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Key points 9 

• There is a high probability of widespread flooding (>15%) in the peninsular river 10 

basins in India.  11 

• Moist antecedent conditions and streamflow seasonality determine the timing and 12 

probability of widespread floods. 13 

• The variability in the probability of widespread flooding across different river basins 14 

depends on the extremeness of flood peaks  15 

Abstract 16 

Widespread floods affecting multiple subbasins in a river basin are more disastrous than 17 

localized flooding. Understanding the mechanisms, drivers and probability of widespread 18 

flooding is pertinent for devising suitable policy measures. Here, we investigate the 19 

occurrence and drivers of widespread flooding in seven Indian sub-continental river basins 20 

during the observed climate (1959-2020). We use a novel methodology for determining 21 

widespread floods and a non-stationary extreme value distribution to identify the mechanisms 22 

of widespread flooding. We find that the peninsular river basins have a high probability of 23 

widespread flooding, while the transboundary basins of Ganga and Brahmaputra have a low 24 

probability. In addition to wet antecedent conditions, the relative rareness of high flows 25 

across different subbasins is crucial in explaining the variability of widespread flood 26 

probability across different river basins. Our results show that favourable antecedent 27 

baseflow and soil moisture conditions, uniform precipitation distribution, and streamflow 28 

seasonality determine the seasonality and probability of widespread floods. Further, 29 

widespread floods are associated with large atmospheric circulations, resulting in near-30 

uniform precipitation within a river basin. Moreover, we found no significant relation 31 
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between widespread floods and oceanic circulations. Our findings highlight the prominent 32 

drivers and mechanisms of widespread floods with implications for flood mitigation in India. 33 

 34 

Keywords: widespread floods, antecedent soil moisture, baseflow, non-stationary flood 35 

modelling, flood drivers, flood mechanisms 36 

 37 

1. Introduction 38 

Flood is a predominant natural disaster in India, with more than 390 million people exposed 39 

to a high risk of flooding (Rentschler et al., 2022). India receives 80% of the total annual 40 

rainfall in four months during the southwest monsoon season from June to September. 41 

Consequently, the country faces the most devastating floods during the same period 42 

(Nanditha & Mishra, 2022). The high seasonality of the precipitation increases the risk of 43 

spatially and temporally coherent flood events. Widespread flooding that simultaneously 44 

covers a large part of a river basin can have a higher socio-economic risk than localized 45 

flooding. The more disastrous widespread floods reportedly have an entirely different 46 

causative mechanism (Bertola et al., 2020; Merz et al., 2021). However, understanding the 47 

occurrence and drivers of widespread floods in the Indian sub-continental river basins is 48 

limited as the focus has primarily been on localized flooding (Lamb et al., 2010).  49 

Riverine floods are driven by multiple factors, including spatial and temporal distribution of 50 

precipitation, antecedent soil moisture conditions, catchment characteristics, and river system 51 

infrastructures like reservoirs and levees (Berghuijs et al., 2016, 2019; Günter Blöschl et al., 52 

2015; Merz et al., 2021; Sharma et al., 2018; Tarasova et al., 2019). The complex interaction 53 

of land and atmospheric factors in the generation of floods is often cited as a reason for 54 

precipitation trends not translating to floods in most global river basins (Alfieri et al., 2017; 55 

Bloschl, 2022; Sharma et al., 2018; van der Wiel et al., 2018). Wet antecedent conditions due 56 

to prolonged precipitation, rain on snow events that effectively increase infiltration excess 57 

flows, and snow melts are directly associated with high flows compared to extreme 58 

precipitation (Berghuijs et al., 2016; Günter Blöschl et al., 2019; Ivancic & Shaw, 2015; 59 

Tramblay et al., 2021; Wasko & Nathan, 2019). Therefore, extreme precipitation and land 60 

surface conditions play a significant role in determining the occurrence of localized flooding. 61 

However, widespread flood events could be driven by an entirely different causative 62 

mechanism.  63 
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The occurrence and drivers of widespread flooding have recently received considerable 64 

attention due to loss and damages caused by them ( Di Capua et al., 2021, Fazel-Rastgar, 65 

2020, Merz et al., 2021; Nanditha et al., 2023, Vijaykumar et al., 2021). The causative 66 

hydrometeorological factors of devastating floods have been recognized (Hong et al., 2011; 67 

Lyngwa & Nayak, 2021; Martius et al., 2013; Vijaykumar et al., 2021). For instance, the 68 

2010 Pakistan flood and its teleconnection with the 2010 European heatwave and 69 

atmospheric blocking has been established (Hong et al., 2011; Martius et al., 2013). The 2018 70 

