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Abstract12

Numerical simulations of seismic cycles with rate-, state-, and temperature-dependent13

friction explain the various modes of seismic and aseismic ruptures in the brittle section14

of the lithosphere. However, the effects of viscoelastic flow in the ductile layers remain15

challenging to incorporate due to the wide range of length scales involved, from extremely16

localized within fault zones to widely distributed in the lower crust and asthenosphere.17

Here, we describe simulations of seismic cycles in a viscoelastic half-space using the inte-18

gral method that combines discrete surface and volume elements to capture the coupling19

between brittle and ductile deformation. Viscoelastic flow is captured by cuboidal and20

tetrahedral volume elements within rectilinear and curvilinear meshes, respectively. The21

model resolves all phases of the seismic cycle under the radiation-damping approximation,22

including the nucleation and propagation of earthquake ruptures, but also the viscoelastic23

relaxation that follows in the ductile layers. We illustrate the approach in three dimensions24

with numerical simulations of seismic cycles on finite strike-slip and thrust faults over-25

lying a viscoelastic lower crust with linear and nonlinear rheology. In two-dimensional26

models of subduction zones with the in-plane strain approximation, the ductile regions27

are meshed with triangle volume elements. The use of Green’s functions only requires28

the discretization of the actively deforming region, resulting in a relatively small mesh.29

We provide open-source software implementing the method with parallel computing in a30

distributed architecture. The approach allows increasingly realistic representations of the31

lithosphere-asthenosphere system with nonlinear constitutive laws in structurally complex32

tectonic settings.33
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Plain Language Summary34

Modeling of crustal dynamics during the seismic cycle is important to better under-35

stand the genesis of earthquakes and the deformation of Earth’s surface. The mechanics of36

the lithosphere incorporates brittle deformation in the crust and upper mantle, but also vis-37

coelastic flow in the lower crust and asthenosphere. Rapid fault slip during earthquakes in-38

duces a sudden stress perturbation in the surrounding lithosphere that is diffused by creep39

on nearby faults and viscoelastic relaxation at greater depths. These processes continue to40

deform Earth’s surface for decades following large earthquakes. We present a numerical41

method that captures these phenomena with a consistent description of brittle and duc-42

tile deformation. The method is based on a parsimonious representation of faults and dis-43

tributed plasticity with surface element and volume elements, respectively. We describe44

numerical simulations based on this method that resolve the nucleation and propagation45

of earthquakes, but also the afterslip and viscoelastic relaxation that follows. The recur-46

rence time of earthquakes is affected by the rheological properties of the ductile region.47

The work includes open-source software to explore the mechanics of the seismic cycle in48

two-dimensional and three-dimensional viscoelastic half-spaces.49
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1 Introduction50

Lithosphere dynamics involves two main types of deformation: localized deforma-51

tion across faults in the cold, brittle layers and broadly distributed viscoelastic strain in52

the ductile substrate of the lower crust and asthenosphere [Kohlstedt et al., 1995; Burov53

and Watts, 2006]. The characteristics of seismic cycles are primarily controlled by the54

nonlinear constitutive properties of faults, which are influenced by temperature, rock com-55

position, and the presence of fluids [Blanpied et al., 1995; Nakatani, 2001; Mitchell et al.,56

2016; Veedu et al., 2020; Mei et al., 2021]. The structural intricacy of fault networks within57

a plate boundary also plays a significant role [Romanet et al., 2018; Chen et al., 2020;58

Gauriau and Dolan, 2021]. However, additional complexity arises from the mechanical59

coupling between brittle and ductile deformation that gives rise to quasi-static stress trans-60

fer among faults over the interseismic period [Nur and Mavko, 1974; Savage, 2000; Freed61

and Lin, 2001].62

The viscoelastic behavior of the lithosphere is well documented during seismic cy-63

cle [e.g., Bürgmann and Dresen, 2008; Pollitz, 2019]. Following large earthquakes, the64

lower crust and asthenosphere exhibit accelerated viscoelastic flow due to the sudden65

stress perturbation caused by the mainshock. Viscoelastic relaxation has been inferred in66

various tectonic environments, including at continental transforms [Barbot et al., 2008;67

Johnson et al., 2009; Pollitz et al., 2000, 2001; Pollitz, 2003a; Johnson and Segall, 2004;68

Masuti et al., 2016; Moore et al., 2017] and subduction zones [Hu et al., 2004; Pollitz69

et al., 2006; Wang, 2007; Pollitz et al., 2008; Suito and Freymueller, 2009; Wang et al.,70

2012; Sun et al., 2014; Klein et al., 2016; Qiu et al., 2018; Weiss et al., 2019; Agata et al.,71

2019] after great and giant earthquakes. Typically, modeling approaches consider individ-72

ual earthquakes as initial condition for postseismic relaxation [Barbot et al., 2009; Rousset73

et al., 2012; Rollins et al., 2015; Broerse et al., 2015; Bedford et al., 2016; Li et al., 2017;74

Diao et al., 2018; Fukuda and Johnson, 2021], and several numerical methods tackle this75

initial-value problem efficiently [Pollitz, 1992, 1997; Wang et al., 2003; Pollitz, 2003b;76

Smith and Sandwell, 2004; Barbot and Fialko, 2010a,b; Hu and Wang, 2012; Aagaard77

et al., 2013; Tanaka et al., 2015; Hampel and Hetzel, 2015; Wang et al., 2017; Agata et al.,78

2019; Nield et al., 2022]. However, the nonlinear rheology of the bulk rocks and longer79

relaxation times compared to earthquake recurrence intervals makes the system sensitive80

to the history of past deformation [Ellis and Stöckhert, 2004; Hetland and Hager, 2006;81

Nüchter and Ellis, 2010; Chuang and Johnson, 2011; Takeuchi and Fialko, 2013].82

Viscoelastic deformation also impacts the loading of the seismogenic zone, result-83

ing in first-order changes in earthquake recurrence patterns [e.g., Allison and Dunham,84

2018; Barbot, 2020a; Shi et al., 2020; Allison and Dunham, 2021]. At longer time scales,85

viscoelastic flow plays a crucial role in the transport and recycling of tectonic plates, influ-86

encing the rate of slip accumulation on faults at first order at plate boundaries. However,87

incorporating these important effects is challenging due to the disparity of timescales be-88

tween mountain building and fault network evolution spanning millions of years, and the89

seismic cycle operating from milliseconds to centuries. Current models often simplify the90

rupture process and are limited to two-dimensional representations [Dinther et al., 2013;91

Herrendörfer et al., 2015; Biemiller and Lavier, 2017; Sobolev and Muldashev, 2017; Her-92

rendörfer et al., 2018; Van Zelst et al., 2019; Dal Zilio et al., 2019; Petrini et al., 2020].93

Integrated models of the lithosphere-asthenosphere system combining brittle and94

ductile deformation are still elusive because of the wide range of length scales involved95

and the nonlinear mechanics of faulting and mantle flow. Deformation across faults oc-96

curs on a localized scale, spanning from a few centimeters to meters [Chester and Chester,97

1998; Mitchell and Faulkner, 2009; Faulkner et al., 2010]. During a pulse-like rupture, the98

rupture front can concentrate over hundreds of meters along the fault, which can be sig-99

nificantly smaller than the final slip distribution spanning hundreds of kilometers [Day,100

