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DNN Architectures

Introduction Datasets

We use autonomous robots (Henthorn et al., 2006) augmented by visual sensing Databases formed from similar imaging environment are developed. COAPNet is the recommended arhitecture for the in-situ plankton identification
for realtime analysis and assessment of planktonic organizms This is a necessary step for training the Deep Neural Network (DNN) and classification task based on the reported performancemetrics over the 3
(Ohman et al., 2019; AILARON, 2019). architecture adopted in the system. databases.
FC FC
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Performance Comparison Labeled databases (objects extracted from in-situ 01 01 e O EACH IS e w | maww
captured images), image sizes:1-1190(kB), width: COAPNet: 5 convolutional layers intertwined with max-pooling layers for dimentionality
4-1031(pixels), height:2-811 (pixels). reduction and followed by three fully connected layers.
Confusion matrix is a graphical representation that results from training the DNN. Cells on the diagonal

represent the True Positive (TP) values of classes recognized by the Network during the training process.
Higher TP values, represented by darker colors, indicate better recognition performance.
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Conclusion
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Confusion matrix resulting from training the different DNN architectures over DBI

classification of plankton-taxa
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