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Abstract15

Water retention curve (WRC) and hydraulic conductivity function (HCF) are essential16

information to model the movement of water in the soil using the Richardson-Richards17

equation (RRE). Although laboratory measurement methods of WRC and HCF have18

been well established, the lab-based WRC and HCF can not be used to model soil mois-19

ture dynamics in the field because of the scale mismatch. Therefore, it is necessary to20

derive the inverse solution of the RRE and estimate WRC and HCF from field measure-21

ment data. We are proposing a physics-informed neural networks (PINNs) framework22

to obtain the inverse solution of the RRE and estimate WRC and HCF from only vol-23

umetric water content measurements. The PINNs was constructed using three feedfor-24

ward neural networks, two of which were constrained to be monotonic functions to re-25

flect the monotonicity of WRC and HCF. The PINNs was trained using noisy synthetic26

volumetric water content data derived from the simulation of soil moisture dynamics for27

three soils with distinct textures. The PINNs could reconstruct the true soil moisture28

dynamics from the noisy data. As for WRC, the PINN could not precisely determine the29

WRCs. However, it was shown that the PINNs could estimate the HCFs from only the30

noisy volumetric water content data without specifying initial and boundary conditions31

and assuming any information about the HCF (e.g., saturated hydraulic conductivity).32

Additionally, we showed that the PINNs framework could be used to estimate soil wa-33

ter flux density with a broader range of estimation than the currently available meth-34

ods.35

1 Introduction36

Soil moisture data is vital for weather forecasting and hydrological modeling, man-37

aging agriculture and crop productivity, and predicting natural disasters, such as land-38

slides and flood, and drought (Robinson et al., 2008; Babaeian et al., 2019). Notably,39

detailed information about near-surface soil moisture dynamics is essential for land sur-40

face modeling and remote sensing applications. Therefore, several measurement meth-41

ods have been proposed to monitor the movement of water near the surface soil, such42

as a TDR array probe (Sheng et al., 2017) and heat pulse method (Kamai et al., 2008,43

2010).44

The dynamics of soil moisture can be expressed by the Richardson-Richards equa-45

tion (RRE) (Richardson, 1922; Richards, 1931). The RRE is a non-linear partial differ-46

ential equation (PDE) and has been extensively studied (Farthing & Ogden, 2017; Zha47

et al., 2019). The RRE is composed of the continuity equation and the Buckingham-Darcy’s48

law (Buckingham, 1907). The RRE consists of three primary variables: matric poten-49

tial ψ, volumetric water content θ, and hydraulic conductivity K. Volumetric water con-50

tent and hydraulic conductivity are both functions of matric potential, which are referred51

to as water retention curve (WRC) and hydraulic conductivity function (HCF), respec-52

tively. These two soil hydraulic functions (also called constitutive relationships) embody53

the characteristic features of soil pore network and are the manifestation of the inter-54

actions between soil texture and structure. These constitutive relationships are neces-55

sary to solve the RRE and commonly expressed through parametric models (Brooks &56

Corey, 1964; van Genuchten, 1980; Durner, 1994; Kosugi, 1996).57

Although laboratory methods for measuring WRC and HCF have been well estab-58

lished, lab-based WRC and HCF cannot be directly applied to modeling soil moisture59

dynamics in the field because of the scale mismatch between laboratory experiments and60

field measurements (Hopmans et al., 2002). Therefore, it is indispensable to estimate WRC61

and HCF using the inverse solution of the RRE from field data.62

Many studies have attempted to determine the parameters of soil hydraulic func-63

tions, such as Mualem-van Genuchen model (van Genuchten, 1980) from synthetic or ex-64

perimental data using a global optimization algorithm (Durner et al., 2008) or Gaussian65
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processes (Rai & Tripathi, 2019). On the other hand, several studies employed free-form66

soil hydraulic functions to estimate WRC and HCF (Bitterlich et al., 2004; Iden & Durner,67

2007). The advantage of the free-form approach over the parametric models is that (1)68

we do not need to assume soil hydraulic functions a priori, and (2) the error in WRC does69

not propagate into HCF, especially for near saturation by decoupling WRC and HCF70

rather than employing capillary bundle model (Mualem, 1976). However, these studies71

are based on the forward solution of the RRE and need initial and boundary conditions,72

which are not readily available in most practical situations.73

In terms of the inverse solution of PDEs, a deep learning framework called physics-74

informed neural networks (PINNs) was proposed by Raissi et al. (2019). PINNs employs75

the universal approximation capability of neural networks (Cybenko, 1989) to approx-76

imate the solution of PDEs, and the parameters of the neural networks are trained by77

minimizing the sum of data-fitting error and the residual of the PDEs simultaneously.78

