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Key Points: 19 
• We develop a method for detailed monitoring of surface precipitation using dense seismic 20 

arrays. 21 

• Seismic monitoring offers higher spatial and temporal resolution than traditional 22 
precipitation monitoring methods. 23 

• Seismic precipitation signals can be used to detect and characterize hailstorms. 24 
  25 
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Abstract 26 

Accurate precipitation monitoring is crucial for understanding climate change and rainfall-driven 27 

hazards at a local scale. However, the current suite of monitoring approaches have different 28 

insufficiencies, including low spatial and temporal resolutions, and the inability to monitor 29 

potentially destructive precipitation events such as hailstorms. In this study, we develop an array-30 

based solution to monitor rainfall with seismic nodal stations, offering both high spatial and high 31 

temporal resolutions. We analyze seismic records from densely spaced, high-frequency 32 

seismometers in Oklahoma, and identify signals from all 9 precipitation events that occurred 33 

during the one-month station deployment in 2016. After removing anthropogenic noise and Earth 34 

structure response, the obtained precipitation spatial pattern mimics the one from an operational 35 

weather radar, while offering higher spatial and temporal resolutions. We further show the 36 

potential of this approach to monitor hail with joint analysis of seismic intensity and independent 37 

precipitation rate measurements, and advocate for coordinated seismological-meteorological 38 

field campaign design. 39 

Plain Language Summary 40 

Accurate rainfall monitoring plays a key role in natural hazard assessment. However, current 41 

monitoring approaches provide limited spatial (e.g., sparsely located rain gauges) or temporal 42 

information (e.g., weather radar products available every 5 minutes but not more frequently). 43 

Therefore, to supplement these existing approaches, a new technique that can cover a large area 44 

and update frequently is required. In this study, we found that weak ground vibrations caused by 45 

raindrop impacts, recorded by densely deployed instruments that measure earthquake-generated 46 

waves, can fulfill this requirement. We examined such rainfall ground vibration data in part of 47 
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Oklahoma in 2016, and found that the new technique successfully retrieved detailed rainfall 48 

information. Additionally, besides the amount of rainfall, the new technique could also provide 49 

information on the size of raindrops or hailstones hitting the ground, making it a potential tool 50 

for monitoring hail, which is now largely based on manual reporting. 51 

1 Introduction 52 

Accurate monitoring of precipitation is essential to our understanding of the water and 53 

energy cycles, and can inform rainfall-driven hazard mitigation. Surface precipitation can be 54 

used to infer information about atmospheric water vapor, convection and latent heating, and it is 55 

a key input for terrestrial ecological and hydrological modeling (Arnold et al., 1998; Fodor & 56 

Kovács, 2005). Regarding hazards, extreme precipitation can cause mass movements including 57 

landslides and debris flows (Chen et al., 2015), and produce flash floods when the precipitation 58 

rate is beyond the infiltration capacity (Cheremisinoff, 1998). Furthermore, long-term 59 

observational precipitation data facilitate studies of climate change (Trenberth, 2011), which can 60 

have highly variable impacts at local scales. 61 

Among these precipitation-related hazards, hailfall is known to cause severe economic 62 

damage and bodily injury. Hail often brings significant losses in both urban areas and farmland 63 

(T. M. Brown et al., 2015; Roberts & Vasudevan, 2015). One recorded hailstorm in 1995 injured 64 

109 people during an outdoor festival (Storm Data - May 1995, 1995), and hailstorms may even 65 

cause deaths. Therefore, accurate real-time quantification of the areal extent and intensity of 66 

hailfall is highly relevant for hazard mitigation. 67 

Currently, precipitation is usually monitored in two ways: 1) direct measurement on the 68 

ground, or 2) remote sensing of hydrometeors (i.e., liquid and solid water particles in the air). 69 
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Automatic direct measurement of surface rainfall is most commonly conducted using catching-70 

type rain gauges, such as tipping-bucket gauges which are globally employed in weather stations 71 

(L. G. Lanza et al., 2022). The instrument sensitivity depends on the bucket size (typically ~0.2 72 

mm) and the integration time between buckets depends on the precipitation intensity (Marsalek, 73 

