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Introduction In this material, figures and tables which could not be shown in the main

manuscript are provided. Figure S1 shows an example of the minimization of the loss

function through Adam (Kingma & Ba, 2014) and L-BFGS-B (Byrd et al., 1995) algo-

rithms. Figure S2 and S3 shows soil moisture dynamics at three different depths for loam

and silt loam soil respectively. The residual of the Richardson-Richards equation at three

different depths for loam and silt loam soil are shown in the Figure S4 and S5 respectively.

Figure S6 shows the estimated soil water flux density against the true value for all the

three soils for the two scenarios. Figure S7, S8, and S9 help the reader to compare the

estimated soil water flux density to the true value for a limited range.
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The tables are the information about the architecture of the neural networks used in the

physics-informed neural networks (PINNs). Table S1 shows the effect of noise added to

the synthetic volumetric water content measurements. Table S2 and S3 summarizes the

investigations on the number of hidden layers and units used in the neural networks for

the predicted matric potential for sandy loam and loam soil. Table S4, S5, and S6 shows

the effect of the number of units of the hidden layer of the neural networks for predicted

volumetric water content and hydraulic conductivity.
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Figure S1. Minimization of loss function for sandy loam soil for Scenario 2. (a) Adam

algorithm (Kingma & Ba, 2014). (b) L-BFGS-B algorithm (Byrd et al., 1995).
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Figure S2. Predicted volumetric water content (PINNs) and noisy synthetic training

data (Training Data) for loam soil for the two scenarios at three different depths. Scenario

1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1

cm, (e) z = −9 cm, and (f) z = −17 cm.
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Figure S3. Predicted volumetric water content (PINNs) and noisy synthetic training

data (Training Data) for silt loam soil for the two scenarios at three different depths.

Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm. Scenario 2 (S2):

(d) z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.
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Figure S4. The residuals of the Richardson-Richards equation at three different depths

for loam soil for the two scenarios. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and

(c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.
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Figure S5. The residuals of the Richardson-Richards equation at three different depths

for silt loam soil for the two scenarios. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm,

and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17

cm.
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Figure S6. Comparison of the true soil water flux density to the one predicted by the

PINNs for the three soils and the two scenarios. Scenario 1 (S1): (a) sandy loam, (b)

loam, and (c) silt loam. Scenario 2 (S2): (d) sandy loam, (e) loam, and (f) silt loam.

April 1, 2020, 8:12pm



: X - 9

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
(a) S1: z =−1 cm

Sandy Loam

(d) S2: z =−1 cm

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

S
o
il

W
at

er
F

lu
x

D
en

si
ty

q
[c

m
d
ay

−
1
] (b) S1: z =−9 cm (e) S2: z =−9 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
(c) S1: z =−17 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(f) S2: z =−17 cm

True

PINNs

Time t [day]

Figure S7. Estimated soil water flux density against the true one for a limited range

at three different depths for sandy loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9

cm, and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f)

z = −17 cm.
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Figure S8. Estimated soil water flux density against the true one for a limited range

at three different depths for loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm,

and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17

cm.
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Figure S9. Estimated soil water flux density against the true one for a limited range at

three different depths for silt loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm,

and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17

cm.
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Table S1. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data with different amount of noise for Scenario 1. The

architecture of the PINNs is fixed.

Standard Deviation of Noise Sandy Loam Loam Silt Loam

0 0.9987 0.9990 0.9994

0.005 0.9988 0.9949 0.9942

0.01 0.9985 0.9985 0.9959

0.02 0.9965 0.9976 0.9978
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Table S2. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data without noise for Scenario 1 for sandy loam soil

and for different numbers of hidden layers and units for each hidden layer of the neural

network for predicted matric potential.

Units

Hidden Layers 10 20 40

2 0.9281 0.9746 0.9878

4 0.9787 0.9855 0.9964

6 0.9762 0.9966 0.9987

8 0.9821 0.9974 0.9971

9 0.9957 0.9989 0.9987

10 0.9965 0.9982 0.9987

11 0.9968 0.9984 0.9990
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Table S3. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data without noise for Scenario 1 for loam soil and for

different numbers of hidden layers and units for each hidden layer of the neural network

for predicted matric potential.

Units

Hidden Layers 10 20 40

2 0.8201 0.9757 0.9870

4 0.9472 0.9958 0.9977

6 0.9595 0.9973 0.9983

8 0.9946 0.9982 0.9985

9 0.9975 0.9979 0.9944

10 0.9958 0.9864 0.9990

11 0.9973 0.9990 -0.3224
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Table S4. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data without noise for Scenario 1 for sandy loam soil

for different numbers of units in the hidden layer of the neural networks for predicted

volumetric water content θ̂ and hydraulic conductivity K̂. The architecture of the neural

network for the predicted matric potential is fixed.

Units for K̂

Units for θ̂ 5 10 20

5 0.9990 0.9987 0.9993

10 0.9956 0.9984 0.9974

20 0.9996 0.9993 0.9987

Table S5. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data without noise for Scenario 1 for loam soil for dif-

ferent numbers of units in the hidden layer of the neural networks for predicted volumetric

water content θ̂ and hydraulic conductivity K̂. The architecture of the neural network for

the predicted matric potential is fixed.

Units for K̂

Units for θ̂ 5 10 20

5 0.9946 0.9942 0.9960

10 0.9993 0.9981 0.9982

20 -0.3222 0.9929 0.9990
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Table S6. The coefficient of determination R2 between predicted volumetric water

content and the synthetic training data without noise for Scenario 1 for silt loam soil

for different numbers of units in the hidden layer of the neural networks for predicted

volumetric water content θ̂ and hydraulic conductivity K̂. The architecture of the neural

network for the predicted matric potential is fixed.

Units for K̂

Units for θ̂ 5 10 20

5 0.9988 0.9988 0.9991

10 0.9994 0.9983 0.9988

20 0.9993 0.9996 0.9994
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