This simultaneous learning enables PINNs to learn the dynamics of the system from mea-79

surement data and physics. This PINNs approach has been successful in several fields80

of computational physics (Raissi & Karniadakis, 2018; Tartakovsky et al., 2018; Raissi81

et al., 2019; Wang et al., 2020). Particularly, Tartakovsky et al. (2018) employed PINNs82

to determine the hydraulic conductivity function of an unsaturated homogeneous soil from83

synthetic matric potential data based on the two-dimensional time-independent RRE.84

In this paper, we are proposing a new framework for the inverse solution of the time-85

dependent RRE to estimate the constitutive relationships (both WRC and HCF) using86

PINNs with fewer assumptions than conventional inverse solution approaches. We em-87

phasize that only volumetric water content was used as measurement data rather than88

matric potential data because the range and accuracy of matric potential measurements89

are still limited, though there have been recent advances (Degré et al., 2017). Addition-90

ally, we used monotonic neural networks (Daniels & Velikova, 2010) to employ the ad-91

vantage of the free-formed approach of WRC and HCF (Bitterlich et al., 2004; Durner92

et al., 2008).93

Here, the feasibility of the framework is tested using synthetic volumetric water con-94

tent time-series data generated by HYDRUS-1D for three types of homogeneous soil (sandy95

loam, loam, and silt loam). The robustness of the method is evaluated by comparing the96

WRC and HCF estimated by the PINNs to the true ones. In addition, we show the po-97

tential of applying the fitted PINNs for estimating soil water flux density using only an98

array of soil moisture sensors.99

2 Background100

2.1 Richardson-Richards Equation101

This subsection introduces the Richardson-Richards equation (RRE), which describes102

the movement of water in the saturated and unsaturated soil. In this study, we consider103

one-dimensional liquid water flow in the rigid soil and ignore water vapor, sink term, and104

histerisis. The mass balance of water in the soil leads to a continuity equation:105

∂θ

∂t
= −∂q

∂z
, (1)

where θ is volumetric water content [L3 L−3]; t is time [T]; z is vertical coordinate (pos-106

itive upward) [L]; q is soil water flux density [L T−1]. The soil water flux density q is re-107

lated to matric potential of water in the soil ψ [L] through the Darcy-Buckingham’s law108

(Buckingham, 1907):109

q = −K
(
∂ψ

∂z
+ 1

)
, (2)

where K is hydraulic conductivity [L T−1]. The two equations (Equation 1 and 2) are110

combined to derive the Richardson-Richards equation (RRE): (Richardson, 1922; Richards,111
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Figure 1: Constitutive relationships for three types of soil (sandy loam, loam, and silt
loam) generated using Mualem-van Genuchen model (van Genuchten, 1980). (a) Water
retention curves (WRC). (b) Hydraulic conductivity functions (HCF).

1931)112

∂θ

∂t
=

∂

∂z

[
K

(
∂ψ

∂z
+ 1

)]
. (3)

To solve the RRE, matric potential ψ is commonly treated as the dependent variable,113

and volumetric water content θ and hydraulic conductivity K are parameterized through114

matric potential ψ, as in115

∂θ(ψ)

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
+ 1

)]
. (4)

The functions θ(ψ) and K(ψ) are called constitutive relationships and referred to as wa-116

ter retention curve (WRC) and hydraulic conductivity function (HCF) respectively. WRC117

and HCF are commonly expressed by parametric models (Brooks & Corey, 1964; van118

Genuchten, 1980; Durner, 1994; Kosugi, 1996). The WRCs and HCFs for three types119

of soil (sandy loam, loam, and silt loam soil) using Mualem-van Genuchen model (van120

Genuchten, 1980) are shown in Figure 1. As shown in the figure, both WRC and HCF121

are increasingly monotonic functions with respect to matric potential ψ. The monotonic-122

ity of WRC and HCF will be employed to design the architecture of neural networks in123

this study later on.124

2.2 Feedforward Neural Networks125

A standard feedforward neural network with three layers (1 hidden layer) is explained126

for the readers to understand the neural networks used in this study. The readers should127

refer to textbooks (e.g., Goodfellow et al. (2016)) for more general explanations.128

