
manuscript submitted to Geophysical Research Letters

DeepLearningModel forSea Surface Salinity Forecast in theTropical PacificOcean1
duringENSOEvents2

Hao Chen1, Xiaobin Yin1, Xiaofeng Li2,3, Qing Xu1, and Yan Li13

1College of Marine Technology, Faculty of Information Science and Engineering, Ocean4
University of China, Qingdao, 266100.5
2Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of6
Sciences, Qingdao, China.7
3Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.8

Corresponding author: X. Yin (yinxiaobin@ouc.edu.cn,)9

Key Points:10

 A data-driven model for tropical sea surface salinity (SSS) forecast using a SSS spatial-11
variation-dependent Loss function were proposed.12

 The forecast results of deep learning model and remote sensing Climate Change Initiative13
(CCI) SSS and TAO SSS are highly consistent.14

 The proposed SSS forecast model supports the forecast of large-scale oceanic and15
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Abstract17

Sea surface salinity (SSS) in the eastern tropical Pacific Ocean significantly influences the18
process of sea-air interactions and exhibits a strong response during the analysis of the El Niño-19
Southern Oscillation (ENSO). Recently, satellites have provided long-term SSS data, and deep20
learning methods can achieve spatial-temporal forecasts. We developed a satellite-data-driven21
deep neural network (DNN) model to achieve reasonable forecasts of SSS fields associated with22
the ENSO using a series of past satellite SSS data. Our model achieved short- to medium-term23
forecasts for SSS from 6 to 96 days, with an error of less than 0.2 pss. Consistent with the24
Climate Change Initiative (CCI) SSS Anomaly (SSSA), the SSSA appears approximately 425
months earlier than the filtered Sea Surface Temperature Anomaly (SSTA) during ENSO events.26
Moreover, the SSSA index forecasted by the DNN also showed strong negative relationship with27
the Niño3.4 SST index during ENSO events.28

Plain Language Summary29

Salinity is a critical factor in driving ocean movement and studying climate change. The product,30
which combines three satellite missions, provides a SSS time series data with unprecedented31
accuracy over the 2010–2019 period, at a 50 km resolution. Deep learning methods can mine32
complicated rules deeply hidden in a large amount of SSS sequence and avoids modeling33
various complicated processes. A deep learning model is proposed for forecasting sea surface34
salinity and exploring the potential of forecasting large-scale ocean phenomena, which may be35
instructive for future studies of forecasts of oceanic phenomena associated with ocean36
parameters.37

1 Introduction38

Sea surface salinity (SSS) is an important indicator of the global water cycle. Like sea39
surface temperature (SST), SSS can affect the dynamic processes of the ocean by changing the40
density distribution of seawater, which plays an important role in sea-air interaction and global41
climate (Kido et al., 2021; Lagerloef et al., 2002; Du et al., 2019). With the launch of the Soil42
Moisture and Ocean Salinity (SMOS) satellite, the Soil Moisture Active and Passive(SMAP),43
and the Aquarius satellite, these satellites provide an opportunity for accurate and real-time SSS44
spatial-temporal monitoring (Boutin et al., 2018; Qin et al., 2020; Le Vine et al., 2007, Bao et al.,45
2019).46

Sea surface salinity forecasting plays a very important role in monitoring the marine47
environment, studying the formation and circulation of water masses, and climate forecasting.48
Traditional statistical methods for predicting SSS include regression models (Urquhart et al.,49
2020; Qing et al., 2019). However, statistical methods do not describe the nonlinearity and50
randomness of SSS data very well, and the prediction error is large compared with machine51
learning methods. Different from statistical models, machine learning techniques mine52
information from historical SSS data to learn knowledge to make predictions. As a result, data-53
driven models rely more on SSS data than on knowledge in the field of ocean climate. In 2020,54
the LSTM-based SSS short-term prediction model was applied to the South China Sea, and the55
prediction error increased with the advanced prediction time, but it showed that deep learning56
has great potential in SSS prediction (Song et al., 2019). Deep learning technology combined57
with ocean satellite data has led to an increasingly diverse exploration of ocean spatial-temporal58
sequences (Li et al., 2020). Deep learning techniques such as long-term, short-term memory59



