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Abstract12

Landslides pose a significant threat to society and infrastructure and their occurrence13

is projected to increase in many regions under the effect of climate change. There is an14

urgent demand for reliable monitoring of this natural hazard. The combination of space-15

borne remote sensing data with state-of-the-art machine learning algorithms offers valu-16

able tools for landslide detection in remote areas. However, a key limitation for the de-17

tection lies in the scale factor, especially for methods relying on pixel neighbourhoods.18

This study presents an innovative methodology which combines a spatial graph with SAR19

and multi-spectral change products. The graph integrates the flow direction based on20

the topography into the neighbourhood determination. This unique neighbourhood al-21

lows for the preservation of the unique shape and signature of an individual landslide.22

This paper compares the proposed graph neighbourhood to a common square window23

approach. Therefore, a RFC is trained with neighbourhood statistics from both approaches24

and applied to landslides of varying extent. A research area in New Zealand’s West Coast25

region is selected due to the continuous evolution of a single landslide over multiple events.26

The graph approach shows promising results, particularly for small-scale events which27

are successfully detected while being missed by the common window approach. Using28

the graph neighbourhood, we can even detect the smallest visible extent of the landslide29

at 2-3 pixels (30-45m) width. The main limitation of the proposed approach lies in the30

quality of the input data. Future work will focus on the improvement of the Sentinel-31

1 and Sentinel-2 pre-processing.32

1 Introduction33

Landslides occur in mountainous regions all over the globe. This common and widespread34

natural hazard is driven by tectonic, climatic, or human factors and the combination thereof.35

Analysis of a global fatal non-seismic landslide dataset has revealed more than 55 00036

people being killed by landslides between 2004 and 2016 (Froude & Petley, 2018). Be-37

yond human losses, there are also significant economic losses due to damaged infrastruc-38

ture and destruction of livelihoods. Several studies point at increases in frequency and39

intensity of heavy rainfall events, which are a key trigger for specific types of landslides,40

as a consequence of climate change (Guha-Sapir et al., 2012; Seneviratne et al., 2012).41

The number of people exposed to landslide risks is expected to further increase under42

these conditions in the future (Gariano et al., 2017). When the physical and meteoro-43

logical triggers of landslides are coupled with anthropogenic factors (e.g., population in-44

creases, urbanization of hazardous areas, land use change), negative consequences are45

even amplified (Araújo et al., 2022; Promper et al., 2015). Thus, there is an urgent need46

for detection and observation of landslides in order to prevent human losses and min-47

imize damages to infrastructure.48

Considering the widespread occurrence of landslides, spaceborne earth observation49

missions offer the possibility to survey large areas remotely (Zhong et al., 2020; Zhao &50

Lu, 2018). There are both active and passive remote sensing data available through ESA’s51

Copernicus Programme providing global coverage with high temporal resolution due to52

very short revisit times (Torres et al., 2012; Drusch et al., 2012). These data have been53

used in various studies for mapping (Fayne et al., 2019) and observing (Barra et al., 2016;54

Manconi et al., 2018) active landslides. Zhong et al. (2020) provide a comprehensive re-55

view of state-of-the-art landslide mapping using remote sensing highlighting the increas-56

ing interest in object-based approaches and automatizing landslide recognition over the57

past decades. For future improvements in accuracy and reliability, “exploiting the sur-58

face spatial structure of landslides with weighted graph algorithms” (Zhong et al., 2020)59

is considered very promising.60

For the automated detection of smaller events, a key obstacle lies in spatial reso-61

lution. Common classification approaches integrate the neighbourhood of each pixel. Well-62

established neighbourhood operations work with adaptive square windows to assess a63

pixel’s surroundings (Aber et al., 2019; Paranjape et al., 1994; Liu & Mason, 2013). Con-64
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sequently, smaller events are at risk of being overlooked at lower resolution as the neigh-65

bourhood statistics may include a relatively larger non-affected area. As higher resolu-66

tion generally comes at larger costs, it is essential to exploit as much information as pos-67

sible from available data in order to ensure broad access to high-quality hazard mapping.68

Therefore, the aim is to determine the relevant neighbours of each pixel. This pa-69

per proposes a method to integrate physical properties of the moving mass into neigh-70

bourhood operations. A graph network based on the topography of the observed area71

is implemented to determine the neighbourhood of each pixel of an acquisition.72

Originally, graph theory was used in fields of studies such as biology, linguistics,73

and logistics optimization. Promoted by advances in computational power, the appli-74

cation of graphs has since been extended to the analysis of spatial issues (Dale & Fortin,75

