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1 Transboundary aquifer game

1.1 Extensive form of the game

In the transboundary aquifer game, two players must decide whether or not to coop-

erate to preserve a shared resource, contingent on the benefit and risks of cooperation. In

the case a treaty is signed, Honest player abstract at levels agreed upon in the treaty, while

Frauds pump at a rate that maximizes their individual utility, introducing the possibility

of betrayal and requiring trust between players. Each player seeks to satisfy total water

demand, Qi , at the lowest cost. The game proceeds as follows (Fig. S1):

1. Nature randomly determines the type of players 1 and 2 (ti, i ∈ {1, 2}), where

Honest players comply with any signed treaty (H, with probability P(ti = H) = λj)

while Frauds disregard the the treaty and maximize individual utility (F, P(ti =

F) = 1 − λj). Each player knows their own type and and although they do not know

the type of the other player, they have a belief about the type of the other player

given by the probabilities P(tj = H) = λi and P(tj = F) = 1 − λi . The structure of

the game is common knowledge.
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Figure S1. Extensive form of the trust game showing potential strategies for players 1 and 2. Payouts and

beliefs are explained within the text.

2. Both players simultaneously choose whether to sign the treaty (Ci) or refuse to sign

the treaty (Ri).

3. If both players cooperate (C1,C2) they sign the treaty (Ω = 1). Otherwise, the treaty

is not signed (Ω = 0).

(a) Although players could theoretically sign a wide range of treaties, we assume the

only feasible treaty assigns pumping in such a way to maximize the joint utility

of two honest players. Additionally a treaty allows a payment z from player 2 to

player 1.

(b) If there is no treaty, there is no exchange of fees (z = 0), and groundwater ab-

straction is determined by the subgame Nash equilibrium under no treaty (q1 =

qN
1 , q2 = qN

2 ).

4. Utility for each player is given by U1(q1, q2) and U2(q1, q2), as described below.

In addition to the two plays by nature (t1, t2) ∈ {H, F}2, the action space for the two

players is:

(a1, a2, q1, q2) ∈ {C1, R1} × {C2, R2} × [0,Q1] × [0,Q2]
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In solving the game, we are interested whether there exists a side payment z where

cooperation is appealing for both players. To evaluate this possibility, we define utility and

abstraction (Section S1.2) and test potential strategies (Section S1.3).

1.2 Payouts and abstraction rates

Utility for each player is given by:

Ui(q1, q2) = −p0i(Qi − qi) − B(di)qi − εi · Ω ± z · Ω (1)

where qi is the water abstracted by country i, p0i is the unit cost of water from some al-

ternative water source, Qi is the total water requirement, B(·) is the unit cost of pumping

groundwater from depth di , εi accounts for costs of signing the treaty, z is the payment

from player 2 to player 1 per the agreement, and Ω is a binary variable that (if true) indi-

cates that a treaty is signed.

1.2.1 Nash equilibrium (no treaty)

If either player refuses to cooperate, the treaty is not signed (Ω = 0), there are no

side payments (z = 0) and players pump qN
1 and qN

2 , which are the pumping rates deter-

mined by the Nash equilibrium. Utility is individually maximized by the two players, and

abstraction is determined by solving

∂U1(qN
1 , q

N
2 )

∂qN
1

= 0 ,
∂U2(qN

1 , q
N
2 )

∂qN
2

= 0. (2)

1.2.2 Joint maximum (treaty)

A signed treaty (Ω = 1) stipulates abstraction rates of two honest players, qH
1 and

qH
2 . These rates are determined by maximizing the joint utility of both players by solving:

∂
[
U1(qH

1 , q
H
2 ) +U2(qH

1 , q
H
2 )

]
∂qH

1
= 0 ,

∂
[
U1(qH

1 , q
H
2 ) +U2(qH

1 , q
H
2 )

]
∂qH

2
= 0 (3)

1.2.3 Abstraction by a Fraud

If the treaty is signed and either player is a Fraud, that player will choose to forgo

the treaty allocation and maximize their own utility by abstracting qF
i . In doing so, they

must account for the possibility that the other player is also a Fraud. The expected utility
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of a Fraud is therefore is given by:

E[U1(qF
1 , q2)] = λ1U1(qF

1 , q
H
2 ) + (1 − λ1)U1(qF

1 , q
F
2 ) (4)

E[U2(q1, qF
2 )] = λ2U2(qH

1 , q
F
2 ) + (1 − λ2)U2(qF

1 , q
F
2 ) . (5)

Because neither player is certain of the type of the other player, abstraction by each

Fraud player (qF
1 , q

F
2 ) must be solved by maximizing the expected utility of both Fraud

players simultaneously:

∂

∂qF
1

[
λ1U1(qF

1 , q
H
2 ) + (1 − λ1)U1(qF

1 , q
F
2 )

]
= 0 (6)

∂

∂qF
2

[
λ2U2(qH

1 , q
F
2 ) + (1 − λ2)U2(qF

1 , q
F
2 )

]
= 0 , (7)

while noting that abstraction under the treaty must already be known.