1982; Heaton, 1990]. Faults are believed to be rooted in deep viscoelastic shear zones101

several kilometers wide, and the flow of the asthenosphere engages wide regions of the102
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upper mantle. The constitutive behavior of fault zones is complex, influenced by stress,103

temperature, and deformation history [Chester, 1994; Blanpied et al., 1998; Niemeijer104

et al., 2016; Okuda et al., 2023]. Similarly, rock rheology may involve a nonlinear be-105

havior due to stress, temperature, water content, and grain size [Karato and Jung, 2003;106

Hirth and Kohlstedt, 2003]. Rapid perturbations induce viscoelastic flow with both tran-107

sient and steady-state responses, making it dependent on strain history [Chopra, 1997;108

Masuti et al., 2016; Masuti and Barbot, 2021]. Considering these phenomena, an efficient109

numerical method that accommodates nonlinear friction and flow laws is needed to resolve110

the interactions between fault slip and viscoelastic flow during seismic cycles in a three-111

dimensional half-space.112

The boundary integral method offers key advantages for simulating seismic cycles,113

resolving stress interactions among faults analytically using Green’s functions [Andrews,114

1985; Day et al., 2005; Chen and Zhang, 2006; Lapusta and Liu, 2009; Tada, 2009; Ando,115

2016; Barbot, 2021; Romanet and Ozawa, 2022] instead of relying on numerical meshes116

of the surrounding volume, as done in the finite-element method [Aagaard et al., 2013].117

The dimension reduction of the numerical model strongly reduces the computational bur-118

den. Various analytical solutions for displacement and stress caused by surface elements119

are readily available to represent a displacement discontinuity embedded within an elastic120

half-space [Comninou and Dundurs, 1975; Okada, 1992; Meade, 2007; Gimbutas et al.,121

2012; Nikkhoo and Walter, 2015]. A combination of rectangle and triangle surface ele-122

ments can be used to shape realistic, non-planar fault geometries [e.g., Hori et al., 2004;123

Qiu et al., 2016; Li and Liu, 2017; Shibazaki et al., 2019; Perez-Silva et al., 2022]. The use124

of analytic solutions ensures high accuracy in simulating surface displacements by resolv-125

ing the free surface exactly [Qiu et al., 2016; Wang and Barbot, 2020; Sathiakumar and126

Barbot, 2021]. However, the boundary integral method, as applied to an elastic half-space,127

is currently limited to representing fault dynamics. Ongoing efforts are focused on includ-128

ing viscoelastic processes in a full space to study earthquake source processes [Miyake129

and Noda, 2019; Noda, 2022], ignoring lateral variations of viscoelastic properties, nonlin-130

ear flow laws, and the effect of the free surface. Resolving the free surface is paramount131

for geodetic applications because this is where measurements are made. Other studies132

based on the finite-element or finite-difference methods capture nonlinear viscoelastic133

properties and thermal effects, but are limited to two-dimensional, anti-plane strain [Zhang134

and Sagiya, 2018; Allison and Dunham, 2021]. A semi-analytic method to investigate the135

impact of brittle and ductile deformation on crustal dynamics during seismic cycles in a136

three-dimensional half-space is still missing.137

The boundary integral method focuses on resolving interactions among surface ele-138

ments. The method is particularly suited for capturing the nonlinear dynamics of fault pro-139

cesses, including slow-slip events, earthquakes, and other frictional instabilities [Shibazaki140

and Shimamoto, 2007; Shibazaki et al., 2011; Barbot et al., 2012; Dublanchet et al., 2013;141

Dublanchet, 2017; Nie and Barbot, 2021, 2022; Wang and Barbot, 2023a, and references142

therein]. The surface elements represent displacement discontinuities within the half-143

space, capturing the localized deformation associated with faulting. The corresponding144

Green’s functions describe the displacement and stress in the surrounding rocks. The145

method can be extended naturally by incorporating volume elements to accommodate146

distributed anelastic deformation (Figure 1). The volume elements represent a concen-147

tration of anelastic strain due to crystal plasticity. Similar Green’s functions describe the148

resulting displacement and stress in the surrounding medium [Barbot et al., 2017; Barbot,149

2018a, 2020b]. Combining these features within the integral method enables the coupling150

between brittle and ductile deformation within the lithosphere. The approach provides a151

unified representation of the lithosphere-asthenosphere system, capturing the dynamics of152

faults and the evolution of distributed plastic deformation. The use of Green’s functions153

allows the simulation of surface displacements to compare with geodetic data [e.g., Qiu154

et al., 2018; Weiss et al., 2019; Barbot and Weiss, 2021; Wang and Barbot, 2023b]. The155

integral method has been developed for two-dimensional viscoelastic half-spaces under156
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Figure 1: Schematic representation of the integral method combining surface and volume ele-
ments to capture the mechanical coupling between fault slip and viscoelastic flow. a) The approach
is illustrated for the case of a subduction zone with a megathrust and slip-partitioning strike-slip
fault along a volcanic arc. The faults are meshed with rectangle surface elements. The viscoelas-
tic substrate is meshed with volume elements. Here, we use tetrahedral elements in the oceanic
lithosphere and mantle wedge, and cuboidal elements in the arc lower crust. Green’s functions
are used to track the evolution of stress and surface tractions on volume and surface elements, re-
spectively, allowing simulation of seismic cycles. Sequences of earthquakes and slow-slip events
are followed by viscoelastic relaxation in the ductile substrate, which affects the recurrence times
of future events. Different Green’s functions are used to simulate crustal deformation at geodetic
stations (triangles). b) Types of plastically deforming elements considered in the study. Rectangle
surface elements represent fault slip. Cuboidal and tetrahedral volume elements can be used to
build rectilinear and curvilinear meshes, respectively.
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the anti-plane [Lambert and Barbot, 2016] and in-plane [Barbot, 2018b; Shi et al., 2020;157

Barbot, 2020a] strain approximations, as well as for a three-dimensional viscoelastic half-158

space [Shi et al., 2022]. However, a numerically stable method that can capture structural159

complexity and nonlinear constitutive laws using open-source software is insofar unavail-160

able.161

In this paper, we present a stable implementation of the integral method that com-162

bines surface and volume elements to simulate fault dynamics in a viscoelastic half-space163

during all phases of the seismic cycle. The method incorporates nonlinear constitutive164

laws and can handle complex structural settings with lateral variations of rock proper-165

ties. In the following sections, we describe the integral method to simulate lithosphere166

dynamics within a three-dimensional viscoelastic half-space, utilizing cuboidal and tetra-167

hedral elements to represent the viscoelastic layers. We illustrate the method with three-168

dimensional simulations of seismic cycles along strike-slip and thrust faults using recti-169

linear and curvilinear meshes for the viscoelastic substrate. Subsequently, we explain the170

application of the method in two-dimensional systems under the in-plane strain approxi-171

mation. We demonstrate how triangle volume elements can conform to the complex struc-172

tural setting of a megathrust overlying a subducting oceanic lithosphere and an overturning173

mantle wedge. We provide open-source software in a companion paper to facilitate the174

use of the proposed methodology [Barbot, submitted]. The integral method provides an175

effective tool to create realistic models of lithosphere dynamics and crustal deformation,176

bridging the fields of rupture dynamics, tectonic geodesy, and rock mechanics.177