1981). Hence, when the precipitation rate is low, timely precipitation updates are not available, 74 

and when the precipitation is high, the gauge underestimates precipitation during emptying 75 

periods (Marsalek, 1981). Meanwhile, low-cost tipping-bucket gauges are not designed to 76 

measure droplet sizes. Unlike rain or snow, direct hail measurement still requires much human 77 

effort using disposable foam hailpads (Palencia et al., 2009), especially given that hailpad 78 

networks need to be dense because of the local character of hailfall (Cifelli et al., 2005; Fraile et 79 

al., 2003; Fraile et al., 1991). 80 

Unlike surface measurements which can only sample precipitation from a small areal 81 

extent, ground-based and space-borne radar is used to detect precipitation over large areas. In 82 

general, radars gain information about hydrometeors in the atmosphere and then estimate 83 

precipitation based on empirical relationships between reflectivity and precipitation rate (Fulton 84 

et al., 1998; Giangrande & Ryzhkov, 2008), forward modeling of attenuation by hydrometeors 85 

(Iguchi, 2020), or the shapes of raindrops measured by orthogonally polarized echoes (Seliga & 86 

Bringi, 1976). However, while offering good spatial coverage, depending on the instruments and 87 

platforms, the temporal resolution of typical radar precipitation products is longer, ranging from 88 

min to hours, and satellite radar precipitation products have a lower kilometer-scale spatial 89 

resolution. 90 

Recent advancements in understanding seismic precipitation signals (Bakker et al., 2022; 91 

Dean, 2017; Rindraharisaona et al., 2022) provide an alternative to counter these weaknesses of 92 
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existing precipitation monitoring approaches by using seismic waves, which are generated when 93 

raindrops impact the ground and excite waves, at frequencies typically above 50 Hz (Bakker et 94 

al., 2022; Dean, 2017; Rindraharisaona et al., 2022) for nearby raindrop impacts. Hence, unlike 95 

remotely-sensed radar measurements, the seismic intensity serves as a direct sampling of surface 96 

precipitation similar to rain gauges with high temporal resolution. Meanwhile, compared to 97 

traditional tipping-bucket rain gauges, the seismic intensity is dependent on the weight and speed 98 

of each raindrop in addition to the overall precipitation rate (Bakker et al., 2022; Dean, 2017; 99 

Rindraharisaona et al., 2022), making it sensitive to the precipitation type and the hydrometeor 100 

size, and thus could potentially be used to detect hail. Because a single seismic station is 101 

sensitive only to raindrops that fall within ~10 m of it (Bakker et al., 2022), a seismic array is 102 

required to monitor regional rainfall patterns. 103 

Oklahoma is a perfect place to test the proposed seismic array precipitation monitoring 104 

approach. The climate in Oklahoma is regulated by low-level warm and moist advection from 105 

the Gulf of Mexico and mid-level cold and dry air from Canada and the Rocky Mountains, which 106 

bring severe weather to the southern Great Plains. Thunderstorms frequently occur between 107 

April and October, peaking in May and June, and are often accompanied by tornadoes and large 108 

hail (R. M. Brown, 1991). A low-level jet stream flows from the Gulf of Mexico through parts of 109 

Oklahoma, overlapping with locations that experience the most severe weather (Bonner, 1968). 110 

Central and North Central Oklahoma display two precipitation peaks throughout the year, 111 

namely in May and September (R. M. Brown, 1991). 112 

Between 14 April 2016 and 10 May 2016, 1833 high-frequency seismic nodal stations 113 

from the LArge-n Seismic Survey in Oklahoma (LASSO) experiment were deployed with 114 

nominal station spacing of ~400 m along county roads in Grant County, Oklahoma (Figure 1), 115 
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for a study region about 25 km by 32 km, and the stations were buried in ~18 cm deep shallow 116 

holes with ~3 cm soil cover (Dougherty et al., 2019). Such shallow burial depths enable the 117 

following detection of rainfall signals (Rindraharisaona et al., 2022). This experiment was 118 

initially designed to study the induced seismicity around the region (Cochran et al., 2020). 119 

During the deployment period, there were nine precipitation events in the same region, and these 120 

precipitation events pertain to different storm types (Table S1), including disorganized “pulse-121 

type” thunderstorms, supercell thunderstorms, and mesoscale convective systems with scattered 122 

instances of large hail, making it an ideal dataset to test the seismic precipitation monitoring 123 

approach. 124 

In this study, we extracted seismic precipitation signals from all LASSO stations. We 125 

then solved the two main challenges for array-based monitoring: 1) removing anthropogenic 126 

noise, and 2) accounting for differences in Earth structure response between stations. With these 127 

corrections, seismic-estimated precipitation intensities from the array are compared with 128 

measurements from a local tipping-bucket rain gauge at a Department of Energy (DOE) 129 