Kerala floods, 2022 Pakistan floods, and lower Mississippi river floods are reportedly 71 

associated with atmospheric rivers that usually carry moisture from the tropics and debouch it 72 

to the extratropics (Lyngwa & Nayak, 2021; Nanditha et al., 2023; Su et al., 2023). We 73 

hypothesize that widespread flooding is associated with widespread extreme precipitation, 74 

concomitantly to large-scale atmospheric circulations apart from the favorable land surface 75 

and catchment characteristics.    76 

In Indian river basins, where rainfall is the dominant precipitation mechanism, wet antecedent 77 

soil moisture is vital in driving high flows (Garg & Mishra, 2019; Nanditha et al., 2022). 78 

Therefore, multiple-day precipitation is a prominent flood driver than short-duration extreme 79 

precipitation (Nanditha & Mishra, 2022). However, the relative role of different drivers can 80 

vary for widespread floods as they are spatially and temporally coherent across a large river 81 

basin area. For instance, Brunner et al. (2020) reported a high susceptibility to widespread 82 

flooding in basins with a highly seasonal flow regime and uniform climatic conditions in the 83 

United States (US). Most Indian sub-continental river basins exhibit a seasonal flow regime; 84 

therefore, there could be a considerable risk of widespread flooding, which has not yet been 85 

examined. Further, there are substantial differences in the climatic and catchment 86 

characteristics across the Indian subcontinental river basins, making it pertinent to understand 87 

the mechanisms that would cause widespread floods. Moreover, considerable variability in 88 

the spatial and temporal precipitation pattern is observed over the Indian subcontinent related 89 

to climate change and direct human interventions (Goswami et al., 2006; Vinnarasi & 90 

Dhanya, 2016a). Since climate change is projected to alter the intensity and frequency of 91 

extreme precipitation, evaluating the drivers of widespread flooding in the observed climate 92 

is imperative (Ali & Mishra, 2018; Krishnamurthy et al., 2009). Here, we aim to address the 93 

crucial research gaps associated with the occurrence, drivers, and mechanisms of widespread 94 

floods in the Indian river basins. We specifically address the following research questions: (1) 95 

What is the probability of widespread flooding in Indian river basins? (2) Is there any 96 
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variability in the seasonal distribution of widespread floods? and (3) what are the prominent 97 

drivers of the widespread floods in Indian river basins? 98 

2. Data and methods 99 

The Variable Infiltration Capacity (VIC) model 100 

Indian sub-continental river basins are considerably influenced by human interventions (e.g., 101 

reservoirs and irrigation). Hence, there needs to be more consistent records of long-term 102 

observed daily flow that is crucial to examine the occurrence of widespread floods. 103 

Therefore, we conducted simulations of hydrological variables. We used the calibrated 104 

Variable Infiltration Capacity (VIC) hydrological model at 0.25° to simulate daily streamflow 105 

and soil moisture (Liang et al., 1994; 1996). The VIC model is a semi-distributed land surface 106 

model that solves the energy and water budget at each grid cell. Further, the gridded output 107 

from the VIC model is routed using a routing model that uses 1-D St Venant equations to 108 

obtain simulated streamflow at specific locations (Lohmann et al., 1996). We obtained the 109 

daily meteorological forcing (precipitation, maximum and minimum temperatures) required 110 

for the VIC model from the India Meteorological Department (IMD). We used daily gridded 111 

precipitation (Pai et al., 2014) at 0.25° and maximum and minimum temperatures (Srivastava 112 

et al., 2009) from IMD for the 1951-2020 period. The gridded precipitation and temperature 113 

products are developed by interpolating station observations, which include 6995 rain gauges 114 

and 395 temperature stations. We used streamflow observations from India Water Resources 115 

Information System (IWRIS) to evaluate the performance of the VIC model. The model is 116 

calibrated at 23 sub-basins across the seven major river basins in India, where consistent and 117 

long-term records of streamflow observations are available (Nanditha & Mishra, 2022). The 118 

model performance is evaluated using Nash-Sutcliffe efficiency (NSE) [Nash & Sutcliffe, 119 

1970] and coefficient of correlation (r). We obtained NSE above 0.6, and r above 0.75 for 120 

most locations (Table S1), which signifies the satisfactory performance of the VIC model to 121 

simulate daily streamflow. Moreover, the VIC simulated annual maximum flow is also well 122 

correlated with the observations (Figure S1). 123 

Identification of widespread flooding 124 

We considered seven major river basins in the Indian subcontinent, including Ganga, 125 