Given a training dataset {x(i),y(i)}, where superscript (i) denotes the ith train-129

ing data; x(i) ∈ Rnx is input vector for the size of the input nx; y(i) ∈ Rny is output130

vector for the size of the output ny, a neural network is a mathematical function map-131

ping the input vector x(i) to predicted output vector ŷ(i) ∈ Rny :132

ŷ(i) = f̂(x(i)). (5)

The hat operator represents prediction throughout the paper. The inside of the neural133

network f̂ is often represented by layers of units (or neurons), as shown in Figure 2. Herein,134
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a[L] ∈ Rn[L]

denotes the vector value for the Lth layer of a neural network where the135

Lth layer is composed of n[L] units. Firstly, the input vector x(i) is entered in the first136

layer:137

a[1] = x(i), (6)

here n[1] = nx. Then, the value for the jth unit of the second layer a[2] is calculated138

from all the units in the previous layer (i.e., the first layer) with the weight matrix W [1]
139

and bias vector b[1] of the first layer in the following way:140

a
[2]
j = g[1]

n[1]∑
k=1

W
[1]
j,ka

[1]
k + b

[1]
j

 , (7)

where g[1] is a non-linear activation function for the first layer, such as the hyperbolic141

tangent function (tanh) shown in Figure 2 (b). The jth unit of the third layer is com-142

puted from all the units of the second layer (hidden layer):143

a
[3]
j =

n[2]∑
k=1

W
[2]
j,ka

[2]
k + b

[2]
j . (8)

Finally, the output vector ŷ(i) is derived from the final layer with an output function h:144

ŷ
(i)
j = h(a

[3]
j ), (9)

here n[3] = ny. In this study, the sigmoid function (Figure 2 (c)) and exponential func-145

tion (Figure 2 (d)) are used for an output function.146

The collection of the weight matrices W = {W [1],W [2]} and bias vectors b =147

{b[1], b[2]} are the parameters of the neural network, which are estimated by minimizing148

a loss function comprising of the output vector y(i) (training data) and the predicted out-149

put vector ŷ(i). The definition of the loss function varies depending on the purpose of150

the training.151

It is well known that a feedforward neural network with more hidden layers has a152

better capability of function approximation (Goodfellow et al., 2016). A neural network153

with more than two hidden layers is called a deep neural network. In such a case, a hid-154

den layer is computed from all the units of the previous hidden layer in the same way155

explained above (Equation 7).156

In the next section, three feedforward neural networks are combined to construct157

physics-informed neural networks for the RRE, and the loss function for the PINNs frame-158

work will be defined to estimate WRC and HCF from volumetric water content measure-159

ments.160

3 Methods161

3.1 Physics-Informed Neural Networks for RRE162

Physics-informed neural networks (PINNs) has been proposed as a deep learning163

framework to derive the forward and inverse solution of PDEs by Raissi et al. (2019).164

In this study, PINNs was used to derive the inverse solution of the RRE and the con-165

stitutive relationships (i.e., WRC and HCF) from a set of measured volumetric water166

content {t(i), z(i), θ(i)}i=Ni=1 , where N is the number of measurement data.167

PINNs for the RRE was constructed using three feedforward neural networks as168

shown in Figure 3. The neural network (a) is a function mapping from time t and ver-169

tical coordinate z into predicted matric potential ψ̂:170

ψ̂(i) = f̂ψ(t(i), z(i);Wψ,bψ), (10)
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Figure 2: A feedforward neural network consisting of three layers with activation and
output functions. (a) A feedforward neural network consisting of the input layer with
two units, the hidden layer with five units, and the output layer with a one unit. (b)
Hyperbolic tangent function. (c) Sigmoid function. (d) Exponential function.

where Wψ and bψ are the collection of weight and bias parameters in the neural net-171

work. The hyperbolic tangent function (Figure 2 (b)) is used for the activation function172

as recommended in Raissi et al. (2019). The negative exponential function (i.e., −exp(x),173

see Figure 2 (d)) is used as the output function to force the predicted matric potential174

to be negative.175

The predicted matric potential ψ̂ is used to estimate volumetric water content θ̂176

and hydraulic conductivity K̂ through two distinct neural networks (Figure 3 (c) and177