2 The integral method178

2.1 Elastic-plastic decomposition179

Our goal is to incorporate different mechanisms of deformation distributed through-180

out the lithosphere to integrate their mechanical coupling and describe their relative con-181

tribution to surface displacement (Figure 1). During seismic cycles, the source of de-182

formation is often deeply buried, either along a blind fault or below the confines of the183

brittle-crust. Surface displacements result from the elastic coupling with these distant184

sources. To represent deformation originating from different types of sources, it is use-185

ful to consider the elastic and anelastic decomposition of the total strain-rate tensor, as in186

187

Ûεi j = Ûε
e
i j + Ûε

p
ij , (1)

where Ûεei j represents the elastic part of the deformation, Ûε pij is the anelastic component, the188

dot representing a rate of change, and we use the index notation with Einstein’s summa-189

tion convention. We assume strain to be infinitesimal. The total strain-rate is the symmet-190

ric part of the velocity gradient tensor, as in191

Ûεi j =
1
2

(
Ûui, j + Ûu j,i

)
, (2)

where Ûui is the velocity field and the subscript comma followed by an index indicates a192

partial derivative with respect to that coordinate. In this article, we consider the terms193

anelastic and plastic to be equivalent, representing a thermodynamically irreversible defor-194

mation process. Within our assumptions, elastic deformation occurs in response to plastic195

strain and the current plastic strain represents a point of local thermodynamic equilibrium.196

In a faulted viscoelastic medium, anelastic deformation can occur by slip on faults or197

viscoelastic flow in ductile domains. Viscoelasticity typically involves the deviatoric stress198

tensor, defined as199

σ′i j = σi j −
σkk

3
δi j , (3)

where σi j represent the Cauchy stress tensor and we use the Kronecker delta δi j . At steady-200

state, viscoelastic flow obeys a constitutive law for non-Newtonian fluids of the form201

Ûε
p
ij = Aτn−1σ′i j , (4)
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where the scalar τ = σ′i jσ
′
i j is the norm of the deviatoric stress tensor, and A and n are202

the constitutive parameters encompassing the grain size, water content, and thermal ef-203

fects. For fault slip, the plastic strain-rate depends on the fault orientation and the local204

slip-rate as205

Ûε
p
ij =

1
2
(
vi nj + ni vj

)
δ(x − y) , (5)

where δ(x) is Dirac’s delta function with the physical units of a wavelength indicating in-206

tense strain localization along the fault at position y, v is the slip velocity vector, and n is207

the unit normal vector. The instantaneous slip-rate obeys an anisotropic constitutive rela-208

tionship of the form209

vi = vi(σ, n, θ, p) , (6)

where θ is a state variable and p is the pore-fluid pressure. The traction along the fault210

can be decomposed into the normal and shear components tn and ts , respectively. The211

velocity of sliding is aligned with the direction of shear traction such that v × ts = 0 at all212

times, where the operator × is the vector cross product. The amplitude of slip-rate follows213

a rate- and state-dependent friction law of the form V = V(τs, σn, θ, p), where τs and σn214

are the norms of the shear and normal traction vectors, respectively.215

The elastic and anelastic decomposition of deformation generalizes the represen-216

tation theorem for fault slip [Aki and Richards, 1980; Zhang and Chen, 2006] to include217

distributed plastic deformation [Nemat-Nasser and Hori, 1999; Nemat-Nasser, 2004]. As218

described above, the plastic strain-rate is well defined at any time given the ambient stress219

and potential state variables. The remaining task is to evaluate the overall velocity field220

induced by plastic deformation due to elastic coupling. Stress forms when the total strain221

deviates from the anelastic strain. Hooke’s law222

σi j = Ci jklε
e
kl , (7)

where Ci jkl represents the components of the fourth-order elastic moduli tensor, provides223

the relationship224

Ûσi j = Ci jkl

(
Ûεkl − Ûε

p
kl

)
, (8)

where we assume temporally constant elastic moduli. Equation (8) explains how elastic225

deformation results from plastic deformation, which introduces the torque226

Ûmi j = Ci jkl Ûε
p
kl

(9)

in the system. Conservation of linear momentum for quasi-static equilibrium, neglecting227

the contribution of seismic waves, can be written228 (
Ci jkl Ûεkl

)
, j +

Ûfi = 0 , (10)

where the forcing term Ûfi = −mji, j is an equivalent body-force representing the effect229

of plastic deformation. In this study, we consider isotropic elasticity associated with the230

elastic moduli tensor231

Ci jkl = λ δi jδkl + µ
(
δikδjl + δilδjk

)
, (11)

where λ and µ are the Lamé parameters with the rigidity µ, both assumed spatially uni-232

form within the half-space. Using the strain-versus-displacement relationship of Equa-233

tion (2) and the elastic moduli tensor of Equation (11), the governing equation for the ve-234

locity field induced by plastic deformation becomes235

(λ + µ) Ûu j,i j + µ Ûui, j j + Ûfi = 0 . (12)

Equation (12) under a free-surface boundary condition can be solved in three dimensions236

using a variety of techniques involving Fourier transforms [Barbot and Fialko, 2010a,b],237

finite difference [Landry and Barbot, 2016; Erickson et al., 2017; Landry and Barbot,238

2018; Allison and Dunham, 2021], finite elements [Aagaard et al., 2013], and spectral ele-239

ments [Komatitsch and Vilotte, 1998].240
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To frame the governing equation compatible with the integral method, we can write241

Equation (12) in integral form, as in242

Ûui(x) =
∭

G ji(x, y) Ûfj(y) dy , (13)

where G ji(x, y) is the Green’s function for the displacement in the direction i caused by a243

traction in the direction j in an elastic half-space, which is available in closed form [Mindlin,244

1936; Press, 1965; Okada, 1985; Segall, 2010] and is shown in the Appendix. Solving for245

the velocity field is important to build time series of crustal deformation. However, in-246

spection of the constitutive laws for plasticity, such as Equations (4) and (6), shows that247

only stress is required to evaluate the progression of the mechanical system. Per Equa-248

tions (2) and (8), stress evolution results from a linear combination of the velocity gradi-249

ent and the plastic strain-rate. Conveniently, the velocity gradient can be directly obtained250

via Green’s functions, as in251

Ûui, j =
∭

Gki, j(x, y) Ûfk(y) dV , (14)

involving derivatives of the Green’s function for a half-space, also shown in the Appendix.252

Given the velocity gradient in Equation (14), the total strain-rate tensor can be evaluated253

with Equation (2). As the current plastic strain-rate is given, the elastic strain-rate and254

the corresponding rate of change of stress can be evaluated with Equation (8). Therefore,255

Equation (14) provides key information to track the evolution of the system.256

These considerations provide a path toward a unified method to simulate crustal de-257

formation during seismic cycles using the integral method. Given an initial stress field, a258

plastic strain-rate can be identified using Equations (4) and (5). The corresponding veloc-259

ity gradient can be obtained with Equation (14), from which a rate of stress can be calcu-260

lated using Equation (8). Integrating the rate of change of stress at time t using a numer-261

ical quadrature provides a new state at time t + ∆t and the previous steps can be repeated262

to build time-series. Assuming infinitesimal strain and temporally constant elastic moduli263

allows us to use the same Green’s function throughout the simulation.264

The elastic and anelastic decomposition of deformation constitutes an important the-265

oretical underpinning of the integral method, allowing us to incorporate different types266

of plastic deformation with various degrees of localization into the model. The next step267

is to establish a numerically efficient procedure to evaluate the convolution operation of268

