51. 23–33.
Rahmati M., Vanderborght, J., Šimunek, J., Vrugt, J.A., Moret-Fernández, D., Latorre, B., Lassabatere, L., & Vereecken, H. (2020). Soil hydraulic properties estimation from one-dimensional infiltration experiments using characteristic time concept. Vadose Zone Journal , https://doi.org/10.1002/vzj2.20068 .
Rawls, W.J. & Brakensiek, D.L. (1985). Prediction of soil water properties for hydrologic modeling. p 293-299. In: Jones, E.B. and T.J. Ward (eds.). Watershed Management in the Eighties. Proc. Irrig. Drain. Div., ASCE, Denver, CO. April 30 - May 1, 1985., 34: 3293-3302.
Rawls, W.J., Brakensiek, D.L., & Saxton, K.E. (1982). Estimating soil water properties. Transactions ASAE , 25(5). 1316-1320 and 1328.
Schaap, M.G. (2004). Accuracy and uncertainty in PTF predictions. p. 33–43. In: Y. Pachepsky and W.J. Rawls (Eds.) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam.
Schaap, M.G., & Leij, F.J. (1998). Database-related accuracy and uncertainty of pedotransfer functions. Soil Science , 163. 765–779.
Schaap, M.G., Leij, F.J., & van Genuchten, M.T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology , 251. 163–176.
Schaap, M.G. & van Genuchten, M.T. (2006). A Modified Mualem–van Genuchten Formulation for Improved Description of the Hydraulic Conductivity Near Saturation. Vadose Zone Journal , 5. 27-34. doi:10.2136/vzj2005.0005.
Shao, Y. & Irannejad, P. (1999). On the Choice of Soil Hydraulic Models in Land-Surface Schemes. Boundary-Layer Meteorology , 90. 83–115. https://doi.org/10.1023/A:1001786023282
Šimůnek, J. & van Genuchten, M.T. (2008). Modelling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal , 7. 782-797.
Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal , 7(2). 587-600.
Seneviratne, S.I., Corti, T. Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., & Teuling, A.J. (2010). Investigating soil moisture–climate interactions in a changing climate: a review.Earth Science Reviews , 99 (3–4). 125–161.
Tietje, O. & Hennings, V. (1996). Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes.Geoderma , 69 (1-2). 71-84.
Tietje, O. & Tapkenhinrichs, M. (1993). Evaluation of pedo-transfer functions. Soil Science Society of America Journal , 57 (4). 1088-1095.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., & Tóth, G. (2015). New generation of hydraulic pedotransfer functions for Europe.European Journal of Soil Science , 66. 226–238. doi: 10.1111/ejss.12192.
van den Hurk, B., Ettema, J., & Viterbo, P. (2008). Analysis of Soil Moisture Changes in Europe during a Single Growing Season in a New ECMWF Soil Moisture Assimilation System. Journal of Hydrometeorolgy , 9. 116–131. https://doi.org/10.1175/2007JHM848.1.
van Genuchten, M.Th. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal , 44. 892 898.
van Genuchten, M.T. & Pachepsky, Y. (2011). Pedotransfer functions. In: J. Glinski, J. Horabik, and J. Lipiec (Eds.). Encyclopedia of Agrophysics. Springer: 556-561. doi: 10.1007/978-90-481-3585-1_109.
van Looy K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y., Padarian, J., Schaap, M., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M., Weihermüller, L., Zacharias, S., Zhang, Y. & Vereecken, H. (2017). Pedotransfer functions in Earth system science: challenges and perspectives. Reviews of Geophysics . DOI:10.1002/2017RG000581.
Vereecken, H., Diels, J. Vanorshoven, J., Feyen, J., & Bouma, J. (1992). Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Science Society of America Journal , 56. 1371–1378.
Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A., & Hopmans, J.W. (2008). On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resources Research , 44. W00D06, doi:10.1029/2008WR006829. 21.
Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology , 516, 76–96.
Vereecken, H., Maes, J., & Feyen, J. (1990). Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science , 149. 1–12.
Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science , 148. 389–403.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., & van Genuchten, M.T. (2010). Using pedotransfer functions to estimate the Van Genuchten-Mualem soil hydraulic properties- a review. Vadose Zone Journal , 9. 795–820. doi:10.2136/vzj2010.0045
Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, M., Decharme, B., Ducharne, A., Ek, M., Garrigues, S., Goergen, K., Ingwersen, J., Kollet, S., Lawrence, D.M., Li, Q., Or, D., Swenson, S., de Vrese, P., Walko, R., Wu, Y., & Xue, Y. (2019). Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling.Vadose Zone Journal , 18(1). doi: 10.2136/vzj2018.10.0191.
Vogel, T., van Genuchten, M.Th., & Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Advances in Water Resources , 24 (2). 133-144 https://doi.org/10.1016/S0309-1708(00)00037-3.
Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., & Plagge, R. (2001). Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set.Geoderma , 102. 275–297.
Weihermüller, L., Herbst, M., Javaux, M., & Weynants, M. (2017). Erratum to “Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model. Vadose Zone Journal , doi:10.2136/vzj2008.0062er
Wesseling, J.G., Eibers, J.A., Kabat, P., & van den Broek, B.J. (1991). SWATRE, Instructions for input. Internal note, Win and Staring Centre, Wageningen.
Weynants, M., Vereecken, H., & Javaux, M. (2009). Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model.Vadose Zone Journal , 8 (1). 86-95. doi: 10.2136/vzj2008.0062.
Wösten J.H.M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils.Geoderma , 90.169-185.
Wösten, J.H.M., Pachepsky, Y.A., & Rawls, W.J. (2001). Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology , 251. 123–150.
Yakirevich, A., Pachepsky, Y.A., Gish, T.J., Guber, A.K., Kuznetsov, M.Y., Cady, R.E., & Nicholson, T. (2013). Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology , 501. 13-24. doi: 10.1016/j.jhydrol.2013.07.032.
Zhang, Y., Schaap, M.G. (2017). Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). Journal of Hydrology , 547, 39-53.
Zhang, Y., Schaap, M.G., Wei, Z. (2020). Development of hierarchical ensemble model and estimates of soil water retention with global coverage. Geophysical Research Letters, 47, e2020GL088819.