Brahmaputra, Godavari, Krishna, Mahanadi, Narmada, and Cauvery (Figure 1). As we aim to 126 

examine the occurrence and drivers of the widespread floods, smaller (coastal) river basins 127 

are not considered for the analysis. In the selected seven river basins, we identified 73 128 
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subbasins so that the contributing area is as distinct as possible using the Hydroshed subbasin 129 

and stream network dataset (Lehner, B., 2013). The subbasins closer to the outlet have a 130 

considerable overlapping area with the subbasins upstream in the river basins. Therefore, we 131 

estimated the unique contributing area to each subbasin within a river basin. We used a peak 132 

over a threshold (POT) methodology and estimated the top one percentile flow events (high 133 

flows that exceed the 99th percentile) in each of these 73 sub-basins. Events separated by 15 134 

days were considered to ensure independence between selected events. For each event, we 135 

estimated the unique area weighted fraction, f, of a basin that experiences high flow during 136 

that particular event (equation 1).  137 

     𝑓 = ∑∑                              ……………… (1) 138 

A = unique contributing area to each subbasin I = binary indicator;  1 if the subbasin, i register high flow (top 1 percentile)  during the particular event and 0 otherwise.  
We consider a lag period of ±3 days to account for the lag time for the peak flow to reach 139 

different outlet points (Nanditha & Mishra, 2022). If f is greater than or equal to 0.5, the 140 

particular event was identified as a widespread flood event. Brunner et al. (2020) used a 141 

simple fraction to determine widespread floods within a river basin. We modified the method 142 

and used an area-weighted fraction that accounts for the difference in the area of different 143 

subbasins. Further, the probability of widespread flooding was estimated as the ratio of 144 

widespread floods to the total high-flow events within a river basin.  145 

Flood frequency analysis 146 

The widespread flood in a river basin can occur as: (1) rare events at a few subbasins drive 147 

high flow across the different downstream subbasins, and (2) simultaneous occurrence of 148 

high flow events with lower return periods in multiple subbasins. We fit an extreme value 149 

distribution to each subbasin's annual maximum flow time series. We use Generalized 150 

Extreme Value (GEV) distribution as it is suitable for block maxima-based extreme value 151 

time series (Coles, 2001; Katz et al., 2002). We considered stationary and a couple of non-152 

stationary models with time [Non-Stationary Type I to III] and standardized departure of 153 

annual maximum precipitation [Non-Stationary Type IV to VI] as covariates [c(t)]. We used 154 
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the extRemes package in R (Gilleland & Katz, 2016) and the maximum likelihood estimation 155 

method to fit the distribution (Table S2). 156 

Stationary model: 157 𝐺𝐸𝑉 = 𝑓(𝜇, 𝜎, 𝜀)  ……………….(2) 158 where μ is the location, σ is the scale, and ε is the shape parameter of the model. 159 

Time [t] and standardized departure of annual maximum precipitation [p(t)] for each sub-160 

basin were used as covariates [c(t)] for the non-stationary models. We consider linear 161 

variation in the location, scale, and shape parameters. In Non-stationary type I and IV 162 

models, we used a time-varying location parameter with time and precipitation as covariates 163 

and constant scale and shape parameters (equations 3-4). In type II and V models, we used 164 

time-varying location and scale parameters with a constant shape parameter (equations 4-6); 165 

in type III and VI models, we used time-varying location, scale, and shape parameters 166 

(equations 4,6-8). We find that 19 subbasins exhibited non-stationarity in the annual 167 

maximum flow based on the likelihood-ratio test (at 95% significance level) and Akaike and 168 

Bayesian Information Criterion (AIC, BIC) [Table S2,  Coles, 2001; Ouarda & Charron, 169 

2019]. 170 

Non-stationary Type I and IV: 171 𝐺𝐸𝑉 = 𝑓(𝜇(𝑡), 𝜎, 𝜀)  ………………. (3) 172 𝜇(𝑡) = 𝜇 + 𝜇 𝑐(𝑡)  ………………. (4) 173 

Non-stationary Type II and V: 174 𝐺𝐸𝑉 = 𝑓(𝜇(𝑡), 𝜎(𝑡), 𝜀) ……………. (5) 175 𝜎(𝑡) = |𝜎 + 𝜎 𝑐(𝑡)| ……………… . (6) 176 

Non-stationary Type III and VI: 177 𝐺𝐸𝑉 = 𝑓(𝜇(𝑡), 𝜎(𝑡), 𝜀(𝑡)) ……….…. (7) 178 𝜀(𝑡) = 𝜀 + 𝜀 𝑐(𝑡) …………………... (8) 179 

Soil moisture, baseflow, and atmospheric variables 180 

Next, we examined the soil moisture, baseflow, and atmospheric conditions before the 181 

widespread floods to understand the atmospheric and catchment characteristics associated 182 
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with the events. Basin averaged seven-day mean soil moisture (~30 cm soil layer) simulations 183 

from the VIC model were used to assess the antecedent soil moisture conditions. We used 184 