Atmospheric Radiation Measurement (ARM) external facility and a nearby WSR-88D S-band 130 

ground-based operational weather radar at Vance Air Force Base, Oklahoma (Figure 1), to test 131 

the resolution of this new approach. In addition to seismic-only precipitation rate retrievals, we 132 

also performed a joint analysis of seismic intensities and radar precipitation rate products to test 133 

the potential use for hail detection. 134 
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 135 
Figure 1. Map of the study area. Triangles show individual seismic nodal stations, color coded 136 
by the relative Earth structure response with respect to the reference station (Network: 2A, 137 
Station: 340, location shown in Figure S1). The inverted red triangle and the magenta star mark 138 
locations for the ground-based radar and the rain gauge. Gray lines are roads. The study area is 139 
outlined by the red box in the map at the bottom right corner. 140 

2 Materials and Methods 141 

2.1 Seismic-derived precipitation signal and its physical meaning  142 

Based on satellite and radar data for the study area, nine precipitation events occurred 143 

during the deployment period and within the footprint of the array (with each event containing 144 

multiple sub-events). Seismograms from the LASSO arrays were requested for all these events, 145 

and we obtained seismic displacement data from 1825 individual stations (Figure 1) (data lost for 146 

8 stations). 147 
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 148 
 149 
Figure 2. Seismic precipitation signals. (a) Displacement seismogram for a precipitation event 150 
on 19 April 2016 sampled by Station: 150 (black line), filtered at 100-200 Hz. Rain window 151 
(red) and noise window (blue) for following analyses are divided by dashed lines. (b) Averaged 152 
power spectral density for the rain window (red) and noise window (blue) in (a). Solid lines 153 
show original PSD, dashed lines show denoised PSD. The frequency range between 100 and 200 154 
Hz is less affected by noise. (c)/(d) Averaged seismic power spectral density between 100 and 155 
200 Hz before/after removing anthropogenic noises. Times used in this study are all in UTC.  156 

Based on the seismograms, a much higher level of background ‘tremor’ is observed 157 

during precipitation events (e.g., Figure 2a), and these elevated tremor records are hereafter 158 

referred to as seismic precipitation signals. Power spectral densities (PSDs) were calculated for 159 

every second between 10 Hz (the corner frequency of the nodal instruments) and 250 Hz 160 

(Nyquist frequency) using the Welch method (Welch, 1967) (Text S2 in Supporting Information 161 

S1). The Welch method calculates the overall PSD around ±5 s, making the effective time 162 

resolution of the PSD 1-10 s. Comparing seismic PSDs for time windows with and without the 163 

precipitation, seismic power at frequencies over 60 Hz is greater during precipitation (Figure 2b), 164 

as observed in previous studies (Bakker et al., 2022; Dean, 2017; Rindraharisaona et al., 2022). 165 

These elevated seismic PSDs during precipitation events are caused by hydrometeors 166 

hitting the ground (Bakker et al., 2022; Dean, 2017). As the seismic precipitation signal is due to 167 

the combination of seismic waves from all impact events between hydrometeors and the ground, 168 
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the impact induced seismic ground motion can be modeled similarly to stochastic bedload 169 

impacts (Bakker et al., 2022; Tsai et al., 2012), and the recorded displacement spectrum ui(f) at 170 

station i at a distance of r can be characterized as 171 

 , (1) 172 

where Fj(f) is the force of the impact (Fourier transform of ,  the Dirac delta 173 

function), and mj, vj, and tj are the mass, fall speed and impact time of a single hydrometeor 174 

particle j. Gi(f,r) is the displacement Green’s function which represents the response of Earth 175 

structure (meanings for all used symbols summarized in Table S2). This expression is valid when 176 

the impact is instantaneous, and the particle does not rebound. Assuming impacts happen 177 

randomly in space, the PSD of the displacement seismogram PSDi(f) is expressed as: 178 

 , (2) 179 

where N is the number of impacts per area per time (Tsai et al., 2012); m is the particle mass; and 180 

v is the particle terminal speed. Nm is equivalent to the particle density (ρw) multiplied by the 181 

precipitation rate PR, and 0.5mv2 to the kinetic energy of a hydrometeor particle (E), and S 182 

represents the remaining Earth structure response. Here, eq. (2) is a simplified approximation 183 

valid when all particles have the same mass and fall speed. The full derivation for how seismic 184 

PSD is related to precipitation rate and kinetic energy when considering the particle size 185 

distribution as a normalized Gamma distribution (Testud et al., 2001) is available in Text S1 in 186 

