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Introduction  25 

This file contains the supplementary details for how the raindrop size distribution would affect seismic 26 
intensity; how we calculated the seismic PSD and removed anthropogenic noises; how the relative 27 
Earth structure response for each station was removed; how we combined seismic PSDs from 28 
individual stations to form a precipitation map; and how we empirically converted seismic PSDs to 29 
precipitation rates. This file also includes supplementary figures and tables for the article. Captions for 30 
the supplementary movies which are uploaded as separate .mp4 files are also included here.  31 
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Text S1. Ground for the consideration of raindrop size distribution 33 

Generalized from the exponential distribution in the early study (Marshall & Palmer, 34 

1948), the raindrop size distribution (DSD) is often parameterized as a normalized Gamma 35 

distribution (Testud et al., 2001): 36 

 , (S1) 37 

where D is the droplet equivolume spherical diameter, and N0, D0 and μ are all constants. Among 38 

them, N0 characterizes the number of raindrops; D0 characterizes the average size of raindrops; 39 

and μ controls the shape of the DSD. An example of this DSD is shown in Figure S5a, and eq. 40 

(S1) can well fit the observation. We assume all droplets have reached their terminal fall speed, 41 

and this fall speed only depends on the droplet size (D) and some known constants. One 42 

formulation (Gunn & Kinzer, 1949) involves the density of liquid water and air (ρw and ρa), and a 43 

dimensionless drag coefficient (c), and the square of the fall speed, v2, is proportional to D: 44 

 , (S2) 45 

where g is the gravitational acceleration. Some other formulations also have a polynomial 46 

relationship between v and D (Rogers, 1989; Yau & Rogers, 1996), but one can show they will 47 

result in similar conclusions. In this case, similar to Bakker et al. (2022) the droplet average |NF2| 48 

appearing in eq. (2) should be written as an integral with respect to the spherical diameter : 49 

 . (S3) 50 

Let the mass of raindrops be: 51 

  (S4) 52 
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then, combining eq. (S3) and eq. (S4) with eq. (S2): 53 

 , (S5) 54 

where Γ is the gamma function, and m0 and v0 are the mass and the fall speed of a droplet of the 55 

size D0, respectively. Similarly, the precipitation rate is characterized by: 56 

 , (S6) 57 

and the average raindrop kinetic energy would be: 58 

 . (S7) 59 

Therefore, combining eq. (S6) and eq. (S7) with eq. (S5), we obtain: 60 

 . (S8) 61 

This relationship suggests that the seismic PSD is directly dependent on the precipitation rate and 62 

raindrop kinetic energy.  63 

Since eq. (S8) shows the PSD is also dependent on the shape of the DSD (μ), we 64 

examined its potential influence based on raindrop sizes recorded by an impact disdrometer 65 

located ~30 km away. Between Apr 2016 and Nov 2021, for any day with precipitation 66 

accumulation over 2 mm, we first fit observed DSD with eq. (S1) by solving for the unknown 67 

parameters, μ, N0, and D0 (e.g., Figure S5a). This optimization is done by expressing eq. (S1) in 68 

log-scale, 69 

 . (S9) 70 
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Hence, we could estimate the parameters we need from a bivariate (logD and D) linear 71 

regression using the ordinary least square method to get the three parameters, and the slope for 72 

logD is the shape parameter μ. The majority of optimized μ for the 257 precipitation days spans 73 

from 0.5 to 3 (Figure S5a). 74 

We then evaluate the potential influence of varying μ on the seismic PSD. With the 75 

disdrometer providing N(D), m(D) and v(D), the average raindrop kinetic energy (E) is 76 

calculated based on the first half of eq. (S7). Similarly, we also quantified |NF2| and PR (eq. S3 77 

& S6), so that the PSD-PR difference can be directly estimated based on disdrometer observed 78 

data. The observed PSD-PR difference is then compared with both the observed average raindrop 79 

kinetic energy and μ (Figure S5b). We found though μ could influence this difference (eq. S8), it 80 

highly correlates with E instead of μ, which suggests the potential to retrieve raindrop kinetic 81 

energy from the PSD-PR difference. 82 

Meanwhile, the parameter μ does not need to vary much in order to fit the observed DSD. 83 