Eckhardt digital filter to determine the baseflow component (Eckhardt, 2005, equation 9), 185 

which classifies high frequency fluctuations in streamflow to quick flow and the slow 186 

frequencies to baseflow (Eckhardt, 2008). Baseflow measurements are difficult to obtain, 187 

therefore, it is challenging to assess the accuracy of any baseflow identification methods. Xie 188 

et al. (2020) evaluated different baseflow separation methods based on the strict baseflow 189 

points (the points where the quick flow and interflow cease to exist) constructed using 190 

streamflow observations in catchments across the contiguous USA. They found the two-191 

parameter-based Eckhardt digital filter performs well without using hydrogeological 192 

parameters of a catchment in the equation. The filter requires the recession constant, 𝛼, and 193 

maximum baseflow index (BFImax) for estimating baseflow from total runoff. BFImax depends 194 

on the hydrological and geological characteristics of the basin. However, without these 195 

datasets, BFImax can be estimated using the recession constant by applying a backward pass 196 

(Collischonn & Fan, 2012)[equations 10 and 11]. 197 𝑏 = ( ) ( )   ……………….(9) 198 

subject to 𝑏  ≤  𝑄  𝑏 =   ……………….…….(10) 199 

𝐵𝐹𝐼 = ∑∑  ……………….(11) 200 

subject to a maximum of 0.8 suggested by Eckhardt (2008) for perennial and porous aquifers. 201 

Where Qi is the total runoff or streamflow, and bi is the baseflow at the ith instant. 202 

BFImax estimated for each subbasin is listed in the supplementary Table S3. We used a 203 

recession constant, α=0.95, uniformly for all the subbasins. A lower α and BFImax are 204 

reported to improve the baseflow comparison with strict baseflow points; therefore, we used a 205 

uniform α = 0.95 (Xie et al., 2020). However, optimizing the values of α and BFImax based on 206 

the hydroclimatological characteristics of a basin can further provide robust estimates. 207 

Atmospheric variables from the European Reanalysis (ERA 5) [Hersbach & Dee, 2016] is 208 

used to evaluate the atmospheric conditions before widespread flood events. We estimated 209 

the vertically integrated moisture transport using the eastward and northward components of 210 
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moisture flux variables (𝑞  𝑎𝑛𝑑 𝑞 ) [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12]. We also estimated the mean seal level 211 

pressure anomalies considering 1991-2020 as the reference period.  212 𝐼𝑉𝑇 = 𝑞 + 𝑞   ………………. (12) 213 

Sea surface temperature (SST) anomalies in the eastern Pacific and the Indian Ocean regions 214 

are associated with the annual variability in the summer monsoon (JJAS) season precipitation 215 

over India (B. Goswami, 1998; Saji et al., 1999; Walker, 1925). We obtained Nino 3.4 index 216 

and Indian Ocean Dipole (IOD) Mode Index from the NOAA National Weather Service 217 

(NWS) Climate Prediction Centre (CPC) and Australian Bureau of Meteorology, respectively 218 

to evaluate the association of SST anomalies with the occurrence of WF events (Nanditha et 219 

al., 2022).  220 

3. Results 221 

3.1. The probability of widespread flooding  222 

First, we examined the probability of widespread flooding in the Indian subcontinental river 223 

basins from 1959-2020. Peninsular river basins have a high likelihood of widespread 224 

flooding, with the Narmada basin (35%) topping the list, followed by Mahanadi (31% each), 225 

Godavari (22%), Cauvery (18%) and Krishna (16%) [Figure 1]. In contrast, the Ganga basin 226 

has the least probability (3%), while the Brahmaputra has a slightly higher probability (8%) 227 

[Table S5]. We estimated widespread flood probability in each decade from 1961-2020 to 228 

further understand interdecadal changes in the probability. We did not find any significant 229 

trend in decadal probability across the seven river basins from 1961 to 2020 (Figure 1). While 230 

the Narmada and Mahanadi basins show a slight increase in the probability towards the end 231 

of the observational period, the Brahmaputra River basin has experienced a decline in the last 232 

three decades (1991-2020). Overall, there was no significant trend in widespread flooding in 233 

the Indian sub-continental river basins during 1959-2020. 234 
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density, river network, and soil types determine the connectivity within different subbasins 244 

and the time required for the peak flows in upstream basins to reach the downstream basins 245 

(Brunner et al., 2020; Sharma et al., 2018; Sofia & Nikolopoulos, 2020; Wang et al., 2021). 246 

The hydrological characteristics like the flow regime of a basin and the antecedent moisture 247 

conditions of the catchment in terms of soil moisture, baseflow, and rainfall, have a 248 

significant influence on flood peaks (Berthet et al., 2009; Bloschl, 2022; Pathiraja et al., 249 

2012; Wasko et al., 2020; Wasko & Nathan, 2019). Similarly, the atmospheric and climatic 250 

characteristics also influence the timing and magnitude of flood peaks and hence would 251 

influence widespread flooding (Brunner et al., 2020; Su et al., 2023). Here, we focus on the 252 

atmospheric and land surface processes that drive the widespread flooding pattern across the 253 

river basins. We specifically consider the role of streamflow seasonality, spatial and temporal 254 

precipitation patterns, and antecedent soil moisture and baseflow conditions before the flood-255 

driving storms. 256 

3.2 Role of rainfall and streamflow seasonality  257 

Next, we evaluate the seasonal pattern of widespread flood probability in the Indian sub-258 

continental river basins to unravel the role of streamflow seasonality. August is the only 259 

month in which widespread floods occur in all seven river basins. August has the highest 260 

widespread flood probability in the Indian sub-continental river basin except in the Krishna 261 