Supporting Information S1, and the relationship is similar to eq. (2). Therefore, an elevated PSD 187 

could indicate increases in either the precipitation rate or the size of hydrometeors, as the kinetic 188 

energy of hydrometeors increases with their sizes. This formulation thus lays the foundation to 189 
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monitor both regular precipitation events and hailfall (often with higher fall speeds and thus 190 

kinetic energy) using seismic data analysis. 191 

2.2 Removing anthropogenic noise and Earth structure response  192 

Based on this quantitative framework, we use the average seismic PSD between 100 and 193 

200 Hz (Figure 2b) to characterize precipitation strength (Figure 2c). This frequency band is 194 

selected as it is above 60 Hz, where nearby precipitation starts to dominate the observed tremor, 195 

and below 220 Hz, where signals become very weak (Figure 2b). The band is also higher than 196 

the main anthropogenic noise window (Rindraharisaona et al., 2022) (4-80 Hz), river noise 197 

window (Bakker et al., 2022) (<100 Hz) and where wind noise may dominates (Rindraharisaona 198 

et al., 2022) (<70 Hz). Meanwhile, this band is selected to be above the corner frequency of all 199 

influential earthquakes (Kemna et al., 2020; Trugman et al., 2021). As expected, consistently 200 

high PSD amplitudes are observed during precipitation, but occasional high PSD pulses also 201 

occur in intervals without rain (Figure 2c). 202 

Non-precipitation PSD pulses were removed based on their common features. Since the 203 

nodal stations were often deployed along roads, the majority of these pulses are short duration 204 

traffic signals and are easily removed (Figure 2c). Compared with precipitation signals, these 205 

anthropogenic pulses are also particularly strong at low frequencies (Rindraharisaona et al., 206 

2022) (<80 Hz, Figure 2b). Based on these two characteristics, denoising criteria were designed 207 

to find and remove this anthropogenic noise (Text S2 in Supporting Information S1). After 208 

denoising, most pulses were successfully removed (Figure 2d), and as expected, seismic PSDs 209 

during non-precipitation intervals are significantly reduced and now two orders of magnitude 210 
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lower than during precipitation intervals (Figure 2b). We found denoising only marginally 211 

reduces the 100-200 Hz PSD during precipitation (Figure 2b). 212 

In order to analyze signals from different stations systematically, their different Earth 213 

structure responses (Dean, 2017; Rindraharisaona et al., 2022) must be corrected. Based on eq. 214 

(2), the difference in log-scale for seismic PSD from two stations i and k is expressed as 215 

 . (3) 216 

The first part on the right-hand side of eq. (3) corresponds to differences in rain intensity 217 

between stations, and the second part corresponds to their difference in Earth structure response. 218 

To quantify the Earth structure response, we first measured this seismic PSD difference 219 

(log(PSDi/PSDk)) at station pairs that are within 1.5 km apart for each shared precipitation 220 

window (Text S3 in Supporting Information S1), and calculated their average. Because only 221 

close station pairs were used, their overall precipitation intensity is similar. Therefore, after 222 

averaging, the first part on the right-hand side of eq. (3) is eliminated, with only the Earth 223 

structure difference left (second part of the right-hand side in eq. 3). With this, we set the 224 

response at a reference station to be one (Station 340), and solved for the optimal relative Earth 225 

structure response R at each station to minimize an L2-norm cost function that is similar to 226 

 (eq. S14 in Supporting Information S1). This optimization 227 

problem has an explicit and constant Hessian, so those relative responses R can be directly 228 

obtained using Newton’s method (Galántai, 2000) (Figures 1 & S1a), with their standard 229 

deviations provided by the inverse Hessian (Thacker, 1989) (Figure S1b). More details about the 230 

optimization are available in Text S3 in Supporting Information S1.  231 
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The relative structure response at different stations shows two orders of magnitude 232 

differences (Figure 1), indicating a substantial difference in burial depth or soil type 233 

(Rindraharisaona et al., 2022), and emphasizing the importance of this correction. However, the 234 

low standard deviation (Figure S1b) for the solved responses ensures the accuracy after 235 

correction. Interestingly, we also found the resolved structure response broadly similar to the 236 

spatial pattern of high-frequency seismic ground motion due to teleseismic waves (Chang et al., 237 

