Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Mehdi Rahmati

and 15 more

Here, we review in depth how soils can remember moisture anomalies across spatial and temporal scales, embedded in the concept of soil moisture memory (SMM), and we explain the mechanisms and factors that initiate and control SMM. Specifically, we explore external and internal drivers that affect SMM, including extremes, atmospheric variables, anthropogenic activities, soil and vegetation properties, soil hydrologic processes, and groundwater dynamics. We analyze how SMM considerations should affect sampling frequency and data source collection. We discuss the impact of SMM on weather variability, land surface energy balance, extreme events (drought, wildfire, and flood), water use efficiency, and biogeochemical cycles. We also discuss the effects of SMM on various land surface processes, focusing on the coupling between soil moisture, water and energy balance, vegetation dynamics, and feedback on the atmosphere. We address the spatiotemporal variability of SMM and how it is affected by seasonal variation, location, and soil depth. Regarding the representation and integration of SMM in land surface models, we provide insights on how to improve predictions and parameterizations in LSMs and address model complexity issues. The possible use of satellite observations for identifying and quantifying SMM is also explored, emphasizing the need for greater temporal frequency, spatial resolution, and coverage of measurements. We provide guidance for further research and practical applications by providing a comprehensive definition of SMM, considering its multifaceted perspective.

Juan Quirós

and 8 more

Remotely-sensed Solar Induced chlorophyll Fluorescence (SIF) is a novel promising tool to retrieve information on plants’ physiological status due to its direct link with the photosynthetic process. At the same time, narrow band Vegetation Indices (VIs) such as the MERIS Terrestrial chlorophyll index (MTCI), and the Photochemical Reflectance Index (PRI), as well as broad band VIs like the Normalized Difference Vegetation Index (NDVI), have been widely used for crop stress assessment. A match between these remote sensing products and the spatial distribution of soil units is expected; nevertheless, an in-depth analysis of such relationship has been rarely performed so that additional studies are required. In this contribution, we aimed at the comparison in the use of normalized SIF (SIF = SIF/PAR; computed with the Spectral Fitting Method, SFM) and VIs (MTCI, PRI and NDVI) for heat stress assessment in corn, sugar beet and potato at the beginning and towards the end of a heatwave occurring in Selhausen, Germany, 2018. Data were acquired with the HyPlant airborne sensor, which is a high performance imaging spectrometer with around 0.30 nm of spectral resolution in the Oxygen absorption bands. We compared different plots located in the upper (poorer soil characteristics for agriculture such as water holding capacity and content of coarse sediments) or lower landscape terraces; we also evaluated the different remote sensing products in comparison with site specific geophysics-based soil maps. At the beginning of the heat wave we found that, compared with VIs, SIF data showed a clearer differentiation of the stress conditions at a terrace level in potato and sugar beet. However, towards the end of the wave a significant decrease of MTCI and NDVI contrasted with higher SIF in sugar beet and corn. Nonetheless, those crops (sugar beet and corn) did not show significant SIF differences between terraces. A significant spatial match was found between SIF and geophysics-derived soil spatial patterns (p = 0.004-0.030) in fields where NDVI was more homogeneous (p = 0.028-0.499, respectively). This suggests the higher sensitivity of SIF to monitor heat stress compared with common VIs.