manuscript submitted to Geophysical Research Letters

neural networks (LSTM) succeed at predicting ocean parameters such as sea surface temperature60
(SST), sea surface height anomaly, and sea ice parameters from days to years (Xiao et al., 2019;61
Shao et al., 2022; Ren et al., 2022). These studies demonstrate the performance of deep learning62
requires a deluge of satellite data. The abundance of satellite SST data provided an excellent63
opportunity to use deep learning to implement ENSO predictions for many years (Ham et al.,64
2019, Zheng et al., 2021).65

Due to the limited high-quality data, deep learning techniques have not been well applied66
to satellite SSS fields forecast in previous studies. It was previously unimaginable to combine67
SSS fields with deep learning to forecast oceanic and climate phenomena. A Deep Neural68
network (DNN) with many hidden layers, derived from the artificial neural network (ANN)69
theory, is a valuable technique for modeling intricate interactions in huge databases (LeCun et al.,70
2015). The accumulation of satellite-derived SSS data from SMOS, SMAP, and Aquarius not71
only resolve mesoscale SSS variation and temporal scale but also allows for the development of72
advanced algorithms for exploring SSS time series data (Hasson et al., 2018; Kolodziejczyk et al.,73
2021; Huang et al., 2021; Lin et al., 2019; Melnichenko et al., 2021). ConvLSTM (Shi et al.,74
2015) converts fully connected LSTM weights to convolutions and realizes spatial-temporal75
series forecast. The ConvGRU (Shi et al., 2017) is modified according to ConvLSTM, and76
LSTM is converted into GRU for calculation.77

In this study, we developed a DNN forecast model based on a deep learning model to78
forecast SSS fields in the eastern tropical Pacific Ocean for the first time. Furthermore, a SSS79
spatial-variation-dependent Loss function named cumulative square error (CSE) is designed to80
optimize our DNN model. The CSE improves the performance of the DNN SSS forecast model.81

This paper is organized as follows. Data and study area are described in Section 2. The82
DNN-based method for SSS forecast and SSS pattern in ENSO events are described in Section 3.83
Section 4 presents experimental results. The conclusions are given in Section 5.84

2 SSS Data85

The daily SSS data used for this study is the Sea Surface Salinity Climate Change86
Initiative (CCI) global L4 SSS product from the European Space Agency (ESA) with a 25 km87
resolution, covering 2010-2019. The SMOS, Aquarius and SMAP measurements were combined88
for the first time to produce a level 4 (L4) meshed multitasking estimate of SSS. The CCI L489
SSS is more accurate than the SSS retrieved from a separate satellite sensor(Boutin et al., 2021)..90
The study area is in the eastern equatorial Pacific Ocean from 11°N to 11°N and 180°W to91
100°W.92

The seasonal variations of SSS are studied and associated with the daily SST from the93
Met Office's Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). The gridded94
SST fields had a spatial resolution of 0.05° before being resampled on the same 25km EASE 2.095
grid as the SSS fields. To evaluate the DNN SSS forecast, the daily SSS from the Tropical96
Atmosphere Ocean (TAO) mooring array at 110°W and 0°N is used.97
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3 Materials and Methods98