Strictly speaking, trust in the equations above should be the probability that the

other player is a Fraud conditional on the knowledge that the treaty has been signed. We

denote this a posteriori probability λ′i , and we use this to solve the game in Section 1.3

using Bayes rule, finding that in the case that a treaty is signed, we always obtain λ′i = λi ,

such that the two are interchangeable in the equations for abstraction and utility (see Sec-

tion S1.3).

1.3 Potential strategies

Here we evaluate potential strategies (si) for each of the players, which includes

a choice of action (ai ∈ {Ci, Ri}) for each of their potential types (ti ∈ Hi, Fi). The

strategy for player i can therefore be represented as (ai |Hi , ai |Fi ). A strategy is a perfect

Bayesian equilibrium strategy (s∗i ) for player i if it results in the maximum expected utility

Ui , given the sequentially rational decisions of the other player. In this section, we are in-

terested in identifying which combination of strategies, {si, sj}, are perfect Bayesian equi-

librium strategies and yield a signed treaty between the players. To do this we evaluate

combinations of strategies and whether or not they fall on the equilibrium path.

In the case that a treaty is signed (ai = Ci, aj = Cj), each player can update their

belief that the other player is Honest. This belief of player i depends on the strategy of

player j and is determined by Bayes rule λ′i = P(Hj |Cj) = P(Cj |Hj)
P(Hj )

P(C j )
, noting that

P(Hj) = λi .
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1.3.1 Both players pool on cooperation

We begin by considering the strategy combination in which both players pool on co-

operation, meaning that they cooperate regardless of their type: {(C1,C1), (C2,C2)}. Our

objective is to determine whether (and under what conditions) this combination of strate-

gies results in a perfect Bayesian equilibrium. We start by considering the perspective of

player 1 under the assumption that player 2 has decided to pool on cooperation.

If player 1 plays C1, the expectation of her utility under a treaty is given by:

E[U1(q1, q2)] =


λ′1U1(qH

1 , q
H
2 ) + (1 − λ

′
1)U1(qH

1 , q
F
2 ), t1 = H

λ′1U1(qF
1 , q

H
2 ) + (1 − λ

′
1)U1(qF

1 , q
F
2 ), t1 = F

(8)

If player 1 were to play R1, her utility would be U1(qN
1 , q

N
2 ), and she will only play

C1 if U1(q1, q2 | C1) > U1(qN
1 , q

N
2 ). The fact that player 2 pools on cooperation entails that

P(C2 | H2) = P(C2 | F2) = 1 and, applying Bayes formula, λ′1 = λ1. Rearranging the terms

and substituting λ′1 = λ1 we see that cooperation is an equilibrium strategy for player 1 if

the following requirements (mCC) for each type are true:

mCC1,H : P(C1 | H1) ⇔
[
λ′1U1(qH

1 , q
H
2 ) + (1 − λ

′
1)U1(qH

1 , q
F
2 )

?
> U1(qN

1 , q
N
2 )

]
(9)

⇔

[
λ1

?
>

U1(qN
1 , q

N
2 ) −U1(qH

1 , q
F
2 )

U1(qH
1 , q

H
2 ) −U1(qH

1 , q
F
2 )

]
(10)

mCC1,F : P(C1 | F1) ⇔
[
λ′1U1(qF

1 , q
H
2 ) + (1 − λ

′
1)U1(qF

1 , q
F
2 )

?
> U1(qN

1 , q
N
2 )

]
(11)

⇔

[
λ1

?
>

U1(qN
1 , q

N
2 ) −U1(qF

1 , q
F
2 )

U1(qF
1 , q

H
2 ) −U1(qF

1 , q
F
2 )

]
(12)

We now consider the perspective of player 2. If player 2 plays C2, the expectation of

his utility under a treaty is given by:

E[U2(q1, q2)] =


λ′2U2(qH

1 , q
H
2 ) + (1 − λ

′
2)U2(qF

1 , q
H
2 ), t2 = H

λ′2U2(qH
1 , q

F
2 ) + (1 − λ

′
2)U2(qF

1 , q
F
2 ), t2 = F

(13)

If player 2 were to play R2, his utility would be U2(qN
1 , q

N
2 ), and player 2 will only

play C2 if U2(q1, q2 | C2) > U2(qN
1 , q

N
2 ). Rearranging the terms and substituting λ′2 = λ2
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we see that player 2 cooperates if the following requirements (mCC) are true:

mCC2,H : P(C2 | H2) ⇔
[
λ′2U2(qH

1 , q
H
2 ) + (1 − λ

′
2)U2(qF

1 , q
H
2 )

?
> U2(qN

1 , q
N
2 )

]
(14)

⇔

[
λ2

?
>

U2(qN
1 , q

N
2 ) −U2(qF

1 , q
H
2 )

U2(qH
1 , q

H
2 ) −U2(qF

1 , q
H
2 )

]
(15)

mCC2,F : P(C2 | F2) ⇔
[
λ′2U2(qH

1 , q
F
2 ) + (1 − λ

′
2)U2(qF

1 , q
F
2 )

?
> U2(qN

1 , q
N
2 )

]
(16)

⇔

[
λ2

?
>

U2(qN
1 , q

N
2 ) −U2(qF

1 , q
F
2 )

U2(qH
1 , q

F
2 ) −U2(qF

1 , q
F
2 )

]
(17)

The first requirement mCC2,H is more restrictive and if it is true, mCC2,F will always be

true. The same can be said for mCC1,H and mCC1,F , respectively. Therefore, both players

pooling on cooperation is an equilibrium strategy provided mCC1,H and mCC2,H are true.

1.3.2 Player 1 pools on cooperation, player 2 separates by type

In this case, player 1 pools on cooperation and player 2 chooses an action based on

the disposition of his type, meaning that Honest players are inclined to cooperate while

Frauds are inclined to refuse cooperation. The combination of strategies is {(C1,C1), (C2, R2)}.

To test if this strategy is on the equilibrium path, we evaluate whether or not there are sit-

uations in which either player would want to change their strategy.

We consider the perspective of player 2. Because player 1 always cooperates, we can

substitute λ′2 = λ2, similar to the case above. If player 2 is Honest and changes his play

to R2, his utility will be U2(qN
1 , q

N
2 ). If player 2 is a Fraud and changes his play to C2, his

utility will be λ′2U2(qH
1 , q

F
2 )+(1−λ

′
2)U2(qF

1 , q
F
2 ). Therefore, the following two requirements

must be met:

mCT2,H : P(C2 | H2) ⇔
[
λ′2U2(qH

1 , q
H
2 ) + (1 − λ

′
2)U2(qF

1 , q
H
2 )

?
> U2(qN

1 , q
N
2 )

]
(18)

⇔

[
λ2

?
>

U2(qN
1 , q

N
2 ) −U2(qF

1 , q
H
2 )

U2(qH
1 , q

H
2 ) −U2(qF

1 , q
H
2 )

]
(19)

mCT2,F : P(R2 | F2) ⇔
[
U2(qN

1 , q
N
2 )

?
> λ′2U2(qH

1 , q
F
2 ) + (1 − λ

′
2)U2(qF

1 , q
F
2 )

]
(20)

⇔

[
λ2

?
<

U2(qN
1 , q

N
2 ) −U2(qF

1 , q
F
2 )

U2(qH
1 , q

F
2 ) −U2(qF

1 , q
F
2 )

]
(21)

In order to evaluate when mCT2,H and mCT2,F are both true, we re-arrange the in-

equalities and recombine as follows:
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λ2U2(qH
1 , q

F
2 ) + (1 − λ2)U2(qF

1 , q
F
2 ) < U2(qN

1 , q
N
2 ) < λ2U2(qH

1 , q
H
2 ) + (1 − λ

′
2)U2(qF

1 , q
H
2 ) (22)

0 < λ2
[
U2(qH

1 , q
H
2 ) −U2(qH

1 , q
F
2 )

]
+ (1 − λ2)

[
U2(qF

1 , q
H
2 ) −U2(qF

1 , q
F
2
]

(23)

Both terms on the right hand side of Eq. 23 will never be positive because U2(qH
1 , q

H
2 ) ≤

U2(qH
1 , q

F
2 ) and U2(qF

1 , q
H
2 ) ≤ U2(qF

1 , q
F
2 ), meaning that the inequality will never hold

true. In other words, mCT2,H and mCT2,F cannot be true simultaneously, and the com-

bined strategies {(C1,C1), (C2, R2)} is not a perfect Bayesian equilibrium strategy.