Equation (14), which is a computational bottleneck. We will show in the next section how269

surface and volume elements can be used to capture localized and distributed deformation270

and to convert Equation (14) into an algebraic expression.271

2.2 Surface and volume elements272

We consider procedures to track the evolution of stress in the ductile regions and273

the simultaneous evolution of surface traction along faults, so that constitutive laws such274

as Equations (4) and (6) can provide the instantaneous plastic strain-rate and slip-rate, re-275

spectively. We assume that plastic deformation occurs within a domain Ω and that fault276

slip localizes along the embedded surface Σ. As the numerical solution involves Green’s277

functions, the stress change is immediately accessible by taking linear combinations of the278

velocity gradient, following Equation (8). The change of stress in the half-space is caused279

by flow in nearby regions and by slip on neighboring faults. This can be written280

Ûσi j =

∬
Σ

Ji jk(vk − vLk ) dA +
∭
Ω

Li jkl( Ûε
p
kl
− ÛεLkl) dV , (15)

where Ûσi j can be evaluated anywhere in the half-space, Ûε p
kl

and ÛεL
kl

are the instantaneous281

and background plastic strain-rate tensors, and vk and vL
k
are the fault instantaneous and282

long-term slip-rate vectors. The background loading corresponds to the asymptotic rate283
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of deformation and a state of quasi-static equilibrium. The Green’s function Ji jk is a third-284

order tensor connecting fault slip and stress that incorporates the local orientation of faults.285

The Green’s function Li jkl is a forth-order tensor connecting plastic strain and stress. Po-286

tentially, any component of plastic strain induces change in all components of the stress287

tensor.288

Similarly, the change of surface traction along faults originates from slip on nearby289

faults and from plastic flow in the ductile domain. For rapid fault slip, a radiation damp-290

ing term is necessary to account for the outward radiation of energy, which reduces the291

local stress. Including the so-called radiation-damping approximation [Rice and Tse, 1986],292

the evolution of surface traction can be written293

Ûti(x) =
∬
Σ

Ki j(vj − v
L
j ) dA +

∭
Ω

Mikl( Ûε
p
kl
− ÛεLkl) dV −

µ

2VS
Ûvi , (16)

where ti is the surface traction anywhere along the faulted domain Σ, Ki j is a second-294

order Green’s function connecting fault slip to surface traction, Mikl is a third-order Green’s295

function connecting plastic strain to surface traction, µ is the rigidity of rocks surrounding296

the fault, and VS is the shear-wave speed. As they produce surface traction, the Green’s297

functions Ki j and Mikl incorporate information about the fault orientation. The Green’s298

functions Ji jk , Li jkl , Ki j , and Mikl can be obtained by linear combinations of G ji and299

G ji, j . However, we will not evaluate the integrals in Equations (15) and (16) directly. In-300

stead, we will resolve to discrete approximations.301

We consider a discretization of the deforming domain with a mesh combining sur-302

face and volume elements approximating the geometry of faults and the viscoelastic sub-303

strate, respectively (Figure 1). We assume uniform slip and plastic strain distribution within304

surface and volume elements, respectively. Hence, the distribution of slip and plastic strain305

in the respective domains is piece-wise uniform. For the discretization of fault surfaces,306

we adopt rectangle elements. For the plastic domain, we utilize cuboidal and tetrahedral307

elements. However, the following discussion is independent of the discretization scheme.308

Assuming a proper discretization, Equations (15) and (16) become algebraic. The change309

of traction and stress anywhere in the half-space results from a linear combination of slip-310

rate and plastic strain-rate in the surface and volume elements. The evolution of stress in311

volume elements can be written with the following algebraic expression involving matrix-312

vector multiplications313

ÛSi j = Ji jk(Vk − VL
k ) + Li jkl(Ekl − EL

kl) (17)
where Si j is a vector containing a representative value of the stress component i j for all314

volume elements in the mesh, Vk and VL
k are vectors describing the k component of in-315

stantaneous and background slip-rates, respectively, of all surface elements, and Ekl and316

EL
kl are vectors containing the kl component of instantaneous and background plastic317

strain-rates, respectively. The matrices Ji jk and Li jkl convert slip in the direction k and318

plastic strain in the direction kl to stress in the direction i j, respectively. We use a similar319

discrete approximation for the evolution of traction, giving rise to320

ÛTi = Ki j(Vj − VL
j ) +Mikl(Ekl − EL

kl) −
G

2VS

ÛVi , (18)

where Ti is a vector containing the traction component i of all the surface elements, and321

the matrices Ki j and Mikl convert fault slip in the direction j and plastic strain in the di-322

rection kl to surface traction in the direction i, respectively.323

We write the evolution equations more compactly by defining vectors that fully de-324

scribe all components of deformation, stress, and traction. The velocity vector325

V =
(
V1
V2

)
(19)

contains the fault slip-rate expressed in a fault-centric coordinate system where V1 and326

V2 represent slip-rate in the strike-parallel and up-dip directions, respectively. The plastic327
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strain-rate vector328

E =

©­­­­­­­«

E11
E12
E13
E22
E23
E33

ª®®®®®®®¬
(20)

regroups the six independent components of the symmetric plastic strain-rate tensor for all329

volume elements. For the stress, we define the vector330

S =

©­­­­­­­«

S11
S12
S13
S22
S23
S33

ª®®®®®®®¬
(21)

with the six independent components, taking advantage of the symmetry of the stress ten-331

sor that emerges from conservation of angular momentum. Finally, we define a vector of332

traction components, as333

T = ©­«
T1
T2
T3

ª®¬ (22)

that combines the three components of surface traction expressed in a fault-centric coor-334

dinate system, whereby T1, T2, and T3 represent the traction components in the strike-335

parallel, up-dip, and normal directions, respectively. We keep track of the shear and nor-336

mal components of surface traction because they both affect fault slip-rate when friction is337

involved. Given these definitions, we can write stress and traction interaction matrices that338

couple all components of deformation. The matrix of self-stress interaction in the ductile339

domain becomes340

L =



L1111 L1112 L1113 L1122 L1123 L1133
L1211 L1212 L1213 L1222 L1223 L1233
L1311 L1312 L1313 L1322 L1323 L1333
L2211 L2212 L2213 L2222 L2223 L2233
L2311 L2312 L2313 L2322 L2323 L2333
L3311 L3312 L3313 L3322 L3323 L3333


(23)

where the Li jkl are defined in Equation (17). The matrix of self-stress interaction for341

faulting is written342

K =

K11 K12
K21 K22
K31 K32

 (24)

where the Ki j are described in Equation (18). The two directions of coupling between343

fault slip and plastic flow are described by the matrices of stress interactions344

J =



J111 J112
J121 J122
J131 J132
J221 J222
J231 J232
J331 J332


(25)

and345

M =

M111 M112 M113 M122 M123 M133
M211 M212 M213 M222 M223 M233
M311 M312 M313 M322 M323 M333

 (26)

where the matrices Ji jk and Mikl are described in Equations (17) and (18), respectively.346

The matrix J describes how plastic deformation can be triggered by fault slip. The ma-347

trix M describes how distributed plasticity can induce stress on faults by affecting the348
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shear and normal traction. With this book keeping, we can write the evolution of stress349

and traction due to fault slip and plastic flow as350

ÛS = J (V − VL) + L (E − EL)