3.1 DNN SSS forecast model99

The DNN model (Figure 1a) is based on the deep learning model to forecast SSS fields. In100
semantic segmentation, neural networks with multiscale feature extraction are widely used101
(Krizhevsky et al., 2012) to achieve excellent remote sensing image classification. Our DNN102
model took advantage of this technology and replaced the fully connected layer with a103
convolutional layer. The DNN model consists of four stacked composite layers, and each of the104
four stacked composite layers has three ConvGRU layers and one convolutional layer with105
kernel sizes of 5×5, 3×3, 3×3, and 5×5, respectively. The three ConvGRU layers and the106
convolutional layer of each composite layer include 8, 16, 32, and 1 channel. The previous 10107
SSS time steps are fed into the DNN (the input is a SSS sequence of shape 112×312×10), and108
values of all SSS are rescaled from [30.8, 36.9] to [−1, 1] pss. Rectified Linear Units (ReLU) are109
used to activate the ConvGRU layers of each composite layer (Nair et al., 2021). DNN with110
ReLU trains several times faster than their nonlinear counterparts. The tanh function is used for111
the last convolutional layer of the first three composite layers, while the last convolutional layer112
of the bottom composite layer uses the linear function.113

The SSS are subsampled 3 times at the 2×2 average pooling and then fed to the114
corresponding composite layers at different stacking levels that process SSS at different spatial115
resolutions. This process ensures that the network computation volume is greatly reduced116
without losing the image's main features, and the network model's generalization ability is also117
improved. Except for the bottom composite layer, the output of each composite layer is up-118
sampled and fed to the lower stack level with a high-resolution composite layer. Because of the119
evolution of large-scale oceanic and climate variability, variations in SSS at different locations120
are highly correlated. Therefore, when forecasting the SSS at one location, we use the SSS121
sequences of other nearby locations within a wider area centered on the forecast location. As a122
result, we use a multiscale scheme to enlarge the receptive field of the composite layer. The123
receptive field of the composite layer can be enlarged before feeding the input information to it124
by subsampling the input maps through a 2×2 average pooling layer. ConvGRU and125
convolutional layers of each composite layer extract only local values within the receptive field,126
and the expansion of the receptive field takes full advantage of the values of nearby input127
locations. The resolution is then recovered by up-sampling the output. During the training stage,128
the SSS sequence was split into two datasets with a 3:2 proportion for training and validation.129
Based on mean value and the standard deviation (STD) distribution presented in Figure 1b and130
1c, the SSS variability varies greatly in different regions but varies slowly within the same region.131
The MSE function did not effectively reduce the forecast error in regions with large variability.132
Therefore, we designed aa SSS spatial-variation-dependent Loss function that considers the grids133
in different regions (the improved result is given in Figure S1). The weights of our DNNs are134
updated with the loss function (CSE) calculated as (1).135

2
( , ) ( , )

1( , )

Loss ( )
N

result i j GT i j

n i j

SSS SSS


  ⑴136

Where N is the total number of samples, )( ,GT i jSSS is the CCI SSS (satellite SSS) at the137
last time step of the nth sample of the training or validation dataset at the grid (i, j) of the real138
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area, and ( , )result i jSSS is the forecast SSS at the same time step forecast result by the DNN.139

140
Figure 1. (a) The architecture of the DNN SSS forecast model. The model receives SSS fields at the previous141
10 steps and then outputs the SSS at the future time steps. The DNN has four stacked composite layers, each142
receiving SSS at different resolutions, and has three cascaded ConvGRU layers and one convolutional layer. (b)143
Mean value and (c) standard deviation of CCI SSS during the testing period.144

The Adam (Kingma & Ba et al., 2021) algorithm optimizes DNN parameters with more145
than 500 epochs to minimize the loss on the training dataset, using a mini-batch size of 64 for146
each epoch.The learning rate is set to 0.001 at first and then adjusted based on the number of147
iterations and degree of convergence. The learning rate is reduced by ten with every 200148
iterations. The parameters with the smallest loss on the validation dataset are chosen as the final149
model weight parameters throughout the optimization process. From January 10, 2010, to150
December 31, 2014, and from January 1, 2015, to December 31, 2019, we divided this period151
into two non-overlapping periods. Our DNN model was trained using the first five years of data.152
Then, the performance of our DNN model was tested using the data from the next five years.153
Since the daily variation of SSS is usually negligible, we set the time step to 6 days and shifted154
the time series 1 day at a time to build the second, third, fourth, etc., SSS sequence. In each155
sequence, the SSS from the first 10 steps are fed into the DNN model to forecast the SSS at the156
next future time step (the 11th step), and the SSS at the 11th step was used as ground truth to157
evaluate the forecast results of DNN model. During the training and testing periods, we collected158
1748 and 1762 samples of SSS sequence, respectively.159