2021), again indicating the influence of near surface lithology on the amplitude of seismic 238 

records. In the following analyses, seismic PSDs are divided by their relative Earth structure 239 

response R. 240 

3 Results 241 

3.1 Monitoring precipitation with seismic data  242 

Seismic power spectral densities at each location are then calculated by weighted average 243 

seismic PSDs from nearby stations (Text S4 in Supporting Information S1). To compare seismic-244 

derived precipitation signals with other precipitation measurements, we first obtained the 245 

averaged PSD at the location of a tipping-bucket rain gauge (Figure 1). The seismic-derived 246 

precipitation estimates clearly show elevated PSDs during precipitation periods (Figures 3a & 247 

S2). An example is shown for the precipitation event on 17 April 2016, which consisted of five 248 

sub-events over ~12 hours (Figure 3a). 249 
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 250 
Figure 3. Seismic precipitation measurements in comparison with rain gauge. (a) Seismic power 251 
spectral density at the location of the rain gauge for a precipitation event on 17 April 2016. The 252 
profile is obtained by the weighted average seismic PSD sampled at several nearby stations. Red 253 
sections mark five individual precipitation sub-events, and are divided by black dotted lines. (b) 254 
Similar to (a), but is smoothed. The gray shadow shows one standard deviation due to station 255 
averaging. All smoothing for panels in this Figure is done by convolving a Gaussian (10 min 256 
half-width). (c) The blue line shows smoothed precipitation rate from the rain gauge. Red 257 
sections are converted precipitation rate from seismic PSD by fitting each red PSD sections in 258 
(b) to the rain gauge measurements in (c) through linear regression after both are converted to 259 
log-scales. (d) The blue line shows raw rain gauge records, which often appear discretized due to 260 
its integration time. Red lines show converted precipitation rate using the unsmoothed PSD in (a) 261 
and the regression relationship in (c). The green line shows instantaneous precipitation rate from 262 
the ground-based radar. (e) Smoothed seismic PSD versus smoothed rain gauge precipitation rate 263 
in log-scale. Different colors for events on different days (Figure S1, each event may consist of 264 
multiple sub-events as separated lines). The black line shows the fitted linear relationship 265 
between the PSD and the precipitation rate using all sub-events except two dashed line outliers, 266 
and the 95% prediction interval for the fitting is characterized by the gray shadow. Fitted 267 
relationship and the 95% interval width are shown at the top left corner. 268 

The seismic-derived signal for this event is compared with precipitation rate from the rain 269 

gauge. Because the integration time of the rain gauge between bucket tips can be longer than one 270 
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minute (the measurement interval) when the rain rate is low, the precipitation record is not 271 

continuous (Figures 3d & S2). Hence, for comparison, both seismic PSD and rain gauge 272 

precipitation rates were smoothed by convolving a 10-min half width Gaussian (Figure 3b-c), 273 

and it is shown that both timing and relative strength were comparable between the two 274 

measurements for those precipitation sub-events.  275 

To estimate the precipitation rate using seismic PSDs, we derived their conversion 276 

relationships. Based on eq. (2), in log-scale, the seismic PSD (logPSD) varies linearly with the 277 

precipitation rate (logPR). For each sub-event, we obtained parameters to convert seismic PSD 278 

linearly to precipitation rate using the ordinary least-square method (Text S5 in Supporting 279 

Information S1), and a close fit is reached (Figures 3c & S2). These conversion parameters were 280 

then applied to the unsmoothed PSD as well (Figure 3a). Compared with precipitation rates from 281 

the rain gauge and the nearby operational weather radar (Figure 1), seismic PSD-derived 282 

precipitation rates offer better temporal resolution (Figures 3d & S2).  283 

The overall conversion relationship between seismic PSD and precipitation rate is also 284 

calculated in the same manner using data from all events (Text S5 in Supporting Information 285 

S1). Based on this relationship (Figure 3e), the PSD is linearly related to PR1.16, indicating a 286 

dependence of raindrop kinetic energy on the precipitation rate (eq. 2). This dependence is 287 

weaker than that from a previous study (Bakker et al., 2022), potentially due to differences in the 288 

type of precipitating weather systems. The prediction interval of the relationship is relatively 289 

wide (Figure 3e), suggesting raindrop kinetic energy varies between events. In particular, the 290 

first sub-event on 26 April 2016 (Figure S2d) shows abnormally higher seismic PSD relative to 291 

the contemporary precipitation (Figure 3e), indicating much larger kinetic energy for the falling 292 
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raindrops or ice particles (i.e., hail). Another abnormal event is on 18 April 2016 where the PSD 293 

is very low.  294 

We then generated seismic precipitation maps for the entire region using the same 295 

method by weighted averaging seismic PSDs from nearby stations (Text S4 in Supporting 296 

