References
Ahuja, L., Naney, J.W., & Williams,
R.D. (1985). Estimating Soil Water Characteristics from Simpler
Properties or Limited Data. Soil Science Society of American
Journal , 49 (5), 1100-1105.
doi:10.2136/sssaj1985.03615995004900050005x.
Alastal, K. (2012). Oscillatory flows and capillary effects in partially
saturated and unsaturated porous media: applications to beach
hydrodynamics. (Ecoulements oscillatoires et effets capillaires en
milieux poreux partiellement saturés et non satu‑rés: applications en
hydrodynamique côtière). Doctoral thesis of Institut National Polytech.
de Toulouse / niv. de Toulouse. Institut de Mécanique des Fluides de
Toulouse. Toulouse, France, 226 pp.
Assouline, S. & Or, D. (2014). The concept of field capacity revisited:
Defining intrinsic static and dynamic criteria for soil internal
drainage dynamics. Water Resources Research , 50(6), 4787-4802.
Brooks, R. H. & Corey, A.T. (1964). Hydraulic properties of porous
media, Hydrol. Paper No. 3, Colorado State Univ., Fort Collins, CO.
Campbell, G.S. (1974). A simple method for determining unsaturated
conductivity from moisture retention data. Soil Science , 117 (6).
311-314.
Carsel, R.F. & Parrish, R.S. (1988). Developing joint probability
distributions of soil water retention characteristics. Water
Resources Research , 24. 755-769.
Chirico, G.B., Medina, H. & Romano, N. (2010). Functional evaluation of
PTF prediction uncertainty: An application at hillslope scale.Geoderma , 155. 193–202.
Christiaens, K. & Feyen, J. (2001). Analysis of uncertainties
associated with different methods to determine soil hydraulic properties
and their propagation in the distributed hydrological MIKE SHE model.Journal of Hydrology , 246. 63–81.
Clapp, R.B. & Hornberger, G.M. (1978). Empirical Equations for some
soil hydraulic properties. Water Resources Research , 14 (4).
601-604.
Cornelis, W.M., Ronsyn, J., Van Meirvenne, M. & Hartmann, R. (2001).
Evaluation of Pedotransfer Functions for Predicting the Soil Moisture
Retention Curve. Soil Science Society of America Journal , 65.
638–648.
Cosby B.J., Hornberger, G.M., Clapp, R.B. & Ginn, T.R. (1984). A
statistical exploration of the relationships of soil moisture
characteristics to the physical properties of soils. Water
Resources Research , 20. 683-690.
Donatelli, M., Wösten, J.H.M. & Belocchi, G. (2004). Evaluation of
pedotransfer functions. In: Y. Pachepsky and W.J. Rawls (Eds.)
Development of Pedotransfer functions in soil hydrology. Elsevier,
Amsterdam. p. 357–362.
Ek, M.B. & Holtslag, A.A.M. (2004). Influence of Soil Moisture on
Boundary Layer Cloud Development. Journal of Hydrometeorology , 5,
86–99.
https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2
Espino, A., Mallants, D., Vanclooster, M. & Feyen, J. (1995).
Cautionary notes on the use of pedotransfer functions for estimating
soil hydraulic properties. Agricultural Water Management Journal ,
29. 235-253.
Feddes, R.A., Bresler, E., & Neuman, S.P. (1974). Field test of a
modified numerical model for water uptake by root systems. Water
Resources Research , 10. 1199-1206.
Grant, C.D. & Groenevelt, P.H. (2015). Weighting the differential water
capacity to account for declining hydraulic conductivity in a drying
coarse-textured soil. Soil Research . 53, 386–391.
doi:10.1071/SR14258.
Groh, J., Vanderborght, J., Pütz, T., Vogel, H.J., Gründling, R., Rupp,
H., Rahmati, M., Sommer, M., Vereecken, H., & Gerke, H.H. (2020).
