Brett Anthony Carter

and 12 more

The Hunga Tonga Volcano eruption launched a myriad of atmospheric waves that have been observed to travel around the world several times. These waves generated Traveling Ionospheric Disturbances (TIDs) in the ionosphere, which are known to adversely impact radio applications such as Global Navigation Satellite Systems (GNSS). One such GNSS application is Precise Point Positioning (PPP), which can achieve cm-level accuracy using a single receiver, following a typical convergence time of 30 mins to 1 hour. A network of ionosondes located throughout the Australian region were used in combination with GNSS receivers to explore the impacts of the Hunga-Tonga Volcano eruption on the ionosphere and what subsequent impacts they had on PPP. It is shown that PPP accuracy was not significantly impacted by the arrival of the TIDs and Spread-F, provided that PPP convergence had already been achieved. However, when the PPP algorithm was initiated from a cold start either shortly before or after the TID arrivals, the convergence times were significantly longer. GNSS stations in northeastern Australia experienced increases in convergence time of more than 5 hours. Further analysis reveals increased convergence times to be caused by a super equatorial plasma bubble (EPB), the largest observed over Australia to date. The EPB structure was found to be ~42 TECU deep and ~300 km across, traveling eastwards at 30 m/s. The Hunga Tonga Volcano eruption serves as an excellent example of how ionospheric variability can impact real-world applications and the challenges associated with modeling the ionosphere to support GNSS.

Adam C Kellerman

and 11 more

Geomagnetically induced currents (GICs) at middle latitudes have received increased attention after reported power-grid disruptions due to geomagnetic disturbances. However, quantifying the risk to the electric power grid at middle latitudes is difficult without understanding how the GIC sensors respond to geomagnetic activity on a daily basis. Therefore, in this study the question “Do measured GICs have distinguishable and quantifiable long- and short-period characteristics?” is addressed. The study focuses on the long-term variability of measured GIC, and establishes the extent to which the variability relates to quiet-time geomagnetic activity. GIC quiet-day curves (QDCs) are computed from measured data for each GIC node, covering all four seasons, and then compared with the seasonal variability of Thermosphere-Ionosphere- Electrodynamics General Circulation Model (TIE-GCM)-simulated neutral wind and height-integrated current density. The results show strong evidence that the middle-latitude nodes routinely respond to the tidal-driven Sq variation, with a local time and seasonal dependence on the the direction of the ionospheric currents, which is specific to each node. The strong dependence of GICs on the Sq currents demonstrates that the GIC QDCs may be employed as a robust baseline from which to quantify the significance of GICs during geomagnetically active times and to isolate those variations to study independently. The QDC-based significance score computed in this study provides power utilities with a node-specific measure of the geomagnetic significance of a given GIC observation. Finally, this study shows that the power grid acts as a giant sensor that may detect ionospheric current systems.

Yang Yang

and 7 more