3.2 Multi-step ahead forecast160

The model used the iterative multi-step (IMS) method (Taieb et al., 2012) after starting161
with a single-step forecast. . The IMS approach starts with a one-step forecast and then feeds the162
generated forecast samples to a single-step predictor iteratively to get the next-step forecast. This163
type of multi-step forecast is simple to use and can recursively generate forecasts of any arbitrary164
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length. For example, the inputs of the previous 10 steps predict the 11th time step, and the SSS165
forecast was generated at the 12th step using the previous 9 steps and the anticipated time step.166
Then, iteratively, we made the SSS forecasts at the subsequent time steps (the fourth, fifth, sixth,167
etc., iterative steps). We varied the forecast lead time from 6 to 96 days (3 months) with the168
mentioned multi-step forecast approach to the evaluation of El Niño.169

3.3 SSS pattern during ENSO events170

The propagation direction and dominant speeds of the eastern tropical pacific TIW in the171
ENSO events were analyzed using the forecast SSS. The difference in dominating propagation172
rates of TIW can be separate into two periods, centered at 17-and 33-day. To isolate the SSS173
sequence associated with the TIW, we utilized 28-40-day band-pass filtering (also referred as 33-174
day) and 13-22-day band-pass (17-day) filtering (Lyman et al., 2007). For further analysis, the175
TAO SSS and OSTIA SST data are also processed using the same methods. This study used the176
Niño3.4 SST index method provided by NOAA to calculate the anomalies of the CCI SSS and177
forecast SSS time series to highlight the features of SSS variations in ENSO events. The SSSA178
time series is defined as a three-month moving average of average sea surface salinity flattening179
in the Nino3.4 region (5°S-5°N, 120°W-170°W).180

4 Results181

4.1 Accuracy182

The global salinity of the tropical low salinity zone (170°–100°W, 2°N–10°N) is lower183
than the salinity value of the south equatorial region (170°–100°W, 0°S–10°S), and the184
fluctuation range of tropical low salinity zone can approach 0.5 pss, whereas global salinity185
fluctuation range of the south equatorial region is within 0.1 pss (Figure 1b and 1c). Fresh and186
saltwater exchange occurs primarily between the equator and extra-equatorial tropical sea in the187
Pacific Ocean. Similar features appear in the error spatial distribution maps. Forecast errors of188
the DNN are much smaller than the actual salinity variability in any region.189

Compared to actual satellite data and the results of two deep learning models, the DNN190
model performed well in the subsequent analysis of forecast errors 6 days in advance (Figure S1).191

4.2 Iterative forecasting192

Our DNN can also work iteratively to predict the SSS sequence of multi-month ahead.193
For a 3-month lead forecast, we take the SSS predicted by the DNN as the current step (11th step)194
and combine the previous 9 steps of this step, as an input to predict the SSS of the 12th step. Then,195
the forecasted SSS of the 12th step with the previous 8 steps can be re-input into DNN to achieve196
the 13th step (July 24, 2015) lead forecast. This way, we iteratively forecast the SSS sequence197
from 6 days to 3 months (96 days) lead. Figure 2a and 2b shows a comparison of the average198
RMSE and MAE forecast by the three models from iterative steps 1 to 16 (i.e., lead time 6 to 96199
days). The RMSE of DNN slowly increasing from 0.035 to 0.199 pss, while RMSE of200
ConvLSTM and ConvGRU increasing sharply from 0.12 to 0.76 pss and 0.12 to 1.16 pss,201
respectively. The MAE values vary from 0.025 to 0.13 pss, 0.09 to 0.61 pss, and 0.09 to 0.78 pss,202
respectively. By comparing the results of the three models in three subsequent time steps, the203
error of ConvLSTM and ConvGRU increases significantly with the emergence of forecast lead204
time, and the forecast accuracy gradually fails to meet the actual requirements. However, the205
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average RMSE and MAE of DNN are still less than 0.2 pss after 16 iterative steps (as 96 days),206
with errors increasing slowly. We show the results of the DNN model at the 5th, 10th, and 16th-207
time steps in Figure S6. Generally, the performance of the DNN is good both in time trends and208
space.209