(b) respectively). In other words, the two neural networks are employed to approximate178

the WRC and HCF for a given soil. Since WRC and HCF become simpler if matric po-179

tential is plotted in logarithmic scale, as in Figure 1, the predicted matric potential is180

converted into logarithmic scale by the following transformation:181

ψ̂log = − loge(−ψ̂). (11)

The negative sign before the logarithm ensures WRC and HCF remain increasingly mono-182

tonic functions with respect to ψ̂. Then, the predicted matric potential in logarithmic183

sclae ψ̂log is used as the input value for the two neural networks:184

θ̂(i) = f̂θ(ψ̂
(i)

log
;Wθ,bθ), (12)

185

K̂(i) = f̂K(ψ̂
(i)

log
;WK ,bK). (13)

The tanh function is used as the activation function for both neural networks. The out-186

put functions for f̂θ and f̂K are the sigmoid function and exponential function respec-187

tively to ensure predicted volumetric water content between 0 and 1 and positive pre-188

dicted hydraulic conductivity (see Figure 2 (c) and (d)).189

To embrace the monotonicity of WRC and HCF, the weight parameters Wψ and190

WK are constrained to be non-negative so that f̂θ and f̂K are increasingly monotonic191

functions with respect to the predicted matric potential ψ̂ (Daniels & Velikova, 2010).192

The monotonicity honors the physical nature of WRC and HCF of all soils. This approach193

is similar to the free-form approach (Bitterlich et al., 2004; Iden & Durner, 2007), where194
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Figure 3: Physics-informed neural networks (PINNs) for the Richardson-Richards equa-

tion consisting of three feedforward neural networks to predict (a) matric potential ψ̂ (10

hidden layers with 40 units), (b) volumetric water content θ̂ (1 hidden layer and 20 units),
and (c) hydraulic conductivity K̂ (1 hidden layer and 20 units). The number of layers and
units in the figure is not actual.

–7–



manuscript submitted to Water Resources Research

cubic Hermite interpolation was used to approximate WRC and HCF. Unlike their stud-195

ies, our monotonic neural network approach does not assume predetermined saturated196

water content and hydraulic conductivity, which are not easily available in the field ap-197

plication.198

The collection of the parameters in the three neural networks W = {Wψ,Wθ,WK}199

and b = {bψ,bθ,bK} are identified by minimizing a loss function defined as200

L(W,b) :=

N∑
i=1

(θ̂(i) − θ(i))2 +

N∑
i=1

(r̂(i))2, (14)

where r̂ is the residual of the RRE defined as201

r̂ :=
∂θ̂

∂t
− ∂

∂z

[
K̂

(
∂ψ̂

∂z
+ 1

)]
=
∂θ̂

∂t
− ∂K̂

∂z

∂ψ̂

∂z
− K̂ ∂2ψ̂

∂z2
− ∂K̂

∂z
. (15)

The first term of the loss function (Equation 14) represents the fitting error of volumet-202

ric water content, and the second term represents the contraint by the RRE. This simul-203

taneous learning enables the PINNs to learn the dynamics of water in the soil from both204

volumetric water content data and knowledge in soil physics (the RRE and the mono-205

tonicity of WRC and HCF).206

To calculate the residual of the RRE r̂ at data points, all the derivatives (i.e., ∂θ̂
∂t ,207

∂ψ̂
∂z , ∂2ψ̂

∂z2 , ∂K̂
∂z ) are evaluated at the data points using automatic differentiation (Nocedal208

& Wright, 2006). The parameters W and b are estimated by minimizing the loss func-209

tion:210

min
W,b
L(W,b). (16)

The optimization problem was solved by the L-BFGS-B algorithm (Byrd et al., 1995)211

given initial values of the parameters obtained through the Adam algorithm (Kingma212