River basin (Figure 2). Godavari, Mahanadi, and Narmada basins experience widespread 262 

flooding in the summer monsoon months of July, August, and September (Figure 2j, l, m). 263 

Most subbasins in Cauvery receive rainfall during the northeast monsoon season (October-264 

December); hence, widespread flooding in the basin occurs from June to December (Figure 265 

2g, n). Notwithstanding high flows occurring in the non-monsoon season, widespread floods 266 

occur only in the summer monsoon months in the Brahmaputra basin. Therefore, the 267 

widespread flood probability during the summer monsoon (JJAS) is around 9% in the 268 

Brahmaputra basin. The highest frequency of widespread floods in the basin occurs in 269 

August, with a probability of 15% (Figure 2b, I, Table S5). Our results show a strong 270 

seasonality in the WF probability in the subcontinental river basins. 271 
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The seasonality in the widespread flood probability is related to the temporal rainfall 279 

distribution pattern over India. India receives around 80% of the total annual precipitation 280 

during the monsoon season from June-September (Shukla & Huang (2016), Figure 3). While 281 

the Brahmaputra basin receives precipitation much early during the season, the Cauvery basin 282 

receives most precipitation from October to December in the northeast monsoon season 283 

(Fukushima et al., 2019). The rest of the basins receive precipitation mainly during the 284 

summer monsoon season (June-September). Therefore, the widespread flood probability 285 

during the monsoon season differs greatly from the annual probability except in the Cauvery 286 

basin. In the Cauvery basin, the widespread probability increases by more than 50% during 287 

the summer monsoon season (Table S5). Relatively few high-flow events occur during the 288 

summer monsoon season in the basin, but most of those events cause widespread flooding, 289 

thereby increasing the WF probability during the monsoon season. In general, all basins 290 

ubiquitously exhibit high widespread flood probability in the summer monsoon months from 291 

June to September. Therefore, it becomes imperative to understand the reason for the high 292 

WF probability in the peak monsoon months in most river basins. Henceforth, we examine 293 

the role of rainfall distribution and antecedent moisture conditions. 294 

Next, we evaluate the role of rainfall patterns that could explain the seasonality and 295 

variability in widespread flooding across the river basins. The peninsular rivers of Narmada, 296 

Mahanadi and Godavari lie in the core monsoon region and receive more rainy days during 297 

the summer monsoon season with the least spatial variability (coefficient of variation less 298 

than 14%) [Figure 3]. Further, the median inter-storm duration between rainy days (>5mm) 299 

ranges from 3-4 days in these basins (Table S6). Therefore, continuous dry days are relatively 300 

lower in these three central Indian basins. Even though the Brahmaputra basin receives the 301 

highest number of rainy days, the spatial variability is relatively higher (Figure 3a-b). The 302 

upper parts of the basin receive relatively low total precipitation implying that these regions 303 

receive temporally distributed low-intensity precipitation (< 35 mm) [Figure 3a-b, S2b]. 304 

Similarly, the upper subbasins in the eastern part of the Ganga basin have lower rainy days 305 

resulting in a high coefficient of variability. But the spatial pattern of rainy days in the 306 

summer monsoon season over the Gangetic basin is similar to the total rainfall distribution in 307 

the same season, unlike the Brahmaputra basin. Thus, the Ganga River basin experiences 308 

high spatial variability in rainy days as well as in total rainfall. Therefore, the uniform 309 

distribution of precipitation across the river basins of Narmada, Mahanadi, and Godavari 310 

plays a predominant role in translating the high flows in these basins to widespread flooding. 311 
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probability than Ganga and Brahmaputra basins. However, Cauvery has a higher WF 329 

probability during the monsoon season (~31%) [Table S5]. The high WF probability of 330 

Cauvery during the monsoon season could be more related to catchment size than spatial 331 

distribution of precipitation. Cauvery is the smallest basin considered in the study, with a 332 

catchment area of 81,155 km2. Consequently, the chance for simultaneous occurrence of high 333 

flows increases across the subbasins due to the relatively uniform distribution of flood-334 

driving storms (G Blöschl et al., 2007; Sharma et al., 2018). We find that the spatial 335 

distribution of rainfall can explain the variability of WF probability across different river 336 

basins. However, to understand the reason for the high WF probability during the monsoon 337 

season, we investigate the catchment moisture conditions prior to widespread flooding. 338 