This result can be understood intuitively when considering that the utility of player

2 will increase if he is a Fraud, which always seeks to maximize his expected utility and

take advantage of player 1 through the agreement. There is a trivial case in which this

strategy is a perfect Bayesian equilibrium when the trust of player 1 is zero, but we ignore

these trivial cases which can be accounted for using other strategies.

1.3.3 Player 1 pools on cooperation, player 2 separates for exploitation

In this case, player 1 pools on cooperation and player 2 chooses a strategy based on

a cynical world view in which Honest players are distrustful and Frauds wish to exploit

the other player (C1,C1), (R1,C1). This combined strategy is never a perfect Bayesian equi-

librium, which could be shown using formal mathematical arguments as presented above.

However, the result can also be obtained by reasoning through the options of both players.

If both sides were to sign a treaty, player 1 would know that she has entered into

an agreement with a Fraud. There is never a reason to enter into an agreement with a

Fraud, who will always disregard the treaty allocation and maximize his own utility. In

other words, if player 1 suspects that player 2 might play this strategy, she should always

refuse a treaty. This combined strategy is never on the equilibrium path for player 1 and

cannot be considered a perfect Bayesian equilibrium.

1.3.4 Summary of strategies

So far we have shown that pooling on cooperation (Ci,Ci) makes sense for both

players under certain circumstances. We have further shown that (Ci, Ri) never makes

sense for player i, and that player j would never want to cooperate with an opponent whose
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strategy is (Ri,Ci). The final strategy of pooling on refusal (Ri, Ri) can be on the equilib-

rium path but is unimportant in terms of the game because it never leads to a treaty.

Therefore, a treaty only emerges when both players pool on cooperation, requiring

that mCC1,H and mCC2,H are satisfied. Any remaining strategies that fall on the equilib-

rium path result in no treaty, in which case the solution is represented by the Nash equi-

librium.

2 Genevese case study

2.1 Modifications to the game

The Genevese scenario required modifications to the game to account for additional

aspects of the case study that were important to signing the treaty. First, we added terms

to the utility and depth functions to account for the fact that the treaty was signed with

the intention that Switzerland build an artificial recharge facility to maintain aquifer water

levels. Second, we converted the relationship between abstraction and drawdown from

confined behavior to unconfined behavior, to account for the fact that the aquifer is mostly

unconfined and could be significantly depleted. Finally, we adjusted the cost function to

reflect the increasing cost of pumping in a depleting aquifer.

The new utility equation is written as

Ui(q1, q2) = −p0i(Qi − qi) − B(di)qi − c0ri − crirM (Ω) − εi · Ω ± z · Ω , (24)

where c0ri is the fixed construction cost for a recharge facility, cri is the unit cost of recharge,

rM volumetric the rate of aquifer recharge contingent on a treaty, and the remaining terms

are identical to Eq. 1. Because France does not directly pay for recharge, c0r f = cr f = 0.

We also modify the equation for drawdown to incorporate a term for recharge and to

represent unconfined groundwater dynamics. In unconfined aquifers, abstraction is related

linearly with discharge potential, φi , which is equivalent to the square of the thickness of

the water table. For this reason, it is more convenient to express cost and drawdown in

terms of the saturated thickness of the water table, hi , so that depth is di = dBi − hi where

dBi is the depth of the bottom of the aquifer. The discharge potential is then given as

φi = h2
i = h2

0i − Φiiqi − Φi jqj + ΦirrM, (25)

where h0i is the undisturbed saturated thickness of the water table accounting for steady-

state recharge and discharge, and the coefficients relate discharge potential for player i
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with abstraction by country i (Φii), abstraction by country j (Φi j), and managed recharge

(Φir ).

Increasing costs as the aquifer depletes must be considered when accounting for

player strategies in a resource-limited aquifer. To do so, we utilize an exponential func-

tion such that the cost approaches infinity as the water table thickness approaches zero.