ÛT = K (V − VL) +M (E − EL) − γ ÛV ,
(27)

where the vectors VL and EL contain the long-term deformation for all surface and vol-351

ume elements, respectively, and γ = µ/2VS is the radiation damping factor. Equation (27)352

forms the basis of the integral method where the mechanical coupling among and between353

surface and volume elements is captured by a series of matrix-vector multiplications that354

approximate the respective surface and volume integrals. Evaluating Equation (27) con-355

stitutes the bulk of the numerical burden with the integral method, as the other operations356

are local. However, the matrix-vector formulation can be parallelized using shared and357

distributed memory, relegated to a dedicated computing device, or accelerated with hier-358

archical matrices [e.g., Bradley, 2014; Ozawa et al., 2023]. The Green’s function matrices359

J, L, K, and M can be used in subsequent simulations based on the same geometry, as360

changing the frictional or rheological parameters does not affect the Green’s functions.361

How to evaluate the stress caused by moving faults in a half-space is well known [Okada,362

1992; Nikkhoo and Walter, 2015]. We describe next how to calculate the stress induced by363

plastically deforming volume elements.364

2.3 Distributed plastic deformation365

The governing equations, written in strong form in Equation (12) or in integral form366

in Equation (13), involve linear operators. Hence, the principle of superposition applies to367

evaluate stress interactions, regardless of the nonlinear character of the constitutive equa-368

tions for plasticity that unfolds in the time domain. Accordingly, we focus on the stress369

field induced by a single plastically deforming volume element identified by the domain370

Ω. The stress caused by other elements can be added linearly. To simplify the expres-371

sions, we consider displacement, strain, and stress instead of the respective time deriva-372

tives. The plastic strain is associated with the moment density mi j inside Ω. The resulting373

displacement gradient in the half-space can be obtained using the convolution in Equa-374

tion (14) using the body-force fi = mji, j within the volume. However, as the plastic strain375

is piece-wise uniform, integration by part removes an integral and the stress field can be376

obtained by a convolution with the equivalent traction at the boundary of the volume [Bar-377

bot, 2018a]. As a result, the displacement gradient can be obtained with the surface inte-378

gral379

ui, j =
∫
∂Ω

G ji, jmjknk dA , (28)

where ∂Ω is the boundary of the volume element and nk is the k component of the outward-380

pointing unit normal vector. We evaluate the surface integral in Equation (28) using a nu-381

merical quadrature. We consider cuboids and tetrahedra as end-member types of volume382

elements associated with rectilinear and curvilinear meshes.383

For cuboids, the surface integral is conducted on six rectangular faces. We consider384

a cuboid centered at ys with dimensions of length L1, width L2, and thickness L3. The385

orientation of the cuboid is defined by the right-handed coordinate system aligned with386

the faces with unit vectors e′1, e
′
2, and e′3. The primed volume-centric coordinate system387

relates to the unprimed reference system by a rotation matrix, such that e′i = Ri jej . Using388

a Gauss-Legendre quadrature of degree N involving the weights wk and abscissas xk for389

k = 1..N [Press et al., 1992], the surface integral of Equation (28) can be approximated by390

–12–



Confidential manuscript submitted to J. Geophys. Res.

N=3

(a) Surface elements (b) Volume elements

N=7

N=15

N=3

N=7

N=15

Figure 2: Integration points of the Gauss-Legendre quadrature for surface and volume elements
used in calculation of stress and traction caused by plastically deforming volume elements and av-
erage stress at receiver volume element. a) Rectangle and triangle faces of cuboidal and tetrahedral
volume elements. The integration points (crosses) for quadrature orders N = 3, N = 7, and N = 15
concentrating near the edges of the surface. Regardless of quadrature order, there is no integration
point on the edges. b) Integration points for volume integration to select a representative stress
within volume elements. The integration points are colored by weight, which are higher toward the
center of the faces and volumes.
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391

ui, j(x) ≈
L2L3

4

N∑
s=1

N∑
t=1

wswt Gki, j[x; y(x̃r, x̃s, x̃t )]mklR1l

���x̃r=+1

x̃r=−1

+
L1L3

4

N∑
r=1

N∑
t=1

wrwt Gki, j[x; y(x̃r, x̃s, x̃t )]mklR2l

���x̃s=+1

x̃s=−1

+
L1L2

4

N∑
r=1

N∑
s=1

wrws Gki, j[x; y(x̃r, x̃s, x̃t )]mklR3l

���x̃t=+1

x̃t=−1
,

(29)

where Einstein’s summation convention applies to the repeated indices k and p and the392

sums are evaluated at the coordinates393

y(x̃r, x̃s, x̃t ) = ys + x̃r
2

L1 e′1 +
x̃s
2

L2 e′2 +
x̃t
2

L3 e′3 . (30)

The −1 < x̃k < 1 for k = 1..N are the roots of the Legendre polynomial of degree N ,394

which occur symmetrically about 0. For each expression, we take the difference between395

the sums evaluated at x̃k = 1 and x̃k = −1, corresponding to opposite faces of the cuboid.396

For a tetrahedron, the displacement gradient can be obtained in a similar manner by397

integrating the equivalent surface tractions that concentrate along the four faces. The ge-398

ometry of a tetrahedron is defined by the coordinates yA, yB, yC , and yD of the four ver-399

tices A, B, C, and D. The faces ABC, BCD, CDA, and DAB are associated with the out-400

ward normal vectors nD , nA, nB, and nC , respectively. Using a Gauss-Legendre quadra-401

ture of degree N with the weights wk and abscissas x̃k for k = 1..N , we obtain the ap-402

proximation403

ui, j(x) ≈
AABC

4

N∑
r=1

N∑
s=1

wrws(1 − x̃s)Gki, j

[
x; yABC(x̃r, x̃s)

]
mklnD

l

+
ABCD

4

N∑
r=1

N∑
s=1

wrws(1 − x̃s)Gki, j

[
x; yBCD(x̃r, x̃s)

]
mklnA

l

+
ACDA

4

N∑
r=1

N∑
s=1

wrws(1 − x̃s)Gki, j

[
x; yCDA(x̃r, x̃s)

]
mklnB

l

+
ADAB

4

N∑
r=1

N∑
s=1

wrws(1 − x̃s)Gki, j[x; yDAB(x̃r, x̃s)]mklnCl ,

(31)

where AABC is the area of the triangular face ABC and we obtain the coordinates of404

summation with the mapping function405

yABC(x̃r, x̃s) =
1
4
yA (1 − x̃r ) (1 − x̃s)

+
1
4
yB (1 + x̃r ) (1 − x̃s)

+
1
2
yC (1 + x̃s) .