Responses of soil water storage and crop water use efficiency to
changing climatic conditions: A lysimeter-based space-for-time approach.Hydrology and Earth System Sciences , 24 (3).
https://doi.org/10.5194/hess-2019-411.
Guber, A.K., Pachepsky, Y.A., van Genuchten, M.Th., Rawls, W.J.,
Simunek, J., Jacques, D., Nicholson, T.J. & Cady, R.E. (2006).
Field-Scale Water Flow Simulations Using Ensembles of Pedotransfer
Functions for Soil Water Retention. Vadose Zone Journal , 5(1).
234-247. doi: 10.2136/vzj2005.0111.
Haghighi, E., Shahraeeni, E., Lehmann, P., & Or, D. (2013). Evaporation
rates across a convective air boundary layer are dominated by diffusion.Water Resources Research , 49(3). 1602-1610.
Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin,
J., Coucheney, E. Dechow, R., Doro, L., Eckersten, H., Gaiser, T.,
Grosz, B., Heinlein, F., Kassie, B.T., Kersebaum, K.-C., Klein, C.,
Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal,
H., Roggero, P.P., Rötter, R.P., Siebert, S., Specka, X. , Tao, F.
Teixeira, E., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J.,
& Ewert, F. (2016). Impact of Spatial Soil and Climate Input Data
Aggregation on Regional Yield Simulations. PLOS ONE.doi:10.1371/journal.pone.0151782.
Holtan, H.N., England, C.B., Lawless, G.P., & Schumaker, G.A. (1968).
Moisture-tension data for selected soils on experimental water-sheds,
Rep. ARS 41-144. Agric. Res. Serv., Beltsville, Md. 609 pp.
Iwema, J., Rosolem, R., Rahman, M., Blyth, E., & Wagener, T. (2017).
Land surface model performance using cosmic-ray and point-scale soil
moisture measurements for calibration, Hydrology and Earth System
Science , 21. 2843–2861. https://doi.org/10.5194/hess-21-2843-2017.
Jaynes, D.B. & Tyler, E.J. (1984). Using soil physical properties to
estimate hydraulic conductivity. Soil Science , 138. 298-305.
Kuhnert, M, Yeluripati, J., Smith, P., Hoffmann, H., van Oijen, M.,
Constantin, J., Coucheney, E., Dechow, R., Eckersten, H., Gaiser, T.,
Grosz, B., Haas, E., Kersebaum, K.-C., Kiese, R., Klatt, S., Lewan, E.,
Nendel, C., Raynal, H., Sosa, C., Specka, X., Teixeira, E., Wang, E.,
Weihermüller, L., Zhao, G., Zhao, Z., Ogle, S., & Ewert, F. (2017).
Impact analysis of climate data aggregation at different spatial scales
on simulated net primary productivity for croplands. European
Journal of Agronomy , 88. 41-52. doi: EURAGR-25545.
KAK. (1994). Bodenkundliche Kartieranleitung. 4thedition. E. Schweizerbart’sche Verlagsbuchhandlung. Stuttgart.
Koster, R.D. & Suarez, M.J. (2001). Soil Moisture Memory in Climate
Models. Journal of Hydrometeorolgy , 2. 558–570.
https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>.
Klute, A.J. (1952). Some theoretical aspects of the flow of water in
unsaturated soils. Soil Science of America Proceedings , 16.
144–148.
Latorre, B., Moret-Fernández, D., Lassabatere, L., Rahmati, M., López,
M.V., Angulo-Jaramillo, R., Sorando, R., Comín, F. & Jiménez, J.J.
(2018). Influence of the β parameter of the Haverkamp model on the
transient soil water infiltration curve. Journal of Hydrology ,
564. 222-229.
Lehmann, P., Assouline, S. & Or, D. (2008). Characteristic lengths
affecting evaporative drying of porous media. Physical Review E ,
77(5). 056309. doi:10.1103/PhysRevE.77.056309.