3.3.Role of antecedent soil moisture and baseflow 339 

We examine the antecedent soil moisture and baseflow conditions prior to the major 340 

precipitation event associated with all high-flow events in the river basins to understand the 341 

linkage between catchment processes and widespread floods. We find that a relatively high 342 

soil moisture percentile prevailed in all the subbasins before the storms that caused 343 

widespread flooding compared to those that did not result in widespread floods (Figure 4 a-344 

g). The seven-day mean soil moisture above the 95th percentile persisted before widespread 345 

floods in all the river basins except for Cauvery. Further, we observe low variability in soil 346 

moisture percentiles across the subbasins among the peninsular rivers excluding Cauvery. We 347 

find that the probability of widespread flooding increases when the catchment averaged soil 348 

moisture percentiles are higher. A higher antecedent soil moisture condition prevails due to 349 

storms occurring before the specific event or higher humidity during the monsoon season that 350 

reduces the bare soil evaporation (Pathiraja et al., 2012; Tramblay et al., 2021).  351 

Similar to soil moisture, the persistence of higher antecedent baseflow conditions is observed 352 

to increase the probability of widespread flooding in a river basin (Figure 4 h-n). The 353 

baseflow component in the river basins peaks in the middle of the summer monsoon season 354 

in most basins because of sustained precipitation. The antecedent baseflow significantly 355 

influences flood peaks (Ettrick et al., 1987; Merz et al., 2021). Similarly, wet antecedent soil 356 

moisture conditions play a crucial role in driving high flows (Berghuijs et al., 2016; 357 

Hettiarachchi et al., 2019; Kim et al., 2019; Nanditha & Mishra, 2022; Wasko & Nathan, 358 

2019). The summer monsoon season precipitation begins towards the end of May in the 359 

Brahmaputra basin to early July in the Narmada basin (IMD). Therefore, the wet antecedent 360 
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conditions occur by the end of July and early August due to continuous precipitation. 361 

Similarly, the baseflow fraction of the total runoff also increases, providing favorable 362 

conditions for widespread floods across the basins. Further, an increase in rainy days could 363 

sustain favorable conditions, whereas long break spells may cause soil drying and a dip in the 364 

baseflow components (Ettrick et al., 1987; Sharma et al., 2018). Overall, the antecedent soil 365 

moisture and baseflow conditions explain the seasonality of widespread floods in all the river 366 

basins. 367 

The widespread flood probability depends on the area fraction and POT thresholds used to 368 

identify the events. We assessed the sensitivity of widespread flood probability to POT 369 

thresholds (98,99, 99.5, 99.8 and 99.9) and area fraction (0.5, 0.6, 0.7,0.8,0.9 and 1) [Figure 370 

S3]. As expected, the WF probability reduces with an increase in area fraction and the POT 371 

thresholds in most basins. The peninsular river basins of Godavari, Cauvery, and Narmada 372 

exhibit a high probability (>10%) of more severe (>99.9 percentile) widespread flooding. We 373 

observe non-occurrence of severe widespread flooding and widespread flooding that cover a 374 

large basin fraction (>0.7) in the Ganga basin. The Cauvery river basin shows a low 375 

sensitivity of widespread probability to flood severity (~18% widespread flood probability 376 

for 99.9 POT thresholds) [Figure S3]. We analyzed the seasonal pattern of WF probability 377 

and studied the possible drivers, including streamflow seasonality, the spatial distribution of 378 

rainy days, and antecedent moisture conditions. We found the streamflow seasonality and 379 

antecedent moisture conditions explain the observed seasonality of widespread flooding. The 380 

spatial distribution of rainfall and rainy days could explain the variability of widespread flood 381 

probability across the major river basins. However, constant catchment characteristics like 382 

the stream network pattern, stream density, and slope can further explain the variability 383 

observed in the flooding pattern (Brunner et al., 2020).  384 



385

386
387
388
389
390
391

 

 

Figure  
compos 
0 before 
(brown  
each da 
of soil m 

4. Anteced
site of seven
e widesprea
color) for e

ay for all the
moisture of 

Manusc

dent soil mo
n-day mean 
ad floods (b
each basin. T
e sub-basins
f all the sub-

cript submitt

oisture and
soil moistu
lue color) a
The thick li
s within a b
-basins. The

ted to Water 

d baseflow c
ure percentil
and high flo
ine shows th
asin. The sh
e uncertainty

Resources R

conditions.
les 10 days 
ws that do n
he median s
hading show
y band depi

Research 

 Figures (a-
before the p

not cause w
soil moistur
ws the 25th a
icts the vari

-g) show the
precipitatio

widespread f
re percentile
and 75th per
iability acro

16

 

e 
n to day 

floods 
e on 
rcentile 
oss the 



Manuscript submitted to Water Resources Research 

 17

sub-basins. Figures (h-n) show the same for the antecedent baseflow conditions. Eckhardt's 392 
digital filter is used for estimating the base flow from routed VIC streamflow simulations. 393 