As shown in Figure S5a, an example of the observed DSD could be successfully characterized 84 

when specifying different values of μ. In addition, the overall relationship between E and the 85 

PSD-PR difference in Figure S5b could be well reproduced using a constant μ of 2. We also 86 

systematically evaluate the coefficient of determination for fitting (r2) for all 257 days, in the 87 

contexts of optimized or prescribed μ (Figure S5c). We found though the highest r2 is achieved 88 

when μ is optimized, r2 can still be high using a constant μ of 2, with 63% of r2 over 0.98 and 89 

90% of r2 over 0.95 (Figure S5a). This finding further substantiates our treatment of the seismic 90 

PSD as a function of the precipitation rate and the raindrop kinetic energy. 91 
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Text S2. Seismic power spectral density calculation and noise removal 93 

To calculate seismic power spectral densities, we used the Welch method (Welch, 1967). 94 

In this method, at every second, we extract seismic records that are ±5 s around it. This 10 s 95 

section is then divided into 200 windows, each with a length of 0.1s and overlaps the 96 

neighboring window by 50%. For each window, the PSD is calculated for 10-250 Hz, and the 97 

average of these 200 windows is used to represent the seismic PSD at the time. Therefore, the 98 

effective temporal resolution in this study is between 1 and 10 seconds. However, in practice, 99 

since precipitation signals mainly appears above 100 Hz, seismic PSD at 100-250 Hz could be 100 

confidently estimated as well using a 1 s section with 0.02 s long windows, which will bring a 101 

true 1 s temporal resolution. 102 

With the calculated seismic PSD, anthropogenic noises were removed. During denoising, 103 

four frequency bands are used, the overall band 50-200 Hz (PSD50-200); the first low frequency 104 

band 15-35 Hz (PSD15-35); the second low frequency band 50-70 Hz (PSD50-70); and the high 105 

frequency band 170-190 Hz (PSD170-190). The overall band is used to identify strong pulses that 106 

are restricted in time. The two low frequency bands are similar to the two previously detected 107 

noise bands at 4-25 Hz (human activities) and 40-80 Hz (potentially related to thermoelastic and 108 

meteorological conditions) in Rindraharisaona et al. (2022), so are used here as characteristics to 109 

detect potential noises.  110 

In practice, we first found all potential times for noise if one of the following 6 criteria is 111 

met: 1)  is over three times its root mean square for the whole 112 

event (rms); 2)  is over three times its rms; 3) 113 

 is over three times its rms, where mean100s stands for taking the 114 

50 200 50 70 170 190/PSD PSD PSD- - -´

50 200 15 35 170 190/PSD PSD PSD- - -´

50 200 100s 50 200/ mean ( )PSD PSD- -



average PSD around ±50 s (a 100 s section); 4)  over three times 115 

its rms; 5)  is over three times its rms; 6) 116 

 is over three times its rms, where median60s means the median 117 

PSD around ±30 s. Among them, the first two are designed to identify times with strong 118 

amplitudes at noise frequencies, and the other four are designed to identify short pulses with high 119 

amplitudes. With these potential times for noise, we obtained time windows that could contain 120 

them. For two neighboring windows, if the minimum PSD50-200 in their interval is higher than 121 

one-third of the maximum PSD50-200 of either window, the two windows are combined with their 122 

interval as one window. Then in each window, we searched beyond its two boundaries to find for 123 

the first time on either side that the PSD50-200 is below one-third of the maximum PSD50-200 124 

within the window as the final boundaries of the window. If the maximum PSD50-200 is over     125 

10-16 m2s2, the window would be considered a noise window if its length is less than 24 s. If not, 126 

any window less than 16 s is counted as noise. With the noise windows determined, we 127 

interpolated seismic PSD 10 s out of each side of the noise window to fill the noise part. 128 

  129 
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Text S3. Earth structure response correction  130 

In this study, to systematically analyze seismic PSDs from all stations, common 131 

precipitation windows for neighboring stations were first identified. Two stations are considered 132 

neighboring stations if their distance is within 1.5 km. Common precipitation windows were 133 

determined based on their average seismic PSD between 100 and 200 Hz (e.g. Figure 2d). 134 