Lehmann, P., Merlin, O., Gentine, P., & Or, D. (2018). Soil texture
effects on surface resistance to bare soil evaporation.Geophysical Research Letters , 45. 10,398–10,405.
https://doi.org/10.1029/2018GL078803.
Morel-Seytoux, H.J., Meyer, P.D., Nachabe, M., Touma, J., van Genuchten,
M.T., & Lenhard, R.J. (1986). Parameter equivalence for the
Brooks-Corey and van Genuchten soil characteristics: Preserving the
effective capillary drive. Water Resources Research , 32(5).
1251-1258.
Moret-Fernández, D., Latorre, & Angulo-Martínez, M. (2017). Comparison
of different methods to estimate the soil sorptivity from an upward
infiltration curve. Catena , 155. 86-92.
Neyshaboury M.R., Rahmati, M., Rafiee Alavi, S.A.R., Rezaee, H., &
Nazemi, A. H. (2015). Prediction of unsaturated soil hydraulic
conductivity by using air permeability: Regression approach.Indian Journal of Agricultural Research , 49 (6). 528-533.
Parlange, J.Y. (1975). On solving the flow equation in unsaturated flow
by optimization: horizontal infiltration. Soil Science Society of
America Journal , 39. 415–418.
Philip, J.R. (1957). The theory of infiltration: 1. The infiltration
equation and its solution. Soil Science , 83. 345-358.
Pinheiro, E.A.R., de Jong van Lier, Q., & Metselaar, K. (2018). A
matric flux potential approach to assess plant water availability in two
climate zones in Brazil. Vadose Zone Journal , 17.1600 83.
doi:10.2136/vzj2016.09.0 083.
Pullan, A.J. (1990). The quasilinear approach for unsaturated porous
media flow. Water Resources Research , 26.1219–1234.
doi:10.1029/WR026i006p01219.
Raats, P.A.C. (1977). Laterally confined, steady flows of water from
sources and to sinks in unsaturated soils. Soil Science Society of
America Journal , 41. 294–304.
doi:10.2136/sssaj1977.03615995004100020025x.
Rahmati, M., Groh, J., Graf, A., Pütz, T., Vanderborght, J., and
Vereecken, H. (2020). On the impact of increasing drought on the
relationship between soil water content and evapotranspiration of a
grassland. Vadose Zone Journal , 19. e20029.
https://doi.org/10.1002/vzj2.20029.
Rahmati M., Latorre, B., Lassabatere, L., Angulo-Jaramillo, R.,
Moret-Fernández, D. (2019). The relevance of Philip theory to Haverkamp
quasi-exact implicit analytical formulation and its uses to predict soil
hydraulic properties. Journal of Hydrology , 570.: 816–826.
Rahmati, M., & Neyshaboury, M.R. (2016). Soil Air Permeability Modeling
and Its Use for Predicting Unsaturated Soil Hydraulic Conductivity.Soil Science Society of America Journal , 80(6). 1507-1513.
Rahmati M., Neyshabouri, M.R., Doussan, C., & Behroozinezhad, B.
(2013). Simplified estimation of unsaturated soil hydraulic conductivity
using bulk electrical conductivity and particle size distribution.Soil Research , 51. 23–33.
Rahmati M., Vanderborght, J., Šimunek, J., Vrugt, J.A., Moret-Fernández,
D., Latorre, B., Lassabatere, L., & Vereecken, H. (2020). Soil
hydraulic properties estimation from one-dimensional infiltration
experiments using characteristic time concept. Vadose Zone
Journal , https://doi.org/10.1002/vzj2.20068 .
Rawls, W.J. & Brakensiek, D.L. (1985). Prediction of soil water
properties for hydrologic modeling. p 293-299. In: Jones, E.B. and T.J.
Ward (eds.). Watershed Management in the Eighties. Proc. Irrig. Drain.