This function is weighted so that abstraction cost is Bnl(di) ≈ βdi (similar to the confined

case) when the depth of the water table is small. As depth increases, the exponential is

given more weight. After applying the variable substitution di = dBi − hi , we write the

cost function for unconfined aquifers as

Bnl(hi) = β
[
dBi(1 − l)(ln dBi − ln hi) + l(dBi − hi)

]
. (26)

This function is continuous over the domain hi > 0 and adheres to our requirements that

limhi→0 Bnl = ∞ and the cost of pumping is zero if the water table is at the land surface.

Pumping is nearly linear as the water table approaches the surface (hi → dBi), with a

slope of −β, the same as the linear specification for confined aquifers. The free parameter

l ∈ [0, 1) controls the relative weighting between the linear and nonlinear portions of the

curve.

2.2 Groundwater model

Our modeling sought to broadly reproduce the circumstances of the Genevese aquifer

leading up to and after the signing of the treaty in 1978. Doing so required fully parame-

terizing the utility and depth functions for the unconfined aquifer as shown above (Equa-

tions 24, 25, and 26). We note that the full time series of parameters used to generate Fig-

ure 3 in the manuscript is available online [Penny, 2020].

We generated hydrological parameters using data provided by the Geological survey

of the Canton of Geneva (GESDEC), including groundwater elevation and abstraction and

raster files containing elevation for the land surface and aquifer boundaries. We calculated

depth to the bottom of the aquifer as the average land surface elevation minus the average

elevation of the bottom of the aquifer. We calculated the undisturbed water table depth

(d0i) as the average surface elevation minus average water table elevation prior to 1960.

Although this data is proprietary, all inputs to the transboundary aquifer game utilized in

this study are included in Penny [2020, available online].
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Figure S2. Idealized representation of the Genevese aquifer used for modeling drawdown relationships.

The drawdown relationships, Φii , Φi j , and Φir were modeled using the analytical

element method and the R package anem [Penny et al., 2020]. We manually idealized

the aquifer boundaries to fit a rectangle and shifted placement of pumping wells to en-

sure similar location with respect to the aquifer boundaries. We weighted abstraction in

each well by the relative rates of abstraction in each of the wells using data provided by

GESDEC. The idealized aquifer is shown in Figure S2. Because demand in the aquifer ex-

ceeded recharge, we modeled the Arve river as a constant-flow boundary which recharged

7.5 million cubic meters (MCM) of water to the aquifer each year [de los Cobos, 2018].

Fluxes through the remaining aquier boundaries are low, and in the model we set them to

no-flow boundaries. The R package anem contains a function called get_drawdown_relationships

which applies the analytical element method to directly calculate the relationships Φix .

The function requires that each well is parameterized by a well diameter and radius of

influence. We used well diameters supplied by GESDEC, and estimated the radius of in-

fluence of each well using the approximation by Aravin and Numerov [1953] with a total

elapsed time of pumping of 25 years [Fileccia, 2015]. We supplied the wells and aquifer

parameters to the get_drawdown_relationships function, and used it to obtain final

values for the drawdown relationships.

We approximated demand using a linear regression to capture increasing demand

which was then capped at a maximum value, determined as maximum abstraction over

the period of analysis (see Figure S3). In reality demand continued to increase [Geneva

currently obtains 90% of its water supply from lake Geneva, SIG, 2020] but, because the
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Figure S3. For both Switzerland and France, Qi was determined from abstraction timeseries. The rising

limb was determined from linear regression of the circled points. Increasing demand continues until reach-

ing a maximum, determined by the maximum abstraction of each country over the timeseries. The units are

million cubic meters (MCM) per year.

abstraction shifted to a cost-limited situation, additional abstraction beyond these values

had no bearing on the treaty as it was satisfied by alternative sources.

Lastly, recharge was fixed at 8.2 MCM per year, representing the average recharge

to the aquifer since the recharge facility was commissioned in 1980. We assume that if

no treaty was signed, that Switzerland would likely reduce the amount of annual recharge.

We fixed this reduction to 2% of the total recharge (i.e., 0.082 MCM). However, we note

that greater reductions in the absence of a treaty would be possible and would further

incentivize each side to sign a treaty (in other words, 2% serves as a conservative esti-

mate). As noted in the main text, this 2% difference begins with the initiation of recharge

in 1980 and therefore does not affect the decision to cooperate in 1978. Instead, it demon-

strates the additional value of shared recharge after 1980.

2.3 Economic parameters

The remaining parameters pertain to the economic cost of water supply and recharge.