Information S1). These maps are compared with instantaneous precipitation rate retrieved from a 297 

nearby operational ground-based weather radar, whose close distance (Figure 1) ensures a lateral 298 

resolution as high as ~300 m over the area (angular resolution of 1°). In general, precipitation 299 

patterns are similar (e.g., Figures 4 & S3) between the two measurements, but seismic maps 300 

show much higher temporal resolution (Movies S1-S9). Seismic maps also show narrower 301 

precipitation regions than the radar (e.g. Figures 4a versus b), suggesting a higher effective 302 

spatial resolution. 303 

 304 
Figure 4. Precipitation spatial distribution. (a)/(b) Maps in log-scale for the seismic power 305 
spectral density / radar instantaneous precipitation rate at 21:39:00 UTC, 26 April 2016. The 306 
white line in (a) shows the contour for 10 mm hr-1 radar precipitation in (b), and the white line in 307 
(b) shows the contour for 10-19 m2 s2 seismic PSD in (a), which is equivalent to 10 mm hr-1 308 
precipitation rate if using the relationship in Figure 3e. Regions with low data coverage are 309 
shown in gray. (c) The seismic PSD map in (a) subtracting the radar precipitation map in (b) 310 
(PSD-PR difference). Only regions with both radar precipitation rate and seismic converted 311 
precipitation rate (Figure 3e) higher than 0.3 mm hr-1 are plotted. The variable plotted in (c) is 312 
expected to be proportional to the kinetic energy of a raindrop. 313 
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4.2 Hail detection through joint analyses of seismic and precipitation measurements  314 

Seismic signals are sensitive to the particle kinetic energy, so hailfall can potentially be 315 

monitored by combining seismic PSD with independent precipitation rate measurements. Based 316 

on eq. (2), the difference between the PSD and the precipitation rate (hereafter referred to as the 317 

PSD-PR difference), defined as logPSD-logPR, is proportional to the particle kinetic energy 318 

(logE). Therefore, the difference between a seismic PSD map and an independent precipitation 319 

rate map (here we use instantaneous precipitation from radar measurements) would indicate the 320 

kinetic energy of hydrometeors (Figure 4c, Movies S1-S9).  321 

Such PSD-PR differences are compared with the probability of hail of any size (POH) 322 

and the maximum expected hail size (MEHS) estimated from the ground-based radar (Figures 5 323 

& S4). These radar hail parameters are generated by the WSR-88D radar’s Hail Detection 324 

Algorithm based on large reflectivity values above the freezing level, and are available for 325 

individual storm cells, with storm cell center locations also given (Witt et al., 1998). Here, we 326 

only consider hail parameters from storm cells whose centers are less than 500 m away from 327 

precipitating locations (both radar and seismic PSD indicates a precipitation rate higher than 0.3 328 

mm/hr, using the relationship in Figure 3e to convert PSD to precipitation). Human reports are 329 

also considered when their minimum distance to the array are less than 10 km (Figures 5 & S4). 330 

It is shown that larger PSD-PR difference occurs when POH and MEHS are greater. For 331 

example, from 20:30 to 22:00 UTC on 26 April 2016, such differences increase along with 332 

increases in POH and MEHS (Figure 5), consistent with the abnormally high seismic PSD 333 

converted precipitation rate using the overall relationship in Figure 3e (Figure 5a). Overall, when 334 

POH is higher than 80%, the PSD-PR difference is systematically higher than the case when 335 

POH is zero (Figure 5b), suggesting the potential to detect hail using a seismic array, and 336 



manuscript submitted to AGU Advances 

 

compared with these hail indices, our seismic approach is likely to map the spatial distribution of 337 