2010; Cheung et al., 2015). Spatial graphs have become an important pillar of geographic76

information science to examine topological relations between spatial objects (de Almeida77

et al., 2013). Today, spatial graphs are used in numerous fields of application ranging78

from ecology and landscape monitoring to urban studies (de Almeida et al., 2013; Che-79

ung et al., 2015; Fortin et al., 2012). “Although geomorphic systems have been depicted80

as networks, graph theory has seldom been applied” (Heckmann et al., 2015). The ap-81

plication of graphs to natural hazards such as landslides is considered promising.82

Generally, a graph can be defined as a mathematical object consisting of two main83

components, nodes and edges. Nodes are individual points, which are connected by edges.84

In a spatial context, nodes are used to represent individual objects with specific prop-85

erties (e.g., landcover patches). Edges are used to describe the topology between the nodes86

(Dale & Fortin, 2010; Cheung et al., 2015).87

In this paper, the proposed graph consists of nodes for each pixel and edges based88

on the flow direction. Instead of a common n x n window with n2-1 neighbours, a graph-89

derived neighbourhood consists of neighbourhood pixels which are connected to the seed90

node in the graph. Thus, only pixels up- and/or downslope (following the flow direction)91

are included in the calculation of neighbourhood statistics. This reduces the overall area92

to the topographically relevant pixels. The focus of this approach lies on detecting land-93

slides characterized by flowing movements as described in the updated Varnes classifi-94

cation (Hungr et al., 2014). Finally, a Random Forest Classifier (RFC) is applied to de-95

termine affected and unaffected areas (Belgiu & Drăguţ, 2016; Pal, 2005). This classi-96

fication method consists of multiple decision trees, which can be compared to common97

thresholding methods. However, the RFC will construct these decision trees based on98

the training data provided as input. It is a simple, yet transparent method compared99

to other machine learning approaches (e.g., neural networks) (Maxwell et al., 2018; Lary100

et al., 2016) and thus suitable for our study, which focuses on the proposed graph neigh-101

bourhood.102

2 Study Area and Data103

2.1 Cook River/Weheka Valley104

In this paper, the introduced method is applied to two landslides which occurred105

between 2016 and 2018 in the Weheka/Cook River Valley, in the West Coast region of106

New Zealand’s South Island. The West Coast region covers a large elevation range from107

the coast on the west to the main divide of the Southern Alps with its highest point at108

3724 m.a.s.l., Aoraki/Mount Cook. The climate of the West Coast region is character-109

ized by large amounts of rainfall (up to 6000 mm median annual rainfall) with the high-110

est rainfalls typically reported in December and a minimum in February. At high ele-111

vations even 10 000 mm of annual rainfall are regularly exceeded (Macara, 2016).112

Under the impact of climate change, the West Coast region is expected to become113

even wetter, mainly due to seasonal increases in winter and spring rainfall as well as over-114

all increases of extreme events. Area-average changes of up to 40% increase in precip-115

itation by 2090 are projected under a high-emission scenario (RCP 8.5) (, 2018). The116

–3–



manuscript submitted to Earth and Space Science

Figure 1. Overview of the research site with a focus on the evolution of the Cook

River/Weheka Valley landslide. The four lower images show the Sentinel-2 acquisitions before

(a) and after (b) the first and after each subsequent (c-d) event. Furthermore, an older landslide

in the Cook River/Weheka Valley as well as the Alpin Garden Landslide are marked as reference

points. There are still clouds remaining in the images, due to the lack of cloud-free data. These

are partially masked during the pre-processing but still pose one of the largest error sources.
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link between heavy rainfall events and the occurrence of landslides is well established.117

Large parts of the Weheka/Cook River Valley lie within the Westland Tai Poutini Na-118

tional Park, where our research site is located, too. Vegetation is dominated by podocarp-119

broadleaf temperate rainforest covering the lower parts (Carrivick & Rushmer, 2009) while120

some sparsely vegetated areas can be found on mountain flanks.121

In the northern adjacent Fox Glacier Valley, the Alpine Gardens Landslide, a well-122

observed and studied area, is located (de Vilder et al., 2020). The entire region is no-123

table for strong erosion, deep-seated gravitational slope deformations as well as numer-124

ous landslides which have caused two fatalities and a number of near-misses in the renowned125

tourist destination. In many cases, the high amounts of rainfall acted as important trig-126

gers for these events while some are also linked to their proximity to seismic activity in127

the Alpine Fault (de Vilder et al., 2022).128

In this study, the main event of interest is located at [lat: -43.517, lon: 169.966].129

This particular landslide allows for the observation of its evolution from an unaffected130

forest area to a medium-sized landslide between 28 December 2017 (Figure 1 a) and 18131

November 2018 (Figure 1 d). The first visible alterations can be recognized in the Sen-132

tinel 2 acquisition on 6 February 2018, where a slim landslide is visible in the valley (ap-133

prox. 0.02 km2). During March, the affected area grows in size (approx. 0.12 km2), and134

on 18 November 2018 the largest extent (approx. 0.28 km2) is reached. With continu-135

ous data on this development available, we are able to test the proposed graph approach136

for each stage and extent.137

To test the method on a second research site, we apply the approach to another138

landslide in the same region which occurred one year earlier between 2016 and 2017 [lat:139