4.3 SSS pattern in ENSO events210

The 33-day filtered satellite SSS variations are consistent with the TAO SSS variations211
(Figure 2c). The difference between the satellite and TAO SSS values could be partly212
attributable to the upper ocean's vertical dynamics, 7-day running mean, and data sampling. The213
forecast SSS and the CCI SSS were used together to analyze the weak La Niña condition in 2016,214
which caught the propagation of TIWs (Figure 3). The oscillations in the preceding temporal215
error analysis are consistent with the period when SSSA has large values in the rectangular area216
and strongly relates to the La Niña event. From August to December 2016, the SSSA was at its217
peak.218

219
Figure 2. Comparison of time trends of average RMSE and MAE forecast by three deep learning models220
concerning the number of iterative steps. (a) RMSE and (b) MAE. The iterative steps from 1 to 16 are 6 to 96221
days after the previous10 time steps. The DNN model (blue) was compared with the ConvLSTM model (green)222
and the ConvGRU model (red). (c) CCI SSS (blue line), forecast SSS by DNN (orange line), and TAO SSS223
(green line) at 110°W and 0°N for the 33-day filtered series from June 2017 to May 2018.224
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The motion of the SSS pattern westward propagation is evident during the La Niña225
conditions. However, the non- La Niña condition weakens the SSS pattern of moving westward.226
Around the west of 110°W, the largest forecast SSS and CCI SSS TIW signals occur. The 33-227
day filtered CCI SSS and the forecast SSS at 110°W had dominant westward propagation speeds228
of 1.26m/s. We can see that the CCI and forecast SSS hovmüller diagrams are consistent over the229
La Niña era. We calculated the bias between the 33-day and 17-day band pass filtered CCI SSS230
and the SSS forecast by DNN over five years at 110°W bands. The bias of 33-day band pass231
varies from -0.013 to 0.012 pss, while the bias of 17-day band pass varies from -0.015 to 0.015232
pss.233

During the strong La Niña period (August to December 2016 and December 2018 to234
December 2019), the SSSA was roughly 4 months ahead of the SSTA in responding (Figure 3d235
and 3e), which is similar to the results of several studies compared to the Southern Oscillation236
Index with a 4-month lag (Delcroix et al.,1998; Chen et al.,2012). Furthermore, SSSA shows a237
possible dynamic component for a major ENSO event tracer through early SSSA and an early238
indicator of SSTA in the eastern equatorial Pacific Ocean regions.239

240
Figure 3. The longitude-time Hovmöller diagram of (a) CCI SSS, (b) forecast SSS (DNN), and (c) OSTIA SST241
33-day signals at 5°S bands. (d, e) The filtered CCI SSS signals (red)), filtered forecast SSS (blue), and OSTIA242
SST signals (black) at 110°W and 5°S for 33-day from December 2015 to December 2016 and December 2018243
to December 2019.244