hailfall within a storm cell. 338 

 339 
Figure 5. The relationship between seismic PSD and hailfalls. (a) Similar to Figure 3c, the blue 340 
line shows the smoothed rain gauge precipitation rate for the event on 26 April 2016, and the red 341 
line shows the smoothed seismic PSD converted precipitation rate using the relationship in 342 
Figure 3e. A clear overestimation appears at around 21:15:00 UTC. Circles show the probability 343 
of hail of any size (POH) estimated from the ground-based weather radar, and both their sizes 344 
and colors show the maximum expected hail size (MEHS). These hail related parameters are 345 
only plotted when their corresponding storm cell location is less than 0.5 km from the closest 346 
place with rainfall (over 0.3 mm hr-1 precipitation rate indicated by both the radar and the 347 
seismic PSD relationship in Figure 3e). Times with multiple nearby storm cells may show 348 
multiple circles. Stars show hail reports (treated as POH 100%) that are less than 10 km from the 349 
closest seismic station, with colors showing the reported hail size. The storm cell before 20:00:00 350 
UTC did not pass the rain gauge (Movie S5). (b) The left panel shows the PSD-PR difference 351 
when the total precipitating areas are larger than 20 km2. Solid line shows the median value for 352 
the precipitating area, while dashed lines show 25th and 75th percentiles. The right panel shows 353 
histograms for the median of this difference (solid line in the left panel) for all events (Figure 354 
S4). Red bars are collected at times when POH is greater than 80%, and blues bars are collected 355 
when POH is zero. Median values for these two histograms are plotted as dotted lines in the left 356 
panel. 357 
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4 Discussion 358 

Though our seismic-derived precipitation estimates infer precipitation indirectly through 359 

droplet impact, they show strong potential to complement existing monitoring approaches by 360 

leveraging five distinct advantages: 1) extremely high temporal resolution (1-10 s); 2) very high 361 

spatial resolution (~500 m); 3) sensitivity to raindrop or hailstone sizes; 4) influence only from 362 

precipitation reaching the ground; and 5) wider spatial sampling extent compared to rain gauges. 363 

The time resolution of seismic precipitation signals is higher than traditional approaches 364 

to precipitation monitoring. For instance, the operational weather radar used in this study offers 365 

instantaneous precipitation rate not more frequent than every 5 min due to its scanning strategy 366 

(Movies S1-S9) and is not always accurate (Figures 3d & 2), while precipitation accumulation 367 

without gauge-radar bias is only available in an hourly manner (Fulton et al., 1998). Meanwhile, 368 

tipping bucket rain gauge measurements are often not continuous (e.g., Figure 3d). Satellite 369 

precipitation products also usually have a lower time resolution from min to hours. In contrast, 370 

the seismic signals are analyzed at a much higher frequency (100-200 Hz), resulting in a 371 

temporal resolution on the order of seconds in this study. 372 

Seismic monitoring also offers higher spatial resolution. Compared with operational 373 

weather radar, seismic surface measurements reveal narrower precipitation areas (Figures 4 & 374 

S3, Movies S1-S9). Moreover, although radar products offer precipitation rates at high nominal 375 

spatial resolution (e.g. Figures S3c, f), raw radar data often contains abrupt changes between 376 

neighboring locations partly due to oversampling during data retrieval, and the revealed 377 

precipitation region from these unsmoothed data is in general still broader than the surface 378 

seismic measurement (Figure S3). Spatial resolutions of precipitation estimates from space-borne 379 
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radars are even lower, on the order of kilometers (Maggioni et al., 2016). For a tipping-bucket 380 

rain gauge system deployed as part of a dense array, it would have an apparent high spatial 381 

resolution, but the effective resolution is restricted by its temporal resolution. For a rain gauge 382 

with the instrument sensitivity of 0.2 mm, if the precipitation rate is 1 mm hr-1, the rain gauge 383 

could only record precipitation every 12 min, which would translate into a spatial resolution of 4 384 

km if the precipitating feature travels at a speed of 20 km hr-1. 385 

Another unique feature of the seismic measurement is its sensitivity to particle sizes 386 

(eq. 2). Currently, to directly measure raindrop or hailstone sizes, a high-cost disdrometer (L. 387 

Lanza & Vuerich, 2012) or a hand-operated hailpad (Palencia et al., 2009) is required. For actual 388 

hail monitoring, common practices depend on human reports, labor-intensive hailpad network 389 

(Cifelli et al., 2005; Fraile et al., 2003), or hail information retrieved from weather radars which 390 

depend on calibration from the relatively limited number of hailpad measurements (Mezzasalma 391 

et al., 2000) and often mismatch the location from hail reports (Brook et al., 2021). In contrast, 392 

the seismic PSD itself strongly depends on the hydrometeor kinetic energy (Bakker et al., 2022; 393 