-43.55, lon: 170.0 / approx. 0.02 km2]. This landslide can be seen on the lower border140

of the large overview figure, to the right of the 170°E marker. The older Weheka Val-141

ley landslide is marked for reference. However, it occurred prior to available Sentinel-142

1 and Sentinel-2 coverage.143

2.2 Data and Software144

A strong focus of our work is the easy and flexible applicability for different regions.145

All data and software used are openly available to make our product available to a broad146

range of users regardless of financial resources. Regarding the data, we integrate Sentinel-147

1, Sentinel-2, the Shuttle Radar Topography Mission’s (SRTM) digital elevation model148

(DEM), and landcover products from the Copernicus Land Monitoring Service.149

In terms of software, the approach is implemented using Python. For the SAR im-150

age processing, the Graph Processing Framework (GPF) included in ESA’s SNAP Python151

API snappy is used. The remaining components of the data are processed with Google152

Earth Engine’s Python API. Furthermore, important libraries comprise GDAL (GDAL/OGR153

contributors, 2021), NumPy (Harris et al., 2020), and Scikit-learn (Pedregosa et al., 2011)154

for image co-registration, graph creation, and random forest classification, respectively.155

All figures are generated using the Matplotlib library. ESA’s Sentinel-1 mission provides156

1 Interferometric Wide swath (IW) Single Look Complex (SLC) products (i.e., Synthetic157

Aperture Radar (SAR) Data) with a pixel spacing of 2.3x14.1 m [Range x Azimuth], prior158

to any multi-looking being performed. The data can be accessed, inter alia, through the159

Alaska Satellite Facility Vertex. The Sentinel-2 mission acquires high-resolution multi-160

spectral data with spatial resolutions of 10m, 20m, or 60m, depending on the bands. In161

this study, we only integrate the highest resolution bands: B2 (490nm), B3 (560nm), B4162

(665 nm), and B8 (842 nm). These are directly accessible through Google Earth Engine’s163

Data Catalog. Both Sentinel missions operate with twin satellites leading to a high tem-164

poral resolution (5 days revisit time at the Equator) (Geudtner et al., 2014; Spoto et al.,165

2012).166

Based on the SRTM data, a high-resolution DEM is publicly available at 1 arc-second167

spatial resolution for regions between 60 degrees north and 54 degrees south latitude.168
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The data is accessed using the Google Earth Engine (Farr et al., 2007; Gorelick et al.,169

2017).170

Regarding the landcover products, the Copernicus Land Cover Collection (LCC)171

provides a global surface cover map at 100m resolution, which is annually updated and172

also accessible through Google Earth Engine’s Data Catalog (Buchhorn et al., 2020).173

3 Method174

We start by presenting the general workflow (see Figure 2), followed by a more de-175

tailed description of all processing steps. The workflow can be divided into three main176

components.177

First, there is the data collection and pre-processing workflow for the individual178

data types. For the SAR data, a Beta-Nought differencing is conducted to observe the179

changes on the surface between two acquisitions. The optical data is used to calculate180

a change detection between a cloud-free mosaic of pre- and post-event acquisitions. Sec-181

ond, the implementation of a graph, which is used to merge the data and to calculate182

neighbourhood operations based on the flow direction, is described in more detail. And183

third, the classification process is presented. The training of a Random Forest Classi-184

fier is explained and the issue of heterogenous landcover affecting the resulting classi-185

fication is addressed.186

3.1 Data Acquisition and Processing187

3.1.1 SAR Data Processing188

Sentinel-1 IW SLC products with VH polarisation are used for this study. The pro-189

cessing of the SAR data follows the approach used by Mondini et al. (2019), which pro-190

vides the basis for their photo-interpretation study of numerous landslides worldwide.191

The approach comprises the calculation of pre- and post-event Beta-Nought images fol-192

lowed by determining the ratio between the images.193

The according processing pipeline (Figure 2) consists of the following steps, which194

are applied to each acquisition using ESA’s SNAP Python API snappy: apply orbit file,195

TOPSAR-split, TOPSAR-deburst, multi-looking (range looks: 4, azimuth looks: 1), speckle-196

filter (Frost, XY window size: 5, dampening factor: 2), terrain correction (DEM: SRTM197

1Sec HGT, image resampling: nearest neighbour, radiometric normalization: save Beta-198