Seismic PSDs were first smoothed by taking the average around ±15 s, and a noise level is 135 

defined as the root mean square of the smoothed seismic PSD before and after the precipitation 136 

event. We then find all windows with seismic PSD greater than three times the noise level and 137 

longer than 90 s. We also required these windows to have a maximum PSD higher than six times 138 

the noise level, and the average PSD within the window greater than 70% of the average PSD 139 

when the window has both sides extended by 2 min, to ensure that the window not only contains 140 

high amplitudes but also those high amplitudes are not for a trough between two large peaks. 141 

Windows with lengths over 20 min are divided into multiple 20-minute windows. Each window 142 

then has its two sides extended by 40 s and tapered to zero. The signal-to-noise ratio (snr) for 143 

each window is defined as the maximum PSD within the window divided by the noise level. 144 

With these precipitation windows, the seismic PSD difference for station pairs (eq. 3) are 145 

measured. For each pair, we first calculated the cross-correlation between their seismic PSD time 146 

series (psd). If the maximum value of the cross-correlation (CCmax) appears within 3.5 min to the 147 

zero time, suggesting precipitation happens at similar times for the two events, we calculated 148 

their PSD difference by: 149 

 , (S10) 150 
0
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where CC0 is the cross-correlation value at zero time, and i, k are indices for two stations. The 151 

quality of the cross-correlation is characterized by the correlation coefficient (cc) as: 152 

 . (S11) 153 

Then, we defined a weighting function as: 154 

 , (S12) 155 

and with these, the weight for each station pair PSD difference measurement is defined as: 156 

 , (S13) 157 

where T is the length of the window in min. Then, with the weight for each window, the overall 158 

PSD difference between the station pair (ri,k) is obtained by weighted averaging measured 159 

log(PSDi/PSDk) of all windows, to eliminate source effects in eq. (3). In practice, after obtaining 160 

ri,k and the standard deviation (stdi,k) for those measurements, we eliminate those windows with 161 

measured log(PSDi/PSDk) not within 2.5 times the stdi,k around the ri,k, and this operation is 162 

performed iteratively until all windows are within this range or the number of left windows is 163 

less than 10. For following analyses, to obtain the relative Earth structure response, we used a 164 

weight  to characterize the overall quality of measurements for each station pair. 165 

The relative Earth structure response (R) with respect to a reference station is then 166 

calculated based on Newton’s method (e.g. Galántai, 2000). In this study, the optimal Earth 167 

structure response for stations was found by minimizing the following cost function: 168 
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 , (S14) 169 

where  stands for the log-scale relative structure response (logRi), and is the ith component of 170 

the vector R. Then, the mth component of the gradient (g) of the cost function (with respect to 171 

) is expressed as: 172 

 , (S15) 173 

where δ here is the Kronecker delta. Then, the Hessian matrix (H), i.e. the gradient of g, has its 174 

(mth, nth) element as: 175 

 . (S16) 176 

With the Hessian and gradient, based on Newton’s method (Galántai, 2000), the optimization can 177 

be iteratively updated from the lth to the l+1th iteration by: 178 

 . (S17) 179 

However, because Hessian in this problem is explicit and not dependent on R, the cost function 180 

is quadratic, and for any assumed starting R, the same final optimal R can be achieved by 181 

updating eq. (S17) once, i.e., the problem does not require multiple iterations. Meanwhile, while 182 

obtaining the optimal relative Earth structure response R (Figure S1a) through eq. (S17), the 183 

uncertainty is also obtained as the covariance matrix for R is just the inverse of the Hessian 184 

matrix in eq. (S16) (Thacker, 1989), and the square roots of diagonal elements in the covariance 185 

matrix are thus standard deviations of the relative Earth structure response (σ) for each station 186 

(Figure S1b). Currently, station 340 (Figure S1) is set as the reference station because the 187 

summed standard deviation from all other stations is minimal.       188 
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Text S4. Obtaining seismic PSD at any location through spatial averaging 189 