Dean, 2017; Rindraharisaona et al., 2022) (eq. 2), which is evident when PSDs are compared 394 

with rain gauge precipitation rates (Figure 5a). The computed PSD-PR differences are broadly 395 

consistent with radar-based hail indices (Figure 5b), showing the capability of hail monitoring 396 

when independent seismic and precipitation measurements are available. Such hail detection 397 

capability points to the usefulness of designing collaborative observational programs between 398 

seismology and meteorology communities. Specifically, during future deployments of high-399 

density seismic nodal arrays, a coordinated meteorological field campaign with the deployment 400 

of disdrometers and hailpad arrays would help unveil the seismic characteristics of hailstones at 401 
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different sizes and move towards a multidisciplinary real-time product of hail detection and 402 

characterization. 403 

Moreover, seismic precipitation monitoring also benefits from its surface measurement 404 

nature and a larger spatial extent of sampling. Compared with ground-based and space-borne 405 

radars, which remotely sense hydrometeors in the air, seismic signals are generated by actual 406 

raindrops hitting the ground (Bakker et al., 2022; Dean, 2017). Particularly for the potential 407 

usage in hail detection, a ground-based radar is prone to bias aloft due to strong attenuation 408 

during a convective storm (Féral et al., 2003), and it can only produce hail data in a probabilistic 409 

sense, which in contrast, are not problems for the seismic surface measurement. Meanwhile, 410 

assuming precipitation seismic signals are mainly Rayleigh waves (Sánchez-Sesma et al., 2011; 411 

Tsai et al., 2012), the seismic PSD is sensitive to combined impacts from raindrops within ~5-412 

25 m (Bakker et al., 2022), much wider than the areal extent sampled by rain gauges, ensuring a 413 

continuous precipitation measurement and avoiding random errors due to infrequent raindrop 414 

sampling over a small area. 415 

Further improvements could be made to the seismic monitoring approach. 1) The Earth 416 

structure response has a different frequency dependence for various soil types and burial depths 417 

(Dean, 2017; Rindraharisaona et al., 2022), so it could be better corrected in a frequency-418 

dependent way, which could be easily adjusted based on the method in this study. 2) Thunder 419 

signals (Zhu & Stensrud, 2019) are not fully removed during denoising (e.g., Movie S1). 3) 420 

While rain signals are found up to 450 Hz (Dean, 2017; Roth et al., 2016), LASSO seismic 421 

stations cannot resolve signals over 250 Hz, and its data quality is problematic above 200 Hz 422 

(Figure 2b), suggesting better instrumentation would improve the monitoring. 4) The size 423 

distribution and the fall speed of hailstones would likely differ from those of raindrops. Hence, 424 
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more experiments are required to better understand seismic hail signals. 5) Theoretically, at 425 

higher frequencies, the precipitation seismic PSD would be greater but only from raindrops 426 

falling within shorter distances to the station (Bakker et al., 2022), which indicates for different 427 

precipitation events, the optimal frequency band could be different, e.g., regular precipitation 428 

events could benefit from higher frequencies due to potentially easier PSD discrimination, but 429 

sparsely distributed hail may require lower frequencies for the measurement to be robust. 430 

With these special characters of seismic monitoring, though only deployed for one-431 

month, interesting meteorological phenomena were revealed. For example, a discrete supercell 432 

thunderstorm tracked northeastward over the domain with a relatively narrow, yet intense swath 433 

of high-precipitation rates and associated accumulation between around 21:30:00 UTC and 434 

22:30:00 UTC on 9 May (Movie S9). The improved spatial and temporal resolution of the 435 

surface seismic monitoring measurements are exemplified in a comparison between the seismic 436 

converted one-hour precipitation accumulation and the radar one-hour precipitation 437 

accumulation—the seismic converted one-hour precipitation accumulation shows a more 438 

detailed and higher precipitation accumulation swath compared to the radar one-hour 439 

precipitation accumulation swath for the supercell thunderstorm. Other similar examples include 440 

between around 16:30:00 UTC and 17:00:00 UTC on 29 April (Movie S6) and between around 441 

16:00:00 UTC and 16:30:00 UTC on 8 May (Movie S7). This pattern not only was present with 442 

isolated storm modes, but also was apparent with linear bands of thunderstorms, such as between 443 

around 21:00:00 UTC and 22:30:00 UTC on 26 April (Movie S5).  444 
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5 Conclusions 445 

In this study, we demonstrate that seismic array analysis has the potential to become a 446 

strong complement to existing precipitation monitoring approaches with the experimental 447 

practices. After removing anthropogenic noises and relative Earth structural responses, the 448 

seismic approach can successfully retrieve surface precipitation patterns at very high spatial and 449 

temporal resolutions. Meanwhile, as seismic intensity depends not only on the precipitation rate 450 

but also on the kinetic energy of hydrometeors, this new approach has a unique sensitivity to 451 

raindrop and hailstone sizes, which makes it possible to monitor hail occurrences when 452 

combined with independent precipitation rate data.  453 
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