Nought), and creation of a geographic subset. The two acquisitions are then stacked, and199

the natural logarithm of their ratio is calculated (Mondini et al., 2019). Furthermore,200

layover and shadow maps are created during the terrain correction operation. These can201

be used to mask misleading pixel values.202

All SAR data processing steps are implemented using the Graph Processing Frame-203

work (GPF) included in ESA’s SNAP Python API snappy.204

3.1.2 Multi-Spectral Data Processing205

In terms of optical data, the study uses the highest-resolution Sentinel-2 bands (i.e.,206

bands: [2,3,4,8]) of the Level-1C product. The data are filtered by orbit and path num-207

ber in order to minimize geometric distortions between acquisitions. To mask cloud-covered208

areas, two composites (one pre- and one post-event) are created. The pre-event compos-209

ite is based on acquisitions during the year prior to the event. Both composites comprise210

acquisitions for a maximum timespan of four months. However, due to either the need211

for timely processing or – in our case – the observation of the evolution of the landslide212

across several stages, the post-event timespan can be reduced accordingly, up to only one213

single acquisition. While working with a short timespan is possible, this should be done214

with caution due to a high risk of cloud artifacts. The composites are created by apply-215
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Figure 2. Workflow chart, divided into 4 separate steps and coloured by processing type.
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ing a cloud mask to each acquisition and calculating the median of the remaining non-216

masked values.217

Based on these two composites, normalized difference of the chosen bands are cal-218

culated to determine the change. As discussed by Fayne et al. (2019), the change in the219

red band (band 4) indicates the exposure of bare soil, while the change in the SWIR band220

(band 8) indicates soil moisture change. Furthermore, the NDVI change (Baret et al.,221

1989) is integrated to allow for a more specific description of vegetation change.222

All calculations are performed on the Google Cloud Platform accessed through the223

Google Earth Engine’s Python API (Gorelick et al., 2017). The interim results are then224

converted to NumPy arrays (Harris et al., 2020), which are integrated into the graph cre-225

ation.226

3.2 Graph Network227

The proposed graph aims to enhance the representation of neighbourhood to cap-228

ture the unique shapes of landslides during the image classification. This improves com-229

mon moving window approaches, which operate with fixed geometries and weights to de-230

termine the neighbours and their relevance.231

A graph consists of nodes, which contain specific attributes and edges. Edges de-232

scribe the connections between the individual nodes. In this application, we assign a node233

to each pixel of an image. Initial properties of each node comprise the node’s ID, the im-234

age coordinates, and the node IDs of the neighbouring pixels. Geographic coordinates,235

height above sea level, slope, aspect, landcover class, and the selected bands of the op-236

tical composites and SAR acquisitions are directly added from the input data.237

The edges are then created according to the flow direction. Determining the flow238

direction can be achieved in multiple ways. On the one hand, one could use the aspect239

derived from the SRTM with Google Earth Engine ee.terrain.aspect() function (Gorelick240

et al., 2017). On the other hand, the steepest slope within each of the node’s neighbours241

can be calculated and the nodes are then connected accordingly. In this study, we opt242

for the manual computation due to some artifacts in the aspect calculation on our re-243

search site. However, in terms of time efficiency the Google Earth Engine variant would244

be superior.245

The result is a list containing all edges of the graph, further referred to as an “edge-246

list”. The neighbours are defined by searching for the node’s ID in the edgelist. Depend-247

ing on whether the ID is marked as target or origin in the edgelist, one can determine248

if the neighbour is either up- or downslope of the node. The neighbourhood can be fur-249

ther expanded by recursively running this operation for a chosen number of recursions.250

This allows for the integration of smaller and larger areas respectively. The resulting neigh-251

bourhood accounts for the topography and therefore the movement patterns of most flow-252

ing landslides.253

When calculating neighbourhood statistics, this method allows for distinct results254

for up- and downslope as well as their combination. This could be further beneficial for255

the subdivision of the landslide into multiple areas (e.g., foot, crown, and main body).256

In this study, only the combined statistics are used due to a lack of detailed training data.257

In addition, a direct comparison with a common window approach can be made in or-258

der to highlight and quantify the benefits of our approach.259

The graph is implemented in Python using the open-source libraries NumPy (Harris260

et al., 2020) and GDAL (GDAL/OGR contributors, 2021).261

3.3 Classification262

The spectral signature of a landslide is highly variable and depends on the land-263

cover prior to the event. To account for this, we divide the research area into patches264

of similar landcover types. This subdivision is based on Copernicus’ LCC product. To265

ensure flexible application to any research site, several Random Forest Classifiers (RFCs)266
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Table 1. Statistics of the change bands for the largest event comparing the overall (tot) and

cropped to the reference area (ref) data.