After obtaining seismic PSDs at different stations, and having their relative Earth 190 

structure responses removed, we used weighted spatial averaging to obtain the seismic PSD for 191 

any location within the study area. The weight for one precipitation event at a specific station is 192 

defined as: 193 

 , (S18) 194 

where w is the weighting function in eq. (S12); σ is the standard deviation for the log-scale 195 

relative Earth structure response ; d is the distance from the station to the location of interest 196 

in km; and noise is the noise level we estimated for this precipitation event at the station. To 197 

estimate the noise level, we first obtained the log10 scale of the time series for the average 198 

seismic PSD between 100 and 200 Hz, which is then smoothed by taking the average around ±5 199 

s. The noise level (noise) is defined by the root mean square of this smoothed time series at times 200 

before and after precipitation. Because the log10 of PSD is always negative, after taking the root 201 

mean square, the lower the noise value, the stronger the noise is. With the weight in eq. (S18), 202 

the time series after transformed into log-scale (psdl) at a random location is obtained by: 203 

 , (S19) 204 

where i is the index for the station. The total weight at the location  is used to characterize 205 

the reliability of the averaging, and for maps shown in this study (e.g., Figure 4), only places 206 

with total weight higher than 1.5 are considered with a sufficient amount of data and analyzed. 207 
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Text S5. Converting seismic PSD to precipitation rate 209 

To convert seismic PSDs for individual sub-events (Figure 3) to precipitation rate based 210 

on eq. (2), first we rewrite the relationship in log-scale as: 211 

 . (S20) 212 

Here, the last part of the right-hand side is a constant among stations after removing relative 213 

Earth structure responses, and if E depends on the precipitation rate, the relationship is 214 

characterized by: 215 

 , (S21) 216 

where p and q are slope and intercept of a linear model to be solved. These two values were 217 

obtained through the ordinary least-squares method, and all-time steps with both smoothed 218 

precipitation rates (e.g., Figure 3c) over 1 mm hr-1 and smoothed seismic PSD (e.g., Figure 3b) 219 

over tripled mean noise level among neighboring stations were used in the linear regression. The 220 

noise level was defined when forming the weighting function (eq. S18) for spatial averaging. 221 

To obtain the overall linear relationship in Figure 3e, the same relationship in eq. (S21) 222 

and the ordinary least-square method was applied. However, since different sub-events have 223 

different durations, to weight them equally, we used the bootstrap method. At each iteration, 150 224 

time points were randomly picked from each sub-event (except the two abnormal ones, the first 225 

sub-event on 26 April 2016 and the event on 18 April 2016, shown as dashed lines in Figure 3e), 226 

and the seismic PSD was fitted to the precipitation rate for these times using the ordinary least-227 

square method to obtain p and q in eq. (S21). We ran 3,000 iterations in total, and the average p 228 

and q were used to represent the overall relationship in Figure 3e. The 95% prediction interval 229 

that characterizes the spread of the data (Figure 3e) was also obtained alongside by averaging 230 

log log log log2 wPR PSD E Sr= - -

log logPR p PSD q= +



prediction intervals obtained at those iterations. This relatively large interval would likely to be 231 

the combined effect of various raindrop kinetic energies for different sub-events, and the time-232 

lag between seismic PSDs and rain gauge precipitation rates. The time-lag is partly because no 233 

seismic station co-locates with the rain gauge, and the spatial averaged seismic PSD is only an 234 

approximation for the rain gauge location. It is also partly because the integration time for rain 235 

gauge (tipping time) would lag the time the rain was first collected, which makes the seismic 236 

PSD often lead the rain gauge precipitation (Figures 3 & S2). 237 

  238 



 239 
Figure S1. Normalization of Earth structure responses. (a) The same as Figure 1, relative site 240 
responses for different stations with respect to the reference Station: 340 (star). (b) The standard 241 
deviation for the obtained relative site response in (a). 242 
  243 



 244 
Figure S2. Seismic precipitation measurements in comparison with rain gauge. (a)-(f) 245 
correspond to events starting at the date indicated in the top left corner of their first sub-panel. (f) 246 
is for the second event on 9 May 2016. Events starting on 8 May 2016, and the first event on 9 247 
May 2016 did not pass the rain gauge (Movie S7, Movie S8). Four sub-panels in each panel 248 
correspond to the Figure 3a-d.  249 