(32)

The coordinates x can be anywhere in the half-space, allowing the calculation of traction406

and stress along surface and volume elements, respectively.407

We use the above numerical approach to build the stress interaction matrices used in408

Equation (27), considering the stress and traction caused by one volume element at a time,409

one component of plastic strain at a time. The calculation is performed once and the ma-410

trices are the same for every time steps. Illustrations of the distribution of abscissas and411

weights for integration along a rectangular or triangular face are shown in Figure 2a,b for412

Gauss-Legendre quadratures of order N = 3, N = 7, and N = 15, corresponding to increas-413

ing accuracy. We reduce the computational load while preserving numerical accuracy by414
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adapting the quadrature order based on distance from the source, using N = 40 in the near415

field, gradually lowering to N = 3 in the far field. We separate the Green’s functions based416

on source and image and treat them with different quadrature orders, always using N = 3417

for the image (see Appendix). We also distribute the computational load on different pro-418

cessors based on a distributed-memory architecture.419

2.4 Representative stress in volume elements420

As slip accumulates along a surface element or as plastic strain grows within a vol-421

ume element, a complex spatial distribution of stress develops in the surrounding half-422

space. Within the deforming element and the surrounding ones, the stress field is het-423

erogeneous and several strategies can be employed to select a representative value. With424

the collocation method, we select the central value of the element. This approach is com-425

monly employed with the boundary integral method, and we adopt it for the surface ele-426

ments. However, the collocation method is unstable for volume elements in a three-dimensional427

half-space [Shi et al., 2022]. Therefore, we employ the Galerkin method, which consists in428

taking the average value within the element. Consider an arbitrary ambient stress field429

caused by local or remote plastic deformation, or even by distant fault activity. The aver-430

age stress component within the element Ω is431

σ̄i j =
1

VΩ

∭
Ω

σi j(y) dy , (33)

where VΩ is the volume of the element. We approximate Equation (33) using a Gauss-432

Legendre quadrature of order N . For a cuboid, the average stress can be approximated433

with434

σ̄i j =
1
8

N∑
r=1

N∑
s=1

N∑
t=1

wrwswt σi j[x(x̃r, x̃s, x̃t )] , (34)

where the stress is evaluated at the coordinates435

x(x̃r, x̃s, x̃t ) = ys + x̃r
L1
2

e′1 + x̃s
L2
2

e′2 + x̃t
L3
2

e′3 . (35)

Using N = 1, x̃1 = 0, w1 = 2, Equation (34) simplifies to the collocation method. For a436

tetrahedron, the average stress can be estimated with437

σ̄i j =
6

64

N∑
r=1

N∑
s=1

N∑
t=1

wrwswt (1 − x̃r )(1 − x̃t )2σi j[x(x̃r, x̃s, x̃t )] , (36)

where the stress is evaluated at the coordinates438

x(x̃r, x̃s, x̃t ) =
1
8
(1 − x̃r )(1 − x̃s)(1 − x̃t ) yA

+
1
4
(1 + x̃r )(1 − x̃t ) yB

+
1
8
(1 − x̃r )(1 + x̃s)(1 − x̃t ) yC

+
1
2
(1 + x̃t ) yD ,

(37)

where the x̃k and wi are the abscissas and weights of the Gauss-Legrendre quadrature,439

respectively, and the geometry of cuboids and tetrahedra is defined in the previous section.440

Illustrations of the distribution of abscissas and weights for volume integration within441

a cuboid or a tetrahedron with the Gauss-Legendre quadrature are shown in Figure 2b for442

orders N = 3, N = 7, and N = 15. To evaluate the representative stress with the Galerkin443

method, we use N = 2, leading to 8 integration points within the volume elements, provid-444

ing fast, accurate, and numerically stable calculations.445
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2.5 Algorithm446

The algorithm for the integral method involves the following steps. Starting from a447

mesh of surface and volume elements, we build the matrices of traction and stress interac-448

tions. We compute the stress caused by surface elements using analytic Green’s functions449

suited for triangle [Nikkhoo and Walter, 2015] and rectangle [Okada, 1992] elements. For450

volume elements, we calculate the stress field numerically, integrating the Green’s func-451

tions for a point source based on the geometry of cuboidal and tetrahedral elements. We452

evaluate the traction at the center of surface elements using the collocation method and453

the average stress within volume elements using the Galerkin method. The matrices are454

computed only once and used at every time step. Starting from an initial stress and pos-455

sible state variables at time t, we simulate a time step using a Runge-Kutta method. We456

calculate the plastic strain-rate and fault slip-rate using the respective constitutive laws.457

We obtain the corresponding rates of stress and traction using matrix-vector operations.458

We conduct time integration to time t + ∆t with different orders of quadrature to obtain an459

estimate of numerical accuracy. Adaptive time steps result from using the largest step that460

satisfies a threshold accuracy. At time t + ∆t, we obtain a new state of stress and traction,461

from which the procedure can be repeated. The method provides an apparatus to track the462

evolution of stress and traction where plastic deformation occurs. Complex simulations463

emerge from the nonlinear constitutive behavior of rocks, the coupling between brittle and464

ductile deformation, and geometrical effects. We simulate time series of geodetic data us-465

ing separate matrices that connect slip and plastic strain to surface displacements. These466

calculations do not affect how the simulation proceeds. The code implementing these cal-467

culations compares successfully with other methods on the benchmark problems of the468

Sequence of Earthquakes and Aseismic Slip [Erickson et al., 2020; Jiang et al., 2022; Er-469

ickson et al., 2023], but the viscoelastic effects remain untested.470

3 Seismic cycles in a three-dimensional viscoelastic half-space471

The integral method provides a procedure to keep track of evolving stress within the472

elastic half-space, to select representative values with surface and volume elements, and473

to simulate the accumulation of plastic strain, whether localized on faults or distributed474

in a viscoelastic domain. We illustrate the potential of the integral method with numer-475

ical simulations of seismic cycles in a three-dimensional viscoelastic half-space. Plastic476

deformation occurs by faulting in the brittle layer and viscoelastic flow in the underlying477

substrate. For the fault constitutive behavior, we assume that the frictional resistance is478

controlled by the real area of contact across the interface. The area of contact is an impor-479

tant property of fault zones that is directly affected by the effective normal stress and the480

size of micro-asperties around contact junctions, following [Barbot, 2019]481

A =
c0 + µ0σ̄

χ

(
θV0
L

) b
µ0

, (38)

where A is the real area of contact density, c0 is the cohesion, µ0 is a reference coeffi-482

cient of friction, σ̄ is the effective normal stress, and θ and L/V0 are the age and charac-483

teristic lifetime of contact, respectively, with the characteristic weakening distance L and484

the reference velocity V0. The dependence on the age of contact is weak, with a power-law485

exponent b � 1. The real area of contact controls the yield strength of the interface, as in486

σY = A χ , (39)

where χ is the material hardness for plowing, i.e., the shear hardness. The fault slip-rate487

depends on the local shear stress relative to the yield strength, following a thermally acti-488

vated power-law relationship [Barbot, 2019, 2022]489

V = V0

(
τs
σY

) µ0
a

exp
[
−

Q
R

(
1
T
−

1
T0

)]
, (40)
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where V and V0 are the instantaneous and a reference velocity, respectively, T is the local490

temperature, Q and T0 are the energy and temperature of activation, respectively, with the491

universal gas constant R, and τs is the norm of the shear traction vector. The sensitivity492

to shear stress is exacerbated by the large power exponent resulting from a � 1. Shear493

stresses larger than the yield strength lead to high slip-rates. Reciprocally, shear stresses494

much lower than the yield strength lead to vanishing slip-rates. Under zero shear stress,495

the contact is stationary. Combining Equations (38), (39), and (40), we obtain the rate-,496

state-, and temperature-dependent friction law497

V = V0

(
τs

c0 + µ0σ̄

) µ0
a

(
θV0
L

)− b
a

exp
[
−

Q
R

(
1
T
−

1
T0

)]
, (41)

where the material hardness χ has cancelled out. Equation (41) allows us to evaluate498

the instantaneous velocity based on the local shear stress, age of contact, and tempera-499

ture. The evolutionary effects are captured by a thermally activated evolution law [Barbot,500

2019]501

Ûθ = exp
[
−

H
R

(
1
T
−

1
T0

)]
−

Vθ
L

, (42)

where H and T0 are the enthalpy and temperature of activation, respectively, of the healing502

mechanism [Barbot, 2022]. At steady-state, corresponding to Ûθ = 0, we obtain a rate- and503

temperature-dependent shear traction, as follows504

τs = (c0 + µ0σ̄)