Descending β0 min max mean std

tot -33.51 20.14 -0.10 4.50
ref -14.68 8.92 -1.10 3.41

Ascending β0 min max mean std

tot -23.38 35.16 -0.79 4.19
ref -19.69 10.18 -2.77 3.77

are to be trained, one for each patch. As the landslides in our research site only occur267

in forested areas, the focus of this study lies on one RFC for this landcover type.268

The RFC is trained with hand-drawn polygons of the affected area and equally dis-269

tributed points within the unaffected area. We use the landslide from our second research270

site for the training as its size is most suitable to represent landslides at which our ap-271

proach targets. Sentinel-1 and Sentinel-2 derived pixel data and respective neighbour-272

hood statistics are integrated into the training of the RFC. Beyond the combined dataset273

(SAR and optical data) used for this study, there is also the option to use either of the274

single datasets (SAR or optical data) depending on the application purpose. The result-275

ing map consists of four classes: affected area, unaffected area, no training for landcover276

class, and no data.277

The classification is implemented in Python using the libraries NumPy (Harris et278

al., 2020) and Scikit-learn (Pedregosa et al., 2011).279

4 Results280

4.1 Data Acquisition and Processing281

4.1.1 SAR Data Processing282

The SAR processing of the main event results in amplitude difference maps for both283

ascending and descending orbit covering the period of the medium and large stages of284

the landslide. The smallest stage is only covered by the ascending orbit due to a gap in285

coverage by the descending orbit between 16 October 2017 and the 7 April 2018. For vi-286

sualization purposes, Figure 3 g-l show the Beta-Nought of the first acquisition after the287

respective stages of the landslide. As the landslide occurs on a north-east facing slope,288

the ascending orbit is more suitable for a visual interpretation due to the stronger fore-289

shortening effect in the descending acquisitions. Visually, only a slight reduction in the290

amplitude can be observed in the upper part of the landslide at its largest stage. The291

difference between the acquisitions is used as input data for the RFC.292

The same data processing was applied to the research site of the second landslide,293

which occurred between 2016 and 2017. However, visual detection is unsuccessful. This294

can be explained by the small extent of the landslide which led to similar issues for smaller295

stages of the main event.296

A comparison of image statistics between the entire acquisition and the affected297

area is shown in Table 1.298
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Figure 3. Result subplots showing selected bands of the Multi-Spectral and SAR data pro-

cessing. Left to right displays the different dates (02.06.2018, 03.08.2018, 11.18.2018) of the main

landslide with increasing extent. In the top row, changes in NDVI with a color-range from white

(1) to black (-1) are displayed. The second row shows the normalized B4 change with a color-

range from white (5) to black (-1). The bottom two are SAR Beta0 layers with the top one being

ascending orbit and the lower one descending orbit. The colors of the SAR images range from

white (-1dB) to black (-25dB).
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4.1.2 Multi-Spectral Data Processing299

A clear visual distinction between the landslide and its surrounding vegetated area300

can be made when looking at the normalized change of the respective bands and the NDVI301

change. It is even possible to visually recognise the smallest stage of the main event in302

the product of 6 February 2018 (Figure 3 a, d).303

The main visually recognizable changes, which are not caused by the landslide, are304

due to changes in cloud coverage and sun position. As the time period covered by the305

acquisitions before the event may be longer than the post-event coverage, cloud/haze re-306

licts are more likely to occur in the post-event cloud-free composite. Therefore, change307

due to cloud coverage is caused by the appearance, as opposed to the disappearance, of308

clouds. However, complete coverage without clouds was not possible due to the climate309

in our study area as well as the fact that one cannot use images acquired after the next310

largest stage of the landslide. These would not be representative of the studied landslide311

extent. In addition, there are some misleading changes caused by shadow effects, either312

due to clouds or differences in the position of the sun (azimuth and zenith) during the313

composite creation prior to and post-event.314

4.2 Graph Network315

The visual inspection of the graph (see Figure 4) indicates that the proposed edge316

creation method results in a robust neighbourhood determination, which takes the flow317

direction well into account. Thus, the graph can be considered a promising tool to in-318

tegrate the topography of the research area into the automated detection process. Fig-319

ure 4 highlights that the edges (depicted as lines) follow the topography and merge in320

main flow channels. This is also reflected by the line width of the edges which is deter-321

mined by the number of nodes connected upslope with the seed node within the chosen322

distance. The thicker the line, the larger area of the contributing flow. The correlation323

between the edge direction and the flow of the studied landslide is visualized in Figure324

4. In particular, the lower parts of the landslide depict this well as the flow is redirected325

due to elevated areas.326

The effect of the graph on the neighbourhood statistics is shown in Figure 5. For327

reference, the original data is displayed in Figure 5a. Figure 5b displays the mean NDVI328

calculated using neighbourhood determined by the graph, while 5c displays the mean329