Div., ASCE, Denver, CO. April 30 - May 1, 1985., 34: 3293-3302.
Rawls, W.J., Brakensiek, D.L., & Saxton, K.E. (1982). Estimating soil
water properties. Transactions ASAE , 25(5). 1316-1320 and 1328.
Schaap, M.G. (2004). Accuracy and uncertainty in PTF predictions. p.
33–43. In: Y. Pachepsky and W.J. Rawls (Eds.) Development of
pedotransfer functions in soil hydrology. Elsevier, Amsterdam.
Schaap, M.G., & Leij, F.J. (1998). Database-related accuracy and
uncertainty of pedotransfer functions. Soil Science , 163.
765–779.
Schaap, M.G., Leij, F.J., & van Genuchten, M.T. (2001). Rosetta: A
computer program for estimating soil hydraulic parameters with
hierarchical pedotransfer functions. Journal of Hydrology , 251.
163–176.
Schaap, M.G. & van Genuchten, M.T. (2006). A Modified Mualem–van
Genuchten Formulation for Improved Description of the Hydraulic
Conductivity Near Saturation. Vadose Zone Journal , 5. 27-34.
doi:10.2136/vzj2005.0005.
Shao, Y. & Irannejad, P. (1999). On the Choice of Soil Hydraulic Models
in Land-Surface Schemes. Boundary-Layer Meteorology , 90. 83–115.
https://doi.org/10.1023/A:1001786023282
Šimůnek, J. & van Genuchten, M.T. (2008). Modelling nonequilibrium flow
and transport processes using HYDRUS. Vadose Zone Journal , 7.
782-797.
Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and
applications of the HYDRUS and STANMOD software packages and related
codes. Vadose Zone Journal , 7(2). 587-600.
Seneviratne, S.I., Corti, T. Davin, E.L., Hirschi, M., Jaeger, E.B.,
Lehner, I., Orlowsky, B., & Teuling, A.J. (2010). Investigating soil
moisture–climate interactions in a changing climate: a review.Earth Science Reviews , 99 (3–4). 125–161.
Tietje, O. & Hennings, V. (1996). Accuracy of the
saturated hydraulic conductivity prediction by pedo-transfer functions
compared to the variability within FAO textural classes.Geoderma , 69 (1-2). 71-84.
Tietje, O. & Tapkenhinrichs, M. (1993). Evaluation of pedo-transfer
functions. Soil Science Society of America Journal , 57 (4).
1088-1095.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., & Tóth, G.
(2015). New generation of hydraulic pedotransfer functions for Europe.European Journal of Soil Science , 66. 226–238. doi:
10.1111/ejss.12192.
van den Hurk, B., Ettema, J., & Viterbo, P. (2008). Analysis of Soil
Moisture Changes in Europe during a Single Growing Season in a New ECMWF
Soil Moisture Assimilation System. Journal of Hydrometeorolgy , 9.
116–131. https://doi.org/10.1175/2007JHM848.1.
van Genuchten, M.Th. (1980). A closed form equation for predicting the
hydraulic conductivity of unsaturated soils. Soil Science Society
of America Journal , 44. 892 898.
van Genuchten, M.T. & Pachepsky, Y. (2011). Pedotransfer functions. In:
J. Glinski, J. Horabik, and J. Lipiec (Eds.). Encyclopedia of
Agrophysics. Springer: 556-561. doi: 10.1007/978-90-481-3585-1_109.
van Looy K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra,
U., Montzka, C., Nemes, A., Pachepsky, Y., Padarian, J., Schaap, M.,
Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M.,
Weihermüller, L., Zacharias, S., Zhang, Y. & Vereecken, H. (2017).
Pedotransfer functions in Earth system science: challenges and
perspectives. Reviews of Geophysics . DOI:10.1002/2017RG000581.
Vereecken, H., Diels, J. Vanorshoven, J., Feyen, J., & Bouma, J.
