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Introduction  

This Supporting Information includes a map that shows the global distribution of individual 
shore-connected canyon heads during the Last Glacial Maximum (LGM) and the present day 
(Fig. S1) and various scatter plots of each predictor to the individual canyon head (Fig. S2a, Data 
Set S1). In the main text, we bin this data into hexagonal polygons of a size of 50,000 km2 to 
upscale the data set for Bayesian penalized regression modeling (Fig. S2b, Data Set 2).  

Moreover, we include the details of the sensitivity analysis that guided the choice of the 
shrinkage prior (Figs. S3 to S6). The model parameters for all five shrinkage priors are included 
in Tables S1 to S5.  

Global distribution of shore-connected canyon heads  
In the main text of the manuscript, we show the present-day shore-connected canyon (SCC) 
heads as the fraction SCCs binned in 50,000 km2 hexagons. For a more complete picture, we 
show the global distribution of individual SCCs during the present-day and the Last Glacial 
Maximum (Fig. S1) and the number of present-day SCC heads plotted against every predictor.  
 

 

Fig. S1. Global distribution of shore-connected canyon (SCC) heads during the present day 
and the Last Glacial Maximum. 
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b) 

 
 
Fig. S2. a) Cross-plots of 33 predictors against mean, present-day shelf width for present-day and LGM shore-connected canyons (SCCs). Note the log-scale 
of the y-axis and some x-axes. b) Predictors plotted against the total numbers of present-day and LGM shore-connected canyons (SCCs) in each hexagon.
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Sensitivity Analyses of shrinkage priors 
To identify the most important predictors on the number of present-day shore-connected 
canyon (SCC) heads and to predict these numbers on a global scale, we employ Bayesian 
penalized regression. Bayesian statistics applies probabilities to statistical problems offering a 
statistical way to learn from new data to update prior beliefs (e.g., Efron, 2013) while accounting 
for uncertainties and Bayesian  regression is an emergent state-of-the-art tool in 
geomorphology (Korup, 2020). In the frequentist approach to penalized regression a penalty 
term is introduced with the aim to shrink small regression coefficients towards zero and 
therefore reducing or eliminating the predictor variable from the model, while large coefficients 
remain large (e.g., Tibshirani, 2011). In Bayesian penalized regression, penalization is 
incorporated through the prior distribution (e.g., van Erp et al., 2019). Therefore, the shrinkage 
prior allows us to determine important predictors and to discard these predictors that are 
unimportant to predict the number of SCC canyon heads. We used used bayesreg, a Matlab 
toolbox for fitting Bayesian penalized regression models with continuous shrinkage prior 
densities for penalized regression models (Makalic and Schmidt, 2016, version 1.9, 2017-2020). 
As we are predicting counts of present-day SCC canyons per hexagon, we specified a Poisson 
distribution for the response variable in bayesreg. To choose the shrinkage prior, we followed the 
suggested procedure of van Erp (2020): We applied all five shrinkage priors available for the 
Poission problem in bayesreg with their default hyperparameters (Figs. S3-S6, Table S1-S5). All 
priors result in similar prediction root mean square errors (RMSE=0.93-0.95; Table S1-S5, Fig. S6), 
Watanabe–Akaike information criteria (WAIC=220-231), pseudo R2 of ~0.5, and posterior 
distributions of the regression coefficients (Figs. S4). Based on the lowest RMSE (Table S1) and 
the efficient and stable sampling performance (Table S1-5, Fig. S3), we show the results of the 
lasso shrinkage prior in the main text of the manuscript. To determine the importance of each 
predictor, we use the Bayesian feature ranking algorithm of Makalic and Schmidt (2011). The rank 
corresponds to the strength of the association between the predictors and the response 
(present-day SCC counts per hexagon) where lower ranks denote more important predictors 
(Table S1-S5). Because the ranking process is repeated for each posterior sample, the final rank 
of the predictor is determined from the complete set of rankings based on the 75th percentile.  
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Figure S3. The number of samples used to compute the posterior distribution of all predictors 
for each shrinkage prior. This number was computed by applying the effective sample size 
(ESS, Table S1-S5) to the total MCMC sample size of n= 500 000. The logt, the horseshoe and 
the horseshoe+ shrinkage priors ineffectively sample some predictors and the efficient sample 
size is zero for e.g., the shelf width. Effective sampling is most stable when using the lasso and 
the ridge prior with the minimum number of samples used is 4,385 and 27,921 respectively.  
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Fig. S4. Posterior distributions of the 8 most highly ranked predictor coefficients for each shrinkage prior ordered by rank. For abbreviations of 
predictors see Table 1 in the main manuscript. The predictors on the left have the highest ranking (see also Table S1-S5).
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Fig. S5. Comparison of posterior mean estimates and 95% credibility intervals obtained 
employing the five shrinkage priors. All five shrinkage priors return comparable posterior 
distributions for all predictors.
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Fig. S6. Comparison of the actual counts of presently shore-connected canyons and the predicted counts from Bayesian regression for all five 
priors. Blue lines show 1:1 reference lines and grey lines are least-square lines.  
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Table S1. Summary statistics of the Bayesian regression model for a Poisson-distributed target 
variable using the Lasso shrinkage prior.  
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Table S2. Summary statistics of the Bayesian regression model for a Poisson-distributed target 
variable using the Ridge shrinkage prior.  
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Table S3. Summary statistics of the Bayesian regression model for a Poisson-distributed target 
variable using the Log-t shrinkage prior.  
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Table S4. Summary statistics of the Bayesian regression model for a Poisson-distributed target 
variable using the Horseshoe shrinkage prior.  
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Table S5. Summary statistics of the Bayesian regression model for a Poisson-distributed target 
variable using the Horsehoe+ shrinkage prior.  

Data Set S1. Information and predictor variable values for each individual canyon head.  

Data Set S2. Information and predictor variable values for numbers of submarine canyon 
heads in each 50 000 km2 hexagon.  
 
 