NDVI calculated using a common square window. All data are normalized to a range330

from -0.2 to 0.2 with the minimum displayed in red and the maximum in blue. The max-331

imal distance of the graph neighbourhood corresponds to the window size to allow for332

a direct comparison. Here, a maximum of three iterations up- and downslope of the seed333

node and a respective 7x7 window size are used. While the common window approach334

almost entirely blurs shape and signature (value range) of the landslide at its smallest335

stage, the mean NDVI derived with the graph preserves the shape and intensity (value336

range) of the original NDVI data (value range).337

The boxplots in Figure 6 show the value distribution of the optical change data for338

the original data, the graph derived mean values and the common window derived mean339

values within the hand-drawn polygon of the landslide’s smallest extent. For reference,340

the Figure also includes the overall optical image statistics. The comparison between the341

graph neighbourhood and window neighbourhood derived mean values shows that the342

results derived from the graph neighbourhood show more similarities in terms of distri-343

bution and value range to the original data. Furthermore, the distribution within the344

window-smoothed data is compressed due to the blurring effect. Thus, the boxplots il-345

lustrate the preserving effect of the graph on the original data.346

Even though the benefit of the graph neighbourhoods seems more pronounced for347

small-scale events, Figure 4 shows that the graph leads to a more precise representation348

of the actual shape of the landslide compared to the common window. Thus, we con-349

sider the application of the graph advantageous for neighbourhood representation in this350
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Figure 4. Subset of the graph network, displaying the surroundings of the Weheka Valley

landslide with nodes and edges coloured by the reference area. Nodes which are affected by the

landslide are coloured in red. A larger linewidth indicates a larger number of upstream nodes

connected to the seed node. Top right shows a larger extent with all nodes coloured according to

their height for a better understanding of the topography.
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Figure 5. Visualization of the difference between the graph neighbourhood and window neigh-

bourhood mean values. Red indicates negative NDVI change while grey indicates no change. Few

blue values at the lower margin indicate positive change. All values are normalized between -0.2

and 0.2 to allow for direct comparisons. The smallest extent of the main landslide is depicted.
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Figure 6. Boxplots illustrating the distribution of the optical data. Left to right: Original

data with no filter applied, mean values calculated within the graph neighbourhood, mean values

calculated within a square window neighbourhood, and the overall distribution. The first three

consider only pixels within the hand-drawn polygons.
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Table 2. Accuracy metrics of all classifications. Overall Accuracy (OA), Producer’s Accuracy

(PA) for affected areas, and User’s Accuracy (UA) for affected areas. The overall accuracy is

strongly affected by the large proportion of unaffected pixels in the research area. The Producer’s

Accuracy of the affected area is of particular interest. This metric shows how much of the area

marked as landslide in the reference data is actually classified as affected area.

Graph Window
Event OA PA UA OA PA UA

2017-02-08 (second site) 99.92% 80.42% 65.90% 99.89% 80.07% 55.58%
2018-02-06 (smallest main event) 99.98% 25.35% 94.74% 99.97% 0% NaN
2018-03-08 (medium main event) 91.47% 96.01% 2.49% 93.88% 99.8% 3.56%
2018-11-18 (largest main event) 97.80% 100% 19.16% 99.34% 98.70% 43.97%

research area. No drawbacks could be determined compared to the common window ap-351

proach besides the higher computational demand.352

4.3 Classification353

The results of the classification support our findings from the comparison between354

the graph and window neighbourhood. In particular, smaller events are successfully de-355

tected using the graph and likely to be missed by a common window approach. Figure356

7 displays the classification results for both the graph and the window approach with357

the hand-drawn verification polygons and the NDVI change for reference. The compar-358

ison between the different observations reveals that the classification using the graph neigh-359

bourhood represents the shape of the landslide more accurately than the window approach360

in all cases. This clearly points out one of the main benefits of the graph in this study.361

These findings are also supported by the accuracy metrics (see Table 2. The overall ac-362

curacy lies above 90% for all events and both approaches. This is due to the large num-363

ber of unaffected pixels in our research area. Comparing the Producer’s Accuracies be-364

tween the graph and the window approach, it is striking that the graph outperforms the365

window approach in three out of four cases. Regarding a direct comparison between the366

accuracy metrics with those from other studies, one must keep in mind that these met-367

rics are calculated on a pixel- rather than object-basis.368

Looking at Figure 7, in particular the top and the bottom rows show high accu-369

racies in the classification of the landslides. These classifications also benefit from almost370

cloud-free input data. It is striking that the small landslide in the bottom row is only371

detected using the graph approach and missed with the common window. The classi-372

fications of the remaining two extents include more false positive values. These can be373

traced back to cloud (see purple square, Figure 7) and shadow (see yellow square, Fig-374

ure 7) effects as discussed for the optical data. The window approach outperforms the375

graph approach regarding overall accuracy of these classifications as it obscures smaller376

areas which are affected by shadow or clouds. In general, this highlights that the graph377

approach is most promising when the input-data can be improved (e.g., by more sophis-378

ticated shadow / cloud removal) as well as for landslides of small extents. The smallest379

extent of the landslide (Figure 7, bottom row) has an approximate diameter of 30-45m,380

which corresponds to a width of 2-3 pixels/nodes as shown in the subplot on the right.381