(
V
V0

) a−b
µ0

exp
[

aQ − bH
µ0R

(
1
T
−

1
T0

)]
. (43)

The velocity dependence is controlled by a − b, with velocity-strengthening for a − b >505

0, velocity-neutral for a = b, and velocity-weakening for a − b < 0. The mechanical506

behavior is temperature-hardening for aQ − bH < 0, temperature-neutral for aQ = bH, and507

temperature-softening for aQ − bH > 0. To fully describe fault slip, Equation (41) must be508

augmented to capture the orientation of the slip-rate vector. We assume that the slip-rate509

is parallel to the fault, such that v · n = 0, and aligns with the local shear traction, as in510

v × ts = 0. In terms of components of the slip-rate vector, this can be written511

vi = V(τs, θ,T) t̂si , (44)

where the shear traction tsi = τs t̂si is decomposed into the amplitude τs and the direction512

t̂si . Alternatively, the rake angle of the velocity vector in the fault plane is defined as513

α = arctan
ts2
ts1
, (45)

where ts1 and ts2 are the along-strike and up-dip components of the traction vector. A rake514

angle α = 0 corresponds to left-lateral strike-slip faulting, and a rake α = 90◦ corresponds515

to thrust faulting if the fault dip angle is between 0 and 90◦. Typically, the rake changes516

during rupture propagation [Kirkpatrick and Brodsky, 2014; Kearse and Kaneko, 2020].517

Accordingly, we have the slip-rate components518

v1 = V cosα
v2 = V sinα
v3 = 0 ,

(46)

where v1, v2, and v3 are the strike-parallel, up-dip, and fault-normal components of the519

slip-rate vector, respectively.520

The evolution of plastic strain in the Earth’s lower crust and upper mantle is con-521

trolled by the rheology of rocks in high-temperature, high-pressure conditions. At steady-522

state, the stress versus strain-rate relationship is a thermally activated power-law with sen-523

sitivity to composition, grain size, water fugacity, and temperature [Poirier, 1985; Hirth524
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and Tullis, 1992; Karato and Wu, 1993; Karato et al., 1986; Rybacki and Dresen, 2000;525

Hirth and Kohlstedt, 2003; Karato and Jung, 2003]. Upon perturbations, the steady-state526

behavior is preceded by a short-lived work-hardening phase called transient creep, char-527

acterized by a higher strain-rate [Post, 1977; Peltier et al., 1980; Ranalli, 1980; Chopra,528

1997; Thieme et al., 2018]. Transient creep manifests itself measurably during the postseis-529

mic phase of the seismic cycle [Freed et al., 2010; Masuti et al., 2016; Tang et al., 2019,530

2020]. We adopt a constitutive behavior that captures the transient and steady-state re-531

sponse compatible with laboratory observations [Masuti et al., 2016; Masuti and Barbot,532

2021]. For a representative volume element, the constitutive law can be described by a533

nonlinear Burgers assembly of springs and dashpots placed in series in a Maxwell element534

and in parallel in a Kelvin element. The total plastic strain-rate is decomposed into535

Ûε
p
ij = Ûε

M
ij + Ûε

K
ij , (47)

where ÛεMij and ÛεKij are the plastic strain-rates in the Maxwell and Kelvin elements, respec-536

tively. The plastic strain-rate in the Maxwell element represents steady-state creep and537

obeys the following constitutive law538

ÛεMij = AM τnM−1σ′i j , (48)

where σ′i j is the deviatoric stress tensor defined in Equation (3), the prefactor AM contains539

the effects of composition, grain size, water fugacity, and temperature, considered spatially540

variable, but constant throughout the simulation, and nM is the power-law exponent. The541

formulation captures various creep mechanisms depending on the constitutive parameters.542

Diffusion creep, grain-boundary sliding, and dislocation creep assume nM = 1, nM = 2543

and nM = 2 − 5, respectively, with different prefactors. The plastic strain-rate in the Kelvin544

element is controlled by the effective stress545

Qi j = σ
′
i j − 2µK εKij , (49)

where µK is the work-hardening coefficient and the term 2µK εKij represents the internal546

stress due to the activation of sub-optimally oriented slip systems [Masuti and Barbot,547

2021]. The effective stress is always deviatoric and can be further characterized by its548

norm549

q =
(
Qi jQi j

)1/2
, (50)

where Einstein’s summation convention is implied. The resulting plastic strain-rate in the550

Kelvin element obeys the following constitutive relationship551

ÛεKij = AKqnK−1Qi j , (51)

where the coefficient AK contains the effects of composition, grain-size, and temperature,552

and nK is the power-law exponent. The Kelvin strain εKij can be considered a state vari-553

able for distributed viscoelastic deformation, capturing the effect of internal stress within554

a representative volume element. As the Kelvin strain accrues, the effective stress reduces,555

leading to a work-hardening response. Asymptotically, the Kelvin strain-rate vanishes, and556

the deformation continues with strain accumulation in the Maxwell element, embodying557

the steady-state behavior. Much experimental data are available to describe the steady-state558

parameters [e.g., Karato et al., 1986; Kirby and Kronenberg, 1987; Koch et al., 1989; Shea559

and Kronenberg, 1992; Evans and Kohlstedt, 1995; Dimanov and Dresen, 2005; Hansen560

et al., 2011; Tokle et al., 2019]. In practice, the constitutive parameters AM and AK and561

nM and nK , respectively, are of similar orders of magnitude and the work-hardening co-562

efficient µK is of the order of the local shear modulus. Experimental data on dry and wet563

dunites, which are relevant for mantle flow, indicate a nonlinear stress versus strain-rate564

relationship for the work-hardening phase [Masuti and Barbot, 2021].565

The constitutive assumptions described here allow us to predict fault slip-rate and566

distributed plastic strain-rate given the current stress and the relevant state variables. Con-567

sideration of these relationships with the conservation of momentum forms a closed sys-568

tem of equations that can be solved with the integral method and numerical time stepping.569
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Next, we illustrate the method with examples for strike-slip and thrust faulting in a three-570

dimensional viscoelastic half-space.571

3.1 Strike-slip faulting over a viscoelastic lower crust572

We consider three-dimensional models of seismic cycles in a viscoelastic half-space573

with a vertical strike-slip fault overlying a viscoelastic lower crust (Figure 3). The elastic574

parameters are for a Poisson’s solid with λ = µ = 30GPa. The fault is 60 km long, ex-575

tending from the surface to 20 km depth, and undergoes a long-term right-lateral slip-rate576

of 30mm/yr. Spontaneous earthquake nucleation is favored by a 30 km-long steady-state577

velocity-weakening region extending from the surface to 15 km depth (Figure 3a). The578

distribution of frictional parameters and effective normal stress is taken from the Sequence579

of Earthquake and Aseismic Slip benchmark problem BP-4 [Jiang et al., 2022], except for580

the fault dimension. Notably, we have a − b = 0.012 in the velocity-strengthening region581

and a − b = −0.0065 in the velocity-weakening region. With a characteristic weakening582

distance L = 5 cm and an effective normal stress σ̄ = 50MPa, we obtain a characteristic583

nucleation size of 4.6 km and a concentration of the rupture front over a cohesion zone of584