These include alternative price (p0i), the cost of abstraction (β), and the fixed and variable

costs of recharge (c0rs and crs , respectively).
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Alternative price was determined by assuming water could be treated from lake

Geneva using ultrafiltration, which is common in the region. The energy intensity of ul-

trafiltration is approximately 0.1 kWh m-3, which itself represents about 30% of overall

costs [Lipp et al., 1998]. This results in water supply costs of 0.067 CHF m-3, assuming

a cost of 0.2 CHF kWh-1 for electricity [Federal Electricity Commission ElCom, 2020],

which gives a rough approximation of electricity prices in Geneva. This yields a cost of

67,000 CHF MCM-1 for the alternative source.

The cost of abstraction was determined as the cost of energy to lift 1 m3 of water by

1 m. The energy to lift groundwater is 9.81 kJ m-3 m-1. Converting to kWh and assuming

a pumping efficiency of 60%, this translates to an energy efficiency of 0.0045417 kWh

m-3 m-1, or 908.33 CHF MCM-1 m-1. We round up to obtain an abstraction cost of 910

CHF MCM-1 m-1.

The cost of recharge was determined via numbers provided by de los Cobos [2018],

including the unit cost of recharge under two scenarios. In the first scenario with a total

recharge rate of 20 MCM, the average unit cost of recharge is 0.07 CHF m-3. In the sec-

ond scenario with a total recharge rate of 10 MCM, the average unit cost of recharge is

0.12 CHF m-3. Linear combination of these scenarios yields a fixed cost for the recharge

facility of c0rs = 1 × 107 CHF and a variable cost of crs = 2 × 104 CHF MCM-1.

2.4 Sensitivity analysis

The parameter values described above contain uncertainty. To ensure that the model

results were robust to parameter uncertainty, we conducted a year-by-year Monte Carlo

analysis (N = 1,000 each year), varying each parameter by 20%. In other words in the

Monte Carlo analysis, each parameter was sampled 1,000 times each year from a uniform

random distribution spanning the mean value plus or minus 20%. The only variables that

were not sampled from a ±20% range were trust, which was clipped to the range λi ∈

[0, 1], transaction costs, which were were sampled from εi ∈ [0, 620] representing 0–75%

of the utility of the treaty (ẑ) without transaction costs in 1978, the shape parameter on

abstraction costs, which was sampled from l ∈ [0.2, 0.8], and the reduction in recharge in

the case of no treaty, which was sampled from the range [0, 0.05]. The results of this year-

by-year sensitivity analysis are presented in the main text. Overall, when only considering
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the time period 1978-1990 (N = 13,000), we note that a treaty was signed in 76.3% of the

simulations.

References

Aravin, V., and S. Numerov (1953), Theory of motion of liquids and gases in undeformable

porous media, Gostekhizdat, Moscow.

de los Cobos, G. (2018), The Genevese transboundary aquifer (Switzerland-France): The

secret of 40 years of successful management, Journal of Hydrology: Regional Studies,

20, 116–127, doi:10.1016/j.ejrh.2018.02.003.

Federal Electricity Commission ElCom (2020), Your electricity price in comparison,

https://www.prix-electricite.elcom.admin.ch/Map/ShowSwissMap.aspx, Accessed: Au-

gust 27, 2020.

Fileccia, A. (2015), Some simple procedures for the calculation of the influence radius

and well head protection areas (theoretical approach and a field case for a water table

aquifer in an alluvial plain), Acque Sotterranee-Italian Journal of Groundwater, 4(3).

Lipp, P., G. Baldauf, R. Schick, K. Elsenhans, and H.-H. Stabel (1998), Integration

of ultrafiltration to conventional drinking water treatment for a better particle re-

moval — efficiency and costs?, Desalination, 119(1-3), 133–142, doi:10.1016/S0011-

9164(98)00133-7.

Penny, G. (2020), Transboundary aquifer game submission to Water Resources Research

(R package: genevoisgame). Zenodo, doi:10.5281/zenodo.4017936.

Penny, G., C. Mullen, D. Bolster, B. Huber, and M. Müller (2020), anem: A simple web-

based platform to build stakeholder understanding of groundwater behavior, Groundwa-

ter, 13043, doi:10.1111/gwat.13043.

SIG (2020), L’eau de Genève: eau potable, https://ww2.sig-ge.ch/particuliers/nos-

offres/eau/eau-de-geneve, Accessed: July 6, 2020.

–13–