& Ba, 2014). The minimization of the loss function with iterations of the two algorithms213

is provided in the Figure S1 in the supporting information. This PINNs framework for214

the RRE was implemented through TensorFlow (Abadi et al., 2015), and the source code215

is available on xxx (GitHub URL is shown here after acceptance).216

3.2 Synthetic training data generated by HYDRUS-1D217

To test the PINNs framework for the RRE, synthetic training data was generated218

through HYDRUS-1D (Šimůnek et al., 2013). Soil moisture dynamics in the 100 cm of219

homogeneous three types of soil (sandy loam, loam, and silt loam) were simulated for220

three days. In this simulation, the soil column is uniformly discretized at a 0.5 cm in-221

terval. The initial matric potential of -1000 cm was set for all the depths. The bottom222

boundary condition was Neumann boundary condition:223

∂ψ

∂z
= 0. (17)

The upper boundary condition was set as the atmospheric upper boundary condition,224

where two different scenarios of time-dependent surface flux density were applied (see225

Table 1).226

Three types of soil (sandy loam, loam, and silt loam) were tested with the same227

initial and boundary conditions explained above. Mualem-van Genuchen model was used228

to parameterize the WRCs and HCFs for these soils (van Genuchten, 1980):229

θ(ψ) = θr +
θs − θr

(1 + (−αψ)n)m
, (18)

230

K(θ(ψ)) = KsS
l
e(1− (1− S1/m

e )m)2, (19)

–8–



manuscript submitted to Water Resources Research

Table 1: Two scenarios of surface water flux density [cm day−1] (positive upward) were
applied to generate synthetic training data using HYDRUS-1D (Šimůnek et al., 2013).

Time (day) Scenario 1 Scenario 2

0.25 -10 -10
0.50 0 0
1.0 0.3 0.3
1.5 0 -5
2.0 0.3 0.3
2.25 -10 -5
2.5 0 -5
3.0 0.3 0.3

Table 2: Mualem-van Genuchen fitting parameters for three types of soils (van Genuchten,
1980).

Parameters Sandy Loam Loam Silt Loam

θr 0.065 0.078 0.067
θs 0.41 0.43 0.45
α 0.075 0.036 0.02
n 1.89 1.56 1.41

Ks [cm day−1] 106.1 24.96 10.8
l 0.5 0.5 0.5

where θr, θs, α, n, Ks, and l are the fitting parameters; m = 1 − 1/n; and the effec-231

tive saturation Se is defined as232

Se =
θ − θr
θs − θr

. (20)

The Maulem-van Genuchen fitting parameters for the three soils are summarized in Ta-233

ble 2.234

As the training data for the PINNs, volumetric water content was sampled every235

0.012 day (i.e., 251 data points for a depth) at 10 equally spaced different depths within236

the top of the 20 cm of the soil column (z = -1, -3, -5, -7, -9, -11, -13, -15, -17, -19 cm).237

To consider the measurement error in volumetric water content, Gaussian noise with the238

mean of zero and the standard deviation of 0.005 was added to the sampled volumet-239

ric water content, and the noisy data was used to train the PINNs. This amount of noise240

is comparable to the noise observed when volumetric water content is measured by the241

TDR technique (Skierucha, 2000). The effect of the noise is shown in Table S1 in the242

supporting information. The noisy volumetric water content at three depths (z = −1,−9,−17243

cm) for sandy loam soil for the two scenarios are shown in Figure 4. Before discussing244

the results of the training of the PINNs using the noisy data, the architecture of the neu-245

ral networks in the PINNs was determined by noise-free volumetric water content data,246

which is explained in the next section.247
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Figure 4: Predicted volumetric water content (PINNs) and noisy synthetic training data
(Training Data) for sandy loam soil for the two scenarios at three different depths. Sce-
nario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm. Scenario 2 (S2): (d)
z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.
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Table 3: The coefficient of determination R2 between predicted volumetric water content
and the synthetic training data with zero noise (Scenario 1) for silt loam soil and for dif-
ferent number of hidden layers and units for each hidden layer of the neural network for
predicted matric potential (Figure 3 (a)).