 394 

3.4. Atmospheric and oceanic drivers of widespread flooding. 395 

We assessed the hydrometeorological drivers determining the seasonality and variability of 396 

widespread flood probability. Further, we evaluate the atmospheric and oceanic conditions, 397 

for which we selected the top widespread flooding events in all the seven subbasins in terms 398 

of the areal coverage and magnitude. We investigated the atmospheric characteristics — 399 

integrated water vapour transport (IVT) and mean sea level pressure anomaly — associated 400 

with the day of maximum catchment-averaged precipitation that drives widespread flooding. 401 

We find a unique atmospheric pattern related to widespread flooding in all the river basins, 402 

exhibiting a low-pressure system and high moisture transport (Figure 5 a-f). Further, in all 403 

seven basins except Cauvery, the movement of the southwest monsoon system that crosses 404 

the Indian peninsular region is evident (Figure 5f). We also observe a near-uniform 405 

distribution of precipitation over the river basins (Figure 5 h-n) associated with large-scale 406 

atmospheric circulations. Intense moisture transport is often associated with large-scale 407 

precipitation (Merz et al., 2021; Su et al., 2023; van der Wiel et al., 2018). The seven-day soil 408 

moisture percentiles depict a slow increase towards the day of maximum precipitation, 409 

highlighting the role of antecedent rainfall [Bloschl, 2022; Merz et al., 2021] (Figure 4 o-u). 410 

Overall, we observed intense moisture transport and wet antecedent conditions associated 411 

with the top widespread floods in all seven river basins. 412 

Further, we assessed whether widespread flooding relates to larger oceanic circulations. We 413 

checked the association of the years in which widespread flooding occurred in each basin 414 

with ElNino, LaNina, Neutral, positive Indian Ocean Dipole (IOD), and negative IOD years. 415 

We considered only widespread floods wherein any subbasin within a basin registered high 416 

flows exceeding a return period of 20 years to ensure event rarity. We did not find any 417 

specific association between the occurrence of widespread flooding the prominent oceanic 418 

circulations. The lack of association implies that the occurrence of widespread flooding is 419 

more associated with the existence of favorable antecedent catchment moisture conditions 420 

and precipitation. 421 
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show the spatial distribution of precipitation on the same day. Figures (o-u) show the 428 
precipitation hyetograph six days before the precipitation to day 0 (blue bars) and the seven-429 
day mean soil moisture percentile (brown line) for the same period. 430 

 431 

Regional variability in the onset, intensity, rainfall distribution, and length of dry and wet 432 

spells are observed over the Indian region (Ghosh et al., 2011; B. N. Goswami et al., 2006; 433 

Krishnamurthy et al., 2009; Malik et al., 2016). A change in the precipitation pattern has been 434 

observed in northeast India in the recent decades (1973-2019), reportedly connected to the 435 

changes in the surface temperature of the Arabian sea (Kuttippurath et al., 2021). Vinnarasi & 436 

Dhanya (2016) reported an increase in the duration of dry spells, intensification of 437 

precipitation during wet spells and temporal shifts in precipitation patterns during the summer 438 

monsoon season. In addition to climate forcing, direct anthropogenic factors such as land use 439 

and land cover changes, urbanization, and local changes in aerosol concentrations influence 440 

the precipitation variability observed over India adding further complexities to monsoon 441 

prediction (Vinnarasi & Dhanya, 2016). The changes in the onset of the summer monsoon 442 

and spatial and temporal variability within the monsoon season would alter the timing and 443 

probability of widespread flooding (Hrudya et al., 2021; Malik et al., 2016; Mishra, 2018). 444 

3.5. Mechanisms of widespread flooding 445 

Finally, we test the following hypothesis to understand the driving mechanism of widespread 446 

flooding in different catchments. We hypothesize that widespread flooding can occur in two 447 

scenarios; (I) widespread floods driven by rare high flow events in fewer subbasins and (II) 448 

widespread floods caused due to the simultaneous occurrence of low return period flows 449 

among most subbasins. In the peninsular rivers, more than half of the total widespread 450 

flooding is caused by scenario II (Figure 6 c-g). Less than half (quarter) of the widespread 451 

flooding results from at least one subbasin recording return period greater than 10 (RP >20) 452 

[Figure 6]. However, in the Ganga basin, in all the widespread flooding (in 3 of the 7 events) 453 

at least one subbasin records a return period greater than 10 (RP >20), while in the 454 

Brahmaputra basin, 75% (38%) of widespread flooding are driven by high flows with RP 455 

greater than 10 (RP>20) (Figure 6 a-b). We can ascertain that the widespread floods 456 

probability in large river basins highly depends on rare events in a few subbasins. In contrast, 457 

the peninsular rivers are less dependent on extreme events.  458 
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low-intense precipitation and corresponding low flows most often drive widespread flooding 476 

and hence have a high widespread flood probability.  477 

The projected changes in the intensity, magnitude and pattern of precipitation distribution in a 478 

warming climate could alter the seasonality and magnitude of widespread floods probability 479 