5 Discussion382

The proposed approach represents an innovative methodology to improve automated383

landslide detection by integrating the topography into neighbourhood operations. The384

implementation of a graph allows for an enhanced description of the pixel neighbourhood385
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Figure 7. Random Forest Classification results. Top to bottom: Second research area/period

(2016/17), largest extent of the main event, medium extent of the main event, and smallest ex-

tent of the main event. Left to right: RFC results using the graph neighbourhood, NDVI change

for orientation, RFC results using the window neighbourhood, and handdrawn polygons for

verification. Areas colored in blue in the RFC results are classified as affected areas, white as

unaffected and red as areas with another land cover class. The NDVI change values are colored

from red (-1) to blue (1). Areas marked with a yellow square show misclassified values due to

hillshadow differences between the composites.Purple squares highlight areas affected by cloud

cover.
–16–
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as compared to a common window approach. As shape and signature of a landslide are386

better preserved using the graph (see Figure 5), we are able to reduce the size limita-387

tion of detectable events. For small scale events, this effect is particularly pronounced388

(see Figure 6). Effectively, this allows for a broader application of landslide detection with389

spaceborne remote sensing. Given the widespread occurrence of small-scale landslides390

(Corominas & Moya, 2008), which is projected to further increase under climate change391

(Collison et al., 2000), improvements in their detection are highly valuable to prevent392

human and economic losses.393

Both SAR and optical open-source remote sensing products are combined to ex-394

ploit the benefits of each data type. While higher-resolution products are available in395

terms of both SAR (e.g., TanDEM-X) and optical data (e.g., Airbus SPOT 6/7), a con-396

scious decision to work with open data was made. We regard it as essential to provide397

broad access to our findings to ensure its applicability in natural hazard mitigation and398

response regardless of financial resources. The use of Sentinel-1 and Sentinel-2 products399

limits the approach to events which occurred after 2016. This leads to some obstacles400

in terms of availability of training data as most entries of landslide catalogues date to401

a timespan before Sentinel-1 and Sentinel-2 availability (e.g., U.S. Landslide Inventory402

(Jones et al., 2019), New Zealand Landslide Database (Rosser et al., 2017)). However,403

as the application of our approach is aimed to help in hazard mitigation and response,404

recent and future landslides are the most common application scenarios and thus not af-405

fected by this limitation.406

In terms of data quality, the main concern with the optical data relates to cloud407

artifacts in the composites. These could be identified as the main source of error dur-408

ing the classification process. Therefore, future improvements could include more sophis-409

ticated cloud masking algorithms. Various promising approaches based on Sentinel-2 data410

exist (Zekoll et al., 2021; Candra et al., 2020; Tarrio et al., 2020). Or one could specif-411

ically train changes due to cloud cover as an additional class in the RFC. Furthermore,412

shadow effects due to acquisition geometry changes and sun position cause some arti-413

facts as well. Generating hillshades with the Google Earth Engine (Gorelick et al., 2017)414

for each Sentinel-2 acquisition and the respective sun position is expected to reduce these415

artifacts.416

The comparison between Sentinel-1 and Sentinel-2 data availability reveals the strik-417

ing effect of cloud coverage reducing the availability of usable optical imagery. Aiming418

to provide a quick classification map after an event, the length of the post event period419

utilized for the optical cloud free mosaic is a key limitation of this approach. This is par-420

ticularly problematic for the study of rainfall-induced landslides, where cloud coverage421

can delay the availability of cloud-free images significantly. The use of SAR data can avoid422

this issue. However, in our forested study area even the largest stage of the landslide was423

barely visible in the SAR data (see Figure 3). Based on Mondini et al. (2019), this could424

be expected as their manual interpretation of SAR imagery only provided a delineated425

landslide area for 8 out of 32 events, which were all larger in size compared to all stages426

of the landslide we study. In order to ensure our approach’s applicability to a wide range427

of research sites with unique properties, the SAR data is still included. This could prove428

especially beneficial for application in bare soil or rock environments, where optical change429

is less clear. Furthermore, other SAR products such as coherence change (Tzouvaras et430

al., 2020), Coefficient of Variation (Colin Koeniguer & Nicolas, 2020), or the use of po-431

larimetric ratios (Plank et al., 2016) could provide valuable additional information. In432

addition, regarding the fast-paced advances in satellite missions, the integration of multi-433

frequency SAR acquisitions (Turkar et al., 2012) could be of great interest for the future,434

in particular for the integration of more landcover types into the study.435

A key limitation of the study lies in the training data which stem from a forested436

area only. This can be regarded problematic as no other landcover types are integrated437

at the current state of our approach. However, the main goal was to highlight the effect438

of the graph neighbourhood on the classification process rather than the presentation439

of a trained random forest classifier for landslide detection. Future work will aim at the440
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integration of various landcover types in order to provide a more sophisticated tool. This441

will be accompanied by the previously mentioned changes in the processing of the earth442

observation data. Besides the training on other landcover types, one could also train the443