Units
Hidden Layers 10 20 40

2 0.7909 0.9734 0.9777
4 0.9622 0.9865 0.9974
6 0.9930 0.9977 0.9988
8 0.9944 0.9978 0.9984
9 0.9975 0.9993 0.9992
10 0.9939 0.9990 0.9994
11 0.9970 0.9993 0.9991

3.3 Determination of the architecture of neural networks248

The number of hidden layers and units for each hidden layer of the neural network249

for predicted matric potential ψ̂ (Figure 3 (a)) was determined to be 10 hidden layers250

with 40 units for each hidden layer based on the coefficient of determination R2 between251

volumetric water content predicted by the PINNs and the synthetic training data with252

zero noise generated by Scenario 1 (Table 1). The result of the investigation for silt loam253

soil is shown in Table 3, where seven different numbers of hidden layers and three dif-254

ferent numbers of units for each layer were tested. The results for the other two soils are255

provided in Table S2 and S3 in the supporting information.256

During the investigations, the neural networks for hydraulic conductivity and vol-257

umetric water content ((b) and (c) in Figure 3) were both set to have a one hidden layer258

consisting of 20 units. The effect of the number of the units of the hidden layer are pro-259

vided in Table S4, S5, and S6 in the supporting information.260

It should be noted that the results of the training were affected by the initial val-261

ues of the parameters of the neural networks determined by Xavier initialization, as re-262

ported by Tartakovsky et al. (2018). Therefore, random seeds were carefully set in the263

algorithm to ensure the reproducibility of the results.264

4 Results and Discussions265

4.1 Soil Moisture Dynamics266

The framework of PINNs for the RRE was tested with noisy synthetic volumet-267

ric water content data generated by HYDRUS-1D. Figure 4 shows predicted volumet-268

ric water content by the PINNs from noisy training data for sandy loam soil for the two269

scenarios. The PINNs could precisely capture the trend, including the sharp wetting fronts270

even though the training data was collapsed due to the noise. The PINNs could capture271

the trend well for the other two soils as well (shown in Figure S2 and S3 in the support-272

ing information).273

The PINNs could estimate the true volumetric water content without noise sim-274

ulated by HYDRUS-1D from the noisy data, as shown in Figure 5. Larger errors were275

observed at the top of the sensor (z = −1 cm) and just after the initial condition. These276

were caused by the abrupt change in volumetric water content by infiltration. Sandy loam277
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Figure 5: Comparison of the true volumetric water content with zero noise simulated by
HYDRUS-1D to volumetric water content estimated by PINNs for the three soils and the
two scenarios. Scenario 1 (S1): (a) sandy loam, (b) loam, and (c) silt loam. Scenario 2
(S2): (d) sandy loam, (e) loam, and (f) silt loam.
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has higher R2 values than loam and silt loam soils. Also, higher R2 values were observed278

for Scenario 2 for all three soils, where more infiltration was applied to the top of the279

soil column. These two observations implied that more fluctuations within a given range280

of volumetric water content help PINNs to learn the soil moisture dynamics (see Fig-281

ure 4).282

The PINNs minimizes the data fitting error, as well as the residual of the RRE de-283

fined by Equation 15. The residual of the RRE for sandy loam soil at three different depths284

for the two scenarios is shown in Figure 6. Deviations from zero were observed at the285

time when infiltration reached the sensors. However, the values were distributed around286

zero, which means the RRE was satisfied at the sensor locations. Smaller deviations from287

zero were observed for sandy loam soil and Scenario 2, which correspond to the error in288

volumetric water content, as mentioned above. The results for the other soils are pro-289

vided in Figure S4 and S5 in the supporting information.290

4.2 Estimation of Constitutive Relationships291

4.2.1 Water Retention Curve292

The primary goal of the study was to predict soil hydraulic functions or constitu-293

tive relationships of the RRE (i.e., WRC and HCF). In terms of WRC, the PINNs could294

not precisely predict the WRCs for the three soils, as shown in Figure 7. Especially, the295

prediction was poor for low and high volumetric water content, where the training data296

points were not provided. Nevertheless, the predicted WRC for sandy loam soil for Sce-297

nario 2 was surprisingly similar to the true WRC regardless of the fact any actual value298

of matric potential was not used to train the PINNs.299

How does the PINNs learn WRC from only volumetric water content? One pos-300

sible explanation is that matric potential is estimated from the gradient of matric po-301

tential ∂ψ̂/∂z, which is calculated in the residual of the RRE r̂. However, we still do not302

have a solid explanation for the learning mechanism of WRC and can not conclude the303

PINNs has the ability to predict WRC from only volumetric water content measurements.304

It should be noted that WRC must be flat near saturation, though this could not be re-305

produced by the PINNs. This mismatch must be improved in the near future research.306

4.2.2 Hydraulic Conductivity Function307

The estimated HCFs for the three soils for the two scenarios are shown in Figure308