2.3 km. This is well resolved by a mesh of square elements with a uniform sampling size585

of 1 km, resulting in 1,200 surface elements.586

The ductile lower crust extends from 20 to 40 km depth and is sampled by a 60 ×587

60 × 20 km mesh of 5 × 5 × 5 km cubic elements centered on the fault, resulting in 576588

volume elements (Figure 3b). The distribution of viscosity follows a mylonite shear zone589

extending below the fault in the lower crust. Viscoelastic flow operates at steady-state with590

the lowest viscosity of η = 1018 Pa s, corresponding to AM = 10−12 /(MPa s), increas-591

ing gradually to a background value of 5 × 1019 Pa s away from the fault. The shear zone592

deforms with a long-term strain-rate of ÛεL12 = 2 × 10−15/s.593

We simulate seismic cycles for a period of 400 years. The simulation produces four594

earthquakes that nucleate near the surface and propagate bilaterally as crack-like ruptures595

(Figure 4). The interseismic period is characterized by a long period of quiescence with596

a locked seismogenic zone followed in a later stage by rapid inward progression of creep597

into the velocity-weakening region. The development of creep waves culminates with the598

nucleation of seismic ruptures. Each seismic event triggers a postseismic relaxation phase599

with accelerated creep around the rupture, the so-called afterslip. The coseismic stress600

perturbation triggers viscoelastic relaxation in the lower crust characterized by a rapid flow601

during a transient phase. The accelerated creep returns to the background strain-rate or602

below within 15 years of the mainshock.603

The coupling between fault dynamics and lower-crustal flow is further illustrated in604

Figure 5. Rupture nucleation occurs at the center of the velocity-weakening region, near605

the free surface. At a critical slip-rate, nucleation transitions to outward rupture propa-606

gation at slip-rates approaching 1m/s. The rupture propagates radially until it saturates607

the seismogenic zone. As the rupture stops due to the velocity-strengthening behavior of608

the surrounding region the velocity-weakening region rapidly relocks and rapid afterslip609

concentrates around the boundaries of the rupture. After 5 years, afterslip is mostly dis-610

sipated, the fault creeps, and the seismogenic zone is locked. During the early phase of611

the postseismic period, high plastic strain-rate concentrates in the lower crust concentrat-612

ing below the fault ruptured area. Viscoelastic flow is fastest below the fault zone, attain-613

ing rates of 10−12/s, which is a thousand times faster than the background strain-rate. As614

the coseismic stress change dissipates during viscoelastic relaxation, the flow decelerates.615

After 25 years, the distribution of plastic strain-rate is more uniform, with some regions616

flowing more slowly than the long-term strain-rate.617

Crustal dynamics induces surface deformation with specific patterns of horizontal618

displacement, uplift, and subsidence that are characteristic of the deformation mechanisms.619

Numerical simulations with the integral method allows us to evaluate surface displace-620
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Figure 3: Structural model for seismic cycles on a right-lateral strike-slip fault overlying a vis-
coelastic lower crust in a half space. a) Face view showing the extent of the fault from the surface
to 20 km depth with a 30 km-long velocity-weakening section. The distribution of the steady-state
velocity dependence parameter a − b is tapered. The frictional parameters are taken from the Se-
quence of Earthquake and Aseismic Slip benchmark problem BP4 [Jiang et al., 2022]. The bottom
layer shows the viscosity and rectilinear mesh of the lower crust. b) Top view showing the fault
trace and the spatial distribution of viscosity in the lower crust in map view. The viscosity corre-
sponds to a mylonite shear zone below the fault. c) Side view showing the distribution of viscosity
in side view. The distribution of viscosity is chosen to illustrate lateral variations of rheological
properties.
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Figure 4: Numerical simulation of seismic cycles on a strike-slip fault overlying a viscoelastic
lower crust. a) Time series of peak velocity (black line) and plastic strain-rate below the center of
the fault (red line) for a period of 400 years showing four seismic events followed by viscoelastic
relaxation. Peak slip-rate is 0.4m/s. The dashed lines indicate the long-term rates. Viscoelastic
flow commonly exceeds the background loading-rate during the postseismic period and proceeds
at smaller rates during the interseismic period. b) Evolution of fault slip during seismic cycles in
horizontal and vertical profiles. The horizontal profile extends 60 km along the fault at 5 km depth.
The vertical profile extends from the surface to 20 km depth at the center of the fault. The x-axis is
computational time steps, which are adaptive from 50ms to 0.1 year. Nucleation occurs by long-
term creep waves propagating inward into the velocity-weakening region. The ruptures represent
bilateral crack-like propagation.
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event. a) Evolution of fault slip along the fault plane with rupture nucleation, propagation, termi-
nation, and relocking, followed by afterslip. The background color indicates the local slip rate.
The arrows indicate the direction of slip toward the observer, compatible with right-lateral slip. b)
Distribution of plastic strain-rate in map view, showing the top of the lower crust. The fault trace
is shown for reference. The squares indicate the rectilinear mesh of cuboid elements. The length
scale is the same for all plots.

–22–



Confidential manuscript submitted to J. Geophys. Res.

ments at arbitrary distances from the source of deformation and to separate the compo-621

nents of surface displacements attributed to fault slip or viscoelastic flow. This is made622

possible because the displacement field can be obtained anywhere in the half-space using623

distinct Green’s functions for surface and volume elements. Figure 11 shows the surface624

deformation after the first simulated earthquake at a late stage of the postseismic period.625

The deformation caused by faulting is characterized by a four quadrants of uplift and sub-626

sidence in the near-field close to the rupture tip associated with compressional and exten-627

sional stress. Horizontal displacements are characteristic of a right-lateral dislocation with628

fault-parallel displacements along the fault and rotation of the vector field in the fault-629

perpendicular direction near the rupture tip. The deformation may be characterized by two630

counter-clockwise rotations in the far field. In the far-field, there are additional four quad-631

rants of uplift and subsidence in opposite direction to the near field.632

The deformation induced by viscoelastic flow in the lower crust is far more dis-633

tributed and of overall lower amplitude due to the greater confinement depth of the source634

(Figure 11b). The pattern of uplift and subsidence is opposite to the one caused by fault635

slip, compatible with a viscoelastic rebound of the Earth’s surface during the postseismic636

period. The pattern of horizontal motion is compatible with a double-couple, with a larger637

amplitude of displacement away from the fault. The vertical displacements are caused by638

the relaxation of vertical shear stress in the lower crust. The surface displacements are639

the sum of the ones caused by fault slip and viscoelastic flow. The time series of surface640

displacement reveal a dominant east-west cumulative displacement with successive earth-641

quake cycles (Figure 11c). The simulated time series resemble typical geodetic time series642

of tectonic deformation that can be decomposed into the coseismic, postseismic, and inter-643

seismic phases of the seismic cycle. The linear trends in each displacement component re-644

sult from the long-term deformation of the fault and the underlying lower crust, that accu-645

mulate permanent strain. The sudden coseismic displacements occur due to seismic events646

that last just a few seconds. The following postseismic transient is the result of afterslip647

and viscoelastic relaxation. The contribution of viscoelastic flow represents about 10% of648

that of fault slip. In the far field, fault slip and viscoelastic flow produce opposite trends649

of vertical displacement. Such distinct spatial patterns and time scales of postseismic dis-650

placements from afterslip, relocking of the seismogenic zone, and viscoelastic relaxation651

can in principle be used to constrain the mechanical properties of the lithosphere.652

We now extend the model to