RFC for individual parts of a landslide (e.g., foot, main body, crown)(Griffiths, 2018).444

The distinction between up- and downslope neighbours in the graph neighbourhood could445

provide valuable information which bears great potential. The distinction between dif-446

ferent landslide parts has been rarely integrated into landslide detection (Zhong et al.,447

2020). The few existing studies on this topic rely on high-resolution LiDAR data (Glenn448

et al., 2006; Deng & Shi, 2014; Van Den Eeckhaut et al., 2012).449

In terms of LiDAR data, the integration of higher resolution DEMs would be ben-450

eficial for increasing the accuracy of the derived flow direction and therefore the neigh-451

bourhood statistics. The main advantage of the SRTM used in this study lies in near-452

global coverage and easy open access. For more targeted applications of the approach,453

locally available products should be considered. Various countries provide highly detailed454

and time-sensitive products, provided by e.g., LINZ, USGS, or Swisstopo. Furthermore,455

a similar product to the SRTMs DEM is the produced by the TanDEM-X mission at higher456

resolution with DEMs available for multiple years (Zink et al., 2014). Besides the flow457

direction’s dependency on the data resolution, further improvements could also include458

the implementation of more sophisticated algorithms to derive the flow direction, e.g.,459

the D-Infinity flow direction by Tarboton (1997).460

As graph theory has not been commonly applied for landslide detection (Heckmann461

et al., 2015), the possibility for direct comparison to similar studies is limited. In the fu-462

ture, it would be interesting to investigate possibilities to integrate common graph mea-463

sures such as connectivity or betweenness. These are frequently used in applications of464

graph theory but have not been integrated into our approach yet. In particular, such mea-465

sures could be useful for the combination of susceptibility mapping (Hong et al., 2007)466

and landslide detection.467

Furthermore, most studies using remote sensing for landslide detection either work468

with single events of larger extents or apply their methodology to large areas with nu-469

merous smaller events (Stumpf & Kerle, 2011; Fayne et al., 2019). To demonstrate the470

benefits of our work, we train the RFC with data derived from both the graph and a com-471

mon window neighbourhood. This resulted in the accuracy metrics displayed in Table472

2. Particular note should be given to smaller events, which were successfully detected473

using the graph approach while being overlooked when using the common window neigh-474

bourhood (see Figure 7). It is also important to keep in mind that false-positive detec-475

tion is preferable to false-negative detection regarding disaster response.476

Our results highlight the potential of a graph neighbourhood compared to a com-477

mon window approach. The graph can be easily integrated into studies using neighbour-478

hood operations and is considered promising to improve the accuracy of landslide de-479

tection. Most misclassified pixels can be traced back to well-studied phenomena (e.g.,480

shadow effects). Therefore, the discussed improvements are expected to enhance the clas-481

sification accuracy in the future.482

6 Conclusion483

A graph describing the topography of the observed area is successfully implemented484

to determine the neighbourhood of each pixel of an acquisition and compared to a com-485

mon square window neighbourhood. This allows for the integration of the physical prop-486

erties of the moving mass into the landslide detection process with remote sensing data.487

The key benefit of the proposed graph lies in the preservation of the shape and signa-488

ture of the landslide’s change in earth observation data, even at very small scales (2-3489

pixels width). This can be highly valuable for applications of automated classification490

in machine learning, which integrate the neighbourhood. Regarding the urgent global491

demand for improved hazard mitigation, particularly in remote areas, the proposed ap-492

–18–



manuscript submitted to Earth and Space Science

proach could provide a valuable tool to exploit as much information as possible from avail-493

able and affordable data.494

Applying a RFC, we demonstrate that the graph neighbourhood allows for the de-495

tection of smaller events compared to a common square window. The RFC achieves high496

accuracy values if given high-quality input data. At the current stage of the approach,497

the key limitation lies in the pre-processing and/ or availability of data. Future work will498

be aimed at the integration of more sophisticated cloud removal techniques as well as499

masking changes in hillshadows due to differences in the sun position between acquisi-500

tions. Further improvements are expected from the inclusion of additional landcover types501

in the training of the RFC. This could come hand in hand with the integration of data502

products such as coherence change between two Sentinel-1 acquisitions.503

Open Research504

The Copernicus Sentinel-2 data used for calculating the spectral changes in the study505

are available at the earth engine data catalog via https://developers.google.com/506

earth-engine/datasets/catalog/COPERNICUS S2#description with free, full, and open507
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search.asf.alaska.edu/#/ and processed by ESA with free, full, and open access. The510
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