 250 
Figure S3 Precipitation spatial distribution from seismic array and weather radar. (a)-(c) 251 
Instantaneous precipitation rate at 00:00:00 UTC 20 April 2016 from converted seismic PSD (a: 252 
using the relationship in Figure 3e); weather radar (b); weather radar without smoothing (c). 253 
White lines in (a) for the contour of 4 mm hr-1 in (b), and white lines in (b) and (c) for the 254 
contour of 4 mm hr-1 in (a). (d)-(f) Similar to (a)-(c), but for the averaged precipitation rate over 255 
one hour before the time, which is bias corrected with respect to the rain gauge for radar. Though 256 
without smoothing (c and f), the radar seems to provide a very high spatial resolution – those 257 
images are dominated by large oscillatory variations over short distances, and the unsmoothed 258 
radar precipitation region is still broader than the one from seismic array (a versus c). Gray areas 259 
are places with insufficient amount of data (criteria in Text S4 in Supporting Information S1). 260 
 261 
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 263 
Figure S4. The relationship between seismic power spectral density and potential hailfall. (a)-264 
(g). Seven precipitation events with hail parameters provided by the radar (the same set of events 265 
as in Figures 3 & S3, with starting dates labelled at top left corners). Gray solid/dashed lines and 266 
dotted lines have the same meaning as in Figure 5b. Circles and stars have the same meaning as 267 
in Figure 5a. 268 
 269 
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 271 
Figure S5. The influence of raindrop size distribution. (a) The raindrop size distribution from a 272 
disdrometer located ~30 km away from the study region on 4 April 2019. Dots are total counts of 273 
raindrops per diameter at that day in log-scale. Lines are fitted distribution based on eq. (S1). For 274 
the red line, μ, N0, and D0 are fitted together. For other lines, we prescribed μ from 0 to 4 and 275 
only solved N0 and D0. The histogram in a shows the distribution of fitted μ for days between 276 
April 2016 and November 2021 with accumulated rainfall greater than 2 mm (together 257 277 
days). (b) The relationship between raindrop kinetic energy (E) and the PSD-PR difference. Each 278 
dot corresponds to one day, and both axes are calculated based on provided N(D), m(D), v(D) 279 
from the disdrometer. The line, instead of based on disdrometer records, shows the theoretical 280 
relationship when μ is fixed at 2 (eq. S8; y-axis: 2ρw[Γ(μ +8) Γ(μ +1)]/[ Γ(μ +5) Γ(μ +4)]E). The 281 
inset plot is based on the same set of data, but while y-axis is the same as the main plot, the x-282 
axis is for fitted μ. This panel shows a much stronger relationship between the PSD-PR 283 
difference and the kinetic energy than that between the PSD-PR difference and μ. (c) The 284 
distribution of coefficient of determination (commonly known as r2) for the fitting of all the 285 
days. Six histograms are for cases where we fit μ, N0, and D0 together (optimized μ), or fix μ at 286 
different values and only solve N0 and D0. It is shown though solving all three parameter results 287 
in the highest r2, fixing μ at reasonable values, such as 2, does not degrade the overall result 288 
much. 289 
 290 
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Event Number 
Starting Date 
(Year: 2016) 

Approximate Event 
Time Frame (UTC) Dominant Storm Type 

1 April 17 02:00:00-20:00:00 MCS* with trailing stratiform rain 
region 

2 April 18 01:00:00-09:00:00 Stratiform rain 

3 April 19 20:00:00-02:00:00 North end of an MCS 

4 April 21 03:00:00-06:00:00 Decaying MCS 

5 April 26 19:00:00-04:00:00 Supercells transitioning toward MCS 

6 April 29 15:00:00-20:00:00 Potential supercells/isolated cells 

7 May 8 11:00:00-20:00:00 Scattered cells 

8 May 9 02:00:00-04:00:00 Decaying supercells 

9 May 9 21:00:00-00:00:00 Potential supercells/isolated cells 

*MCS: Mesoscale Convective System 292 

Table S1. A summary of the nine observed precipitation events. The dominant storm type was 293 
manually determined from archived weather radar data that was viewed at the following website: 294 
https://www2.mmm.ucar.edu/imagearchive/. 295 
 296 
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Symbols for the Physical Meaning of Seismic 
Precipitation Signals Symbols for Data Processing 

PSD Power spectrum density (eq. 2) R Relative Earth structure response (Section 2.2) 

F Impact force (eq. 1) CC0 Cross-correlation value at zero time (eq. S8) 

G Displacement Green’s function (eq. 1) CCma

x 
Maximum cross-correlation value (eq. S8) 

PR Precipitation rate (eq. 2) cc Correlation coefficient (eq. S11) 