The NOAA Climate forecast Center monthly Niño 3.4 SST index data are compared to245
the monthly time series of SSSA. We also used the daily Niño3.4 SST index data provided by246
KNMI Climate Explorer to compare with the daily SSSA. SSSA and SSTA showed distinctive247
features (Figure 4). The Niño 3.4 index shows a strong El Niño extending from April 2015 to248
March 2016, peaking in December 2015. Weak La Niña conditions also occurred from August to249
December 2016 (Hackert et al., 2019). The Niño3.4 index values and the forecast time series of250
SSSA show opposite phases during the strong La Niña period. SST warms/cools dramatically251
during El Niño/ La Niña periods, and SSS drops/rises sharply. Using the forecast SSS pattern, we252
can generally distinguish between El Niño (negative anomalies) and La Niña (positive anomalies)253
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events. We compared the monthly, and daily bias for the 6-day and the 96-day SSSA (Figure S8),254
more than 99% of the absolute bias is less than 0.025.255

256
Figure 4. (a-b) Monthly and daily time series of SST anomalies(black), CCI SSS anomalies(red), 6-day DNN257
forecast SSS anomalies(blue), and (c-d) 96-day DNN forecast results in the Niño 3.4 region (Niño 3.4: 170°–258
120°W, 5°S–5°N) in 2015–2019, El Niño threshold (red’-’) and La Niña threshold (blue’-’).259

5 Conclusions260

Our DNN model can predict SSS fields 6 to 96 days in advance by extracting SSS261
information from different spatial scales in the tropical Pacific Ocean, which is quite consistent262
with satellite observations. Since the value of the SSS does not change much throughout the year,263
the ConvGRU layers used makes it easier to learn how the SSS changes in time while forgetting264
the unimportant temporal characteristics. Meanwhile the convolutional layers combined with265
inputs of different spatial scales can better extract spatial information. The forecast errors of SSS266
are lower than the observed SSS variation over the test period. The forecast error has a267
fluctuating upward and downward trend with the predicted time series (Figure S4). The forecast268
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SSS was significant in March 2016 with RMSE and MAE compared to other months. We refer269
to previous research findings closely related to the 2015-16 Pacific El Niño event (Hackert et al.,270
2019; Chi et al., 2019). When an event such as ENSO occurs, the SSS forecast will become271
unstable in a short time series, a part of the model that is difficult to learn but also needs to be272
overcome.273

The anomalies of the forecast SSS over the area 170°–120°W, 5°S–5°N have a strong274
relationship with the Niño 3.4 SST index. During the strong El Niño event of 2015 - 2016, there275
was a large variation in SSSA, with the maximum reaching 0.5 pss. From late 2016 to early 2017,276
the forecast SSSA decreased drastically, closely matching the observed weak La Niña state.277
Deep learning provides an unprecedented opportunity to forecast the SSS variations associated278
with TIWs during moderate and non-La Niña periods. The dominant westward propagation279
speed of SSS reached 1.26m/s from August to December 2016. This oscillation was related to280
the latitude and dominant period of TIW. The SSS forecast pattern is used to complete the mid-281
term (3-month) forecast of El Niño and La Niña and is 4 months ahead of SST with consistent282
performance.283

The developed deep learning model is well suited for SSS forecast upto 96 days (about 3284
months) in the eastern tropical Pacific Ocean, with RMS less than 0.20. The SSS forecast can be285
longer than 96 days depending on the tolerance of errors, since the error of the model increase286
slowly. With only satellite-derived SSS, our DNN can train SSS forecast in a lighter and less287
time-consuming way than existing models. The SSS forecast the remote sensing CCI SSS data288
and TAO SSS data are quite consistent.289

Ocean satellite remote sensing data and data-driven deep learning technology290
complement with each other. Deep learning technology extends the usage of ocean satellite data291
and ocean satellite data enriches the application of deep learning technology. The proposed SSS292
forecast model supports the forecast of large-scale oceanic and atmospheric phenomena293
associated with SSS and avoids complicated physical modeling techniques by automatically294
mining sophisticated principles of SSS spatial-temporal fluctuations associated with El Niño and295
La Niña events. According to our study, deep learning has a promising future in the SSS pattern296
forecast of the crucial ocean and climate phenomena. More accurate salinity time series with297
large-scale spatial coverage and deep learning techniques make SSS-driven ENSO forecast298
possible.299
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