Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Shun-Rong Zhang

and 8 more

The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least four days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ~300-350 m/s (depending on the propagation direction) and 500-1000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 hours since the eruption. TIDs following the shock fronts developed for ~8 hours with 10-30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels of atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances.

Ercha Aa

and 7 more

This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground-based Global Navigation Satellite System (GNSS) total electron content (TEC), Swarm in-situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (1) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ~45~min after the eruption, comprising of several cascading TEC decreases and quasi-periodic oscillations. Such a deep local plasma hole was also observed by space-borne in-situ measurements, with an estimated horizontal radius of 10-15 deg and persisted for more than 10 hours in ICON-IVM ion density profiles until local sunrise. (2) Pronounced post-volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia-Oceania area after the arrival of volcano-induced waves; these caused a Ne decrease of 2-3 orders of magnitude at Swarm/ICON altitude between 450-575~km, covered wide longitudinal ranges of more than 140 deg and lasted around 12 hours. (3) Various acoustic-gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock-acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb-wave mode of ~315 m/s; the large-scale EPBs could be seeded by acoustic-gravity resonance and coupling to less-damped Lamb waves, under a favorable condition of volcano-induced enhancement of dusktime plasma upward ExB drift and postsunset rise of the equatorial ionospheric F-layer.