8. It should be noted that hydraulic conductivity is plotted against volumetric water con-309

tent, not matric potential, as in Figure 1, because the estimated values of matric poten-310

tial does not match the actual value, unlike volumetric water content.311

The PINNs could estimate the HCFs, especially for sandy loam soil for Scenario312

2, where high fluctuations in volumetric water content were observed (see Figure 4). Al-313

though there were errors in the estimation for a range of volumetric water content where314

few data points were used to train the PINNs, the estimation was fairly satisfactory for315

the middle range of volumetric water content.316

Hydraulic conductivity was estimated probably through minimizing the residual317

of the RRE, which contains hydraulic conductivity (see Equation 15). Tartakovsky et318

al. (2018) reported that HCF could be estimated from matric potential measurements319

using PINNs with the time-independent RRE. Considering our result and their findings,320

hydraulic conductivity can be estimated from only each of volumetric water content and321

matric potential.322

The advantage of the PINNs approach over the other studies to estimate HCF was323

that we did not assume any information about HCF a priori, such as saturated water324
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Figure 6: The residuals of the Richardson-Richards equation at three different depths for
sandy loam soil for the two scenarios. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm,
and (c) z = −17 cm. Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17
cm.
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Figure 7: Comparison of true water retention curve (True) to the one predicted by the
PINNs for the three soils for the two scenarios (S1: Scenario 1, S2: Scenario 2) with the
histogram of the noisy training data. Water retention curve for (a) sandy loam, (b) loam,
and (c) silt loam. Histogram of the training data for (d) sandy loam, (e) loam, and (f)
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by the PINNs for the three soils for the two scenarios (S1: Scenario 1, S2: Scenario 2)
with the histogram of the noisy training data. Hydraulic conductivity function for (a)
sandy loam, (b) loam, and (c) silt loam. Histogram of the training data for (d) sandy
loam, (e) loam, and (f) silt loam.

content and saturated hydraulic conductivity. Also, the neural network for HCF is sep-325

arated from WRC, which prevents the error in WRC from propagating into HCF. Con-326

sidering these advantages, we conclude that the current framework of PINNs for the RRE327

is a powerful way to estimate HCF from only volumetric water content data, which has328

never been attained to the best of our knowledge.329

4.3 Estimation of Soil Water Flux Density330

In this section, we will show that the current PINNs framework can be used to es-331

timate soil water flux density from noisy volumetric water content data. Soil water flux332

density was derived using the Buckingham-Darcy’s law (Equation 2) with the estimated333

hydraulic conductivity K̂, the gradient of the predicted hydraulic conductivity ∂K̂/∂z334

and matric potential ∂ψ̂/∂z.335
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The comparison of the estimated soil water flux density to the true one calculated336

by HYDRUS-1D at three different depths (z = −1,−9,−17 cm) for the three soils for337

the two scenarios is shown in Figure 9, 10, and 11. It was found that the PINNs could338

estimate soil water flux density from noisy volumetric water content measurements. The339

predictive ability was associated with the accuracy of the estimation of volumetric wa-340

ter content and HCF, which is shown by the precise estimation of soil water flux den-341

sity for sandy loam soil for Scenario 2 (R2 = 0.9905). Larger errors were observed at wet-342

ting fronts and the sensor located near the surface (i.e., z = −1cm), where soil water343

flux density changed abruptly. Although larger error was observed for loam and silt loam,344

especially for Scenario 1, the PINNs could reasonably capture the trend of soil water flux345

density by compensating the overestimation at some time for the underestimation at other346

time. Figure S6 in the supporting information summarizes the predictive ability of soil347

water flux density for all three soils.348

The advantage of this approach over the available heat pulse method (Kamai et349

al., 2008, 2010) is that this method can estimate soil water flux density lower than 1 cm350

day−1 (see Figure S7, S8, and S9 in the supporting information). Because continuous351

measurement of volumetric water content at different depths is becoming popular with352

an advanced TDR array (Sheng et al., 2017), this PINNs approach can be used to es-353

timate soil water flux density in the field. This finding has a significant implication in354

the application of land surface modeling, where soil water flux density near the surface355

is critical.356

5 Conclusions357

A framework of estimating soil hydraulic functions or constitutive relationships of358

the Richardson-Richards equation (RRE) (i.e., water retention curve (WRC) and hydraulic359

conductivity function (HCF)) from noisy volumetric water content measurements was360

proposed using physics-informed neural networks (PINNs). PINNs for the RRE was de-361

signed by endowing the neural networks with the monotonicity of WRC and HCF. To362

test this framework, synthetic volumetric water content data with noise simulated for363

three types of soil (sandy loam, loam, and silt loam) were used to train the PINNs, and364

the WRC, HCF, and soil water flux density were estimated.365

The PINNs could estimate true soil moisture dynamics from noisy synthetic data366

for all types of soil. It was found that data with more fluctuations appear to help the367