(1992). Functional evaluation of pedotransfer functions for the
estimation of soil hydraulic properties. Soil Science Society of
America Journal , 56. 1371–1378.
Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A.,
& Hopmans, J.W. (2008). On the value of soil moisture measurements in
vadose zone hydrology: a review. Water Resources Research , 44.
W00D06, doi:10.1029/2008WR006829. 21.
Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk,
J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., &
Vanderborght, J. (2014). On the spatio-temporal dynamics of soil
moisture at the field scale. Journal of Hydrology , 516, 76–96.
Vereecken, H., Maes, J., & Feyen, J. (1990). Estimating unsaturated
hydraulic conductivity from easily measured soil properties. Soil
Science , 149. 1–12.
Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the
soil moisture retention characteristic from texture, bulk density, and
carbon content. Soil Science , 148. 389–403.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G., &
van Genuchten, M.T. (2010). Using pedotransfer functions to estimate the
Van Genuchten-Mualem soil hydraulic properties- a review. Vadose
Zone Journal , 9. 795–820. doi:10.2136/vzj2010.0045
Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef,
A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J.,
Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, M., Decharme,
B., Ducharne, A., Ek, M., Garrigues, S., Goergen, K., Ingwersen, J.,
Kollet, S., Lawrence, D.M., Li, Q., Or, D., Swenson, S., de Vrese, P.,
Walko, R., Wu, Y., & Xue, Y. (2019). Infiltration from the Pedon to
Global Grid Scales: An Overview and Outlook for Land Surface Modeling.Vadose Zone Journal , 18(1). doi: 10.2136/vzj2018.10.0191.
Vogel, T., van Genuchten, M.Th., & Cislerova, M. (2001). Effect of the
shape of the soil hydraulic functions near saturation on
variably-saturated flow predictions. Advances in Water Resources ,
24 (2). 133-144 https://doi.org/10.1016/S0309-1708(00)00037-3.
Wagner, B., Tarnawski, V.R., Hennings, V., Müller, U., Wessolek, G., &
Plagge, R. (2001). Evaluation of pedo-transfer functions for unsaturated
soil hydraulic conductivity using an independent data set.Geoderma , 102. 275–297.
Weihermüller, L., Herbst, M., Javaux, M., & Weynants, M. (2017).
Erratum to “Revisiting Vereecken Pedotransfer Functions: Introducing a
Closed-Form Hydraulic Model. Vadose Zone Journal ,
doi:10.2136/vzj2008.0062er
Wesseling, J.G., Eibers, J.A., Kabat, P., & van den Broek, B.J. (1991).
SWATRE, Instructions for input. Internal note, Win and Staring Centre,
Wageningen.
Weynants, M., Vereecken, H., & Javaux, M. (2009). Revisiting Vereecken
Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model.Vadose Zone Journal , 8 (1). 86-95. doi: 10.2136/vzj2008.0062.
Wösten J.H.M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development
and use of a database of hydraulic properties of European soils.Geoderma , 90.169-185.
Wösten, J.H.M., Pachepsky, Y.A., & Rawls, W.J. (2001). Pedotransfer
functions: Bridging the gap between available basic soil data and
missing soil hydraulic characteristics. Journal of Hydrology ,
251. 123–150.
Yakirevich, A., Pachepsky, Y.A., Gish, T.J., Guber, A.K., Kuznetsov,
M.Y., Cady, R.E., & Nicholson, T. (2013). Augmentation of groundwater
monitoring networks using information theory and ensemble modeling with
pedotransfer functions. Journal of Hydrology , 501. 13-24. doi:
10.1016/j.jhydrol.2013.07.032.
Zhang, Y., Schaap, M.G. (2017). Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3). Journal of
Hydrology , 547, 39-53.
Zhang, Y., Schaap, M.G., Wei, Z. (2020). Development of hierarchical
ensemble model and estimates of soil water retention with global
coverage. Geophysical Research Letters, 47, e2020GL088819.