E Raindrop kinetic energy (eq. 2) psd The time series of PSD 
at 100-200 Hz (eq. S10) 

S Combined Earth Structure 
Response (eq. 2) snr Precipitation window signal-to-noise 

ratio (eq. S13) 

N Number of raindrops per area 
per time (eq. 2) T Precipitation window length (eq. S13) 

u Seismic displacement (eq. 1) w Weighting function (eq. S12) 

f Seismic frequency (eq. 1)  Weight for station pair PSD difference 
measurements (eq. S13) 

r Distance between raindrop impact and 
seismic station (eq. 1) W Summed weight for each station pair (eq. S14) 

m Raindrop mass (eq. 1) ri,k 
Overall measured PSD difference between 

stations i and k (eq. S14) 

v Raindrop fall speed (eq. 1) stdi,k 
Standard deviation for measured 

log(PSDi/PSDk) (eq. S14) 
t Time (eq. 1)  Log-scale R (eq. S14) 

tj Time for impact j (eq. 1) J Cost function (eq. S14) 

ρw Raindrop density (eq. 2) R The vector of (eq. S14) 

ρa Air density (eq. S2) g Gradient of the cost function (eq. S15) 

N(D) Number of raindrops per area per time 
per diameter (eq. S1) H Hessian of the cost function (eq. S16) 

N0 
Characteristic number of raindrops per 

area per time (eq. S1)  Weight for spatial averaging (eq. S18) 

D Raindrop diameter (eq. S1) σ Standard deviation of  (eq. S18) 

D0 Characteristic raindrop diameter (eq. S1) noise Noise level for precipitation event (eq. S18) 

μ Shape parameter for N(D) (eq. S1) d Distance from station to the location for spatial 
averaging (eq. S18) 

g Gravitational acceleration (eq. S2) psdl Log-scale psd (eq. S19) 

i, k Indices for stations p, q Free parameters for linear regression (eq. S21) 

j Index for impact m, n Indices for R, g, and H 

Table S2. The summary of symbols used in this study. Symbols appeared in both the main text 298 

and Supporting Information S1 are included. Where these symbols first appear in equations are 299 

also indicated.    300 
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Movie S1. Precipitation spatial evolution for the event on 17 April 2016. Top row from left to 301 
right shows the log-scale seismic PSD (as in Figure 4a); seismic converted precipitation rate with 302 
the relationship in Figure 3e (as in Figure S3a); seismic converted one-hour precipitation 303 
accumulation (as in Figure S3b); the current time (red line) and the satellite precipitation rate for 304 
the study area (blue line). The bottom row from left to right shows the log-scale radar 305 
instantaneous precipitation rate (as in Figure 4b); radar instantaneous precipitation rate (as in 306 
Figure S3d); radar one-hour precipitation accumulation without gauge-radar bias (as in 307 
Figure S3e); the difference between seismic PSD and radar instantaneous precipitation rate (as in 308 
Figure 4c). For the first three columns, white lines in the top row show contour derived in the 309 
bottom row at the value indicated in the panel, and vice versa. Contour levels for seismic PSD 310 
are converted to precipitation rate using the formula in Figure 3e. Radar images are updated 311 
more slowly due to lower time resolution. 312 

Movie S2. Precipitation spatial evolution for the event on 18 April 2016. Similar to Movie S1, 313 
but for a different event. 314 

Movie S3. Precipitation spatial evolution for the event on 19 April 2016. Similar to Movie S1, 315 
but for a different event. 316 

Movie S4. Precipitation spatial evolution for the event on 21 April 2016. Similar to Movie S1, 317 
but for a different event. 318 

Movie S5. Precipitation spatial evolution for the event on 26 April 2016. Similar to Movie S1, 319 
but for a different event. 320 

Movie S6. Precipitation spatial evolution for the event on 29 April 2016. Similar to Movie S1, 321 
but for a different event. 322 

Movie S7. Precipitation spatial evolution for the event on 08 May 2016. Similar to Movie S1, 323 
but for a different event. 324 

Movie S8. Precipitation spatial evolution for the first event on 09 May 2016. Similar to Movie 325 
S1, but for a different event. 326 

Movie S9. Precipitation spatial evolution for the second event on 09 May 2016. Similar to Movie 327 
S1, but for a different event. 328 
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