(Chinita et al., 2021; Hirabayashi et al., 2021; Pfahl et al., 2017; Trenberth et al., 2003). 480 

Rarely events in fewer subbasins drive widespread floods in large river basins like 481 

Brahmaputra and Ganga. In contrast, the simultaneous occurrence of the low return period 482 

(return period <10) flows most often drives widespread floods in the peninsular river basins. 483 

There is a high probability of an increase in the magnitude of rare extreme precipitation 484 

events in a warming climate (Barbero et al., 2017; Myhre et al., 2019; Papalexiou & 485 

Montanari, 2019; Zhang & Zhou, 2019). Goswami et al. (2006) reported an increase in the 486 

frequency and magnitude of extreme precipitation and a decrease in moderate precipitation 487 

over the Indian region. Extreme precipitation and consequent flows in the upper parts of a 488 

basin could, therefore, trigger more widespread flooding in a warming climate in the large 489 

river basins.  490 

4. Conclusions 491 

We identified the major drivers and mechanisms of widespread flooding in the Indian 492 

subcontinental river basins. There is a high probability of widespread flooding across all 493 

seven river basins during the summer monsoon season. We found that the spatial pattern of 494 

precipitation, antecedent moisture conditions, and the return period of streamflow in different 495 

subbasins influence the seasonality and variability of widespread floods in different river 496 

basins. Moreover, widespread flooding is associated with intense moisture transport and large 497 

atmospheric circulations. Understanding the drivers of widespread flooding in the observed 498 

climate is imperative to evaluate the projected changes in these drivers in a warming climate. 499 

The future changes in the drivers of widespread flooding would aid in determining the 500 

changes in widespread flooding and deciding adequate catchment scale management policies 501 

(Villarini & Wasko, 2021). 502 

Other critical natural factors may control the widespread floods in a basin, such as the stream 503 

network pattern and density, the topography of a basin, and geomorphological characteristics 504 

(Brunner et al., 2020). The stream network pattern and density determine the connectivity 505 

within each subbasin. Similarly, the slope of a catchment would determine the time of 506 

concentration. The geomorphological factors and other catchment attributes like topography 507 
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and stream density are crucial in determining the connectivity and hence the driving 508 

mechanisms of flooding (Sofia & Nikolopoulos, 2020; Wang et al., 2021). In this study, we 509 

have not considered the role of the geomorphological factors in deciding the WF probability. 510 

However, these factors are relatively static, considering the dynamic nature of climatic 511 

factors. We focus on the climatic and associated hydrological characteristics that could 512 

decide WF probability, which is crucial from a climate change perspective. Further, we have 513 

yet to consider the role of direct human factors like the construction of reservoirs and 514 

barrages, which is a major limitation of the study. However, in this study, we intended to 515 

identify the drivers of widespread flooding in natural conditions during the observed climate. 516 

Based on our findings the following conclusions can be made: 517 

1. We found the peninsular river basins have a high widespread flooding probability 518 

(>15%). In contrast, the widespread flooding probability in the Ganga and 519 

Brahmaputra river basins is less than 10%. However, most river basins exhibit a high 520 

probability of widespread flooding during the summer monsoon season, with 521 

widespread flooding probability in peninsular rivers approaching 20%. The high 522 

seasonality observed in WF probability is linked to the temporal pattern of 523 

precipitation and streamflow, and an associated increase in catchment wetness 524 

conditions during the summer monsoon season (June-September) 525 

 526 

2. The spatial pattern of precipitation and rainy days and the relative rareness of high 527 

flows in different subbasins can explain the variability of widespread flooding 528 

probability across the river basins. Rare flows in a few subbasins (RP>20) drive 529 

widespread flooding in the large river basins of the Ganga and Brahmaputra. In 530 

contrast, the simultaneous occurrence of low flows (RP<10) across the subbasins 531 

drives widespread flooding in the peninsular basins. For example, the central Indian 532 

river basins of Godavari, Narmada and Mahandi, with low spatial variability in total 533 

precipitation and rainy days, have the highest widespread flooding probability. On the 534 

contrary, despite having the highest number of rainy days, the Brahmaputra river 535 

basins exhibit a low WF probability due to the large percentage of low-intensity 536 

precipitation in the upper parts of the basin.  537 

 538 

3. Besides, the top widespread floods in all river basins are driven by a near-uniform 539 

spatial distribution of extreme precipitation connected to large-scale atmospheric 540 
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moisture transport. The projected changes in the identified drivers of widespread 541 

floods will alter the timing, occurrence and probability of widespread floods in a 542 

warming climate. 543 
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