PINNs to learn the soil moisture dynamics. In terms of WRC, the PINNs could not pre-368

cisely estimate the true WRCs. However, the estimated WRC for sandy loam soil was369

similar to the true one regardless of the fact that any matric potential data was provided.370

Unlike WRC, the PINNs could predict the HCFs well, especially for sandy loam soil. The371

discrepancies of the estimated and actual HCFs were more significant for loam and silt372

loam soils than sandy loam soil, which could be explained by the magnitude of the fluc-373

tuations of the training data within the observed range.374

The PINNs could estimate true soil water flux density from noisy synthetic volu-375

metric water content data at different depths. At present, the only measurement tech-376

nique for measuring soil water flux density is using heat flux sensors, which is limited377

to soil water flux density larger than 1 cm day−1. The proposed method has the poten-378

tial for determining soil water flux density over a broader range.379

It was illustrated that the PINNs has a great potential to predict constitutive re-380

lationships of the RRE and soil water flux density from only noisy volumetric water con-381

tent data in the field. The advantage of this method is the current PINNs framework382

does not need initial and boundary conditions and any information about the HCF a pri-383

ori. The current framework must be tested with real experimental data for homogeneous384

soil in future research.385
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Figure 9: Estimated soil water flux density against the true one at three different depths
for sandy loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm.
Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.
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Figure 10: Estimated soil water flux density against the true one at three different depths
for loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm.
Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.

–19–



manuscript submitted to Water Resources Research

−10

−8

−6

−4

−2

0

(a) S1: z =−1 cm

Silt Loam

(d) S2: z =−1 cm

−10

−8

−6

−4

−2

0

S
o
il

W
at

er
F

lu
x

D
en

si
ty

q
[c

m
d
ay

−
1
] (b) S1: z =−9 cm (e) S2: z =−9 cm

0 1 2 3

−10

−8

−6

−4

−2

0

(c) S1: z =−17 cm

0 1 2 3

(f) S2: z =−17 cm

True

PINNs

Time t [day]

Figure 11: Estimated soil water flux density against the true one at three different depths
for silt loam soil. Scenario 1 (S1): (a) z = −1 cm, (b) z = −9 cm, and (c) z = −17 cm.
Scenario 2 (S2): (d) z = −1 cm, (e) z = −9 cm, and (f) z = −17 cm.
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Acronyms386

HCF Hydraulic Conductivity Function387

PDE Partial Differential Equation388

PINNs Physics-Informed Neural Networks389

RRE Richardson-Richards Equation390

WRC Water Retention Curve391

Notation392

:= Equal by definition393

ˆ Hat indicating predicted values or functions (e.g., ŷ)394

(i) Superscript (i) denoting ith data (e.g., θ(i))395

[L] Superscript [L] denoting Lth layer396

a[L] ∈ Rn[L]

Vector value for the Lth layer consisting of n[L] units397

b Bias vector398

g Activation function399

h Output function400

K Hydraulic conductivity [L T−1]401

Ks Mualem-van Genuchen parameter402

L Loss function403

l Mualem-van Genuchen parameter404

N Number of data points405

n Mualem-van Genuchen parameter406

q Soil water flux density [L T−1]407

r̂ Residual of the Richardson-Richards euqation408

Se Effective saturation409

t Time [T]410

W Weight matrix411

x ∈ Rnx Input vector for the size of the input nx412

y ∈ Rny Output vector for the size of the output ny413

z Vertical coordinate (positive upward) [L]414

α Mualem-van Genuchen parameter415

θ Volumetric water content [L3 L−3]416

θr Mualem-van Genuchen parameter417

θs Mualem-van Genuchen parameter418

ψ Matric potential of water in the soil [L]419

ψlog Matric potential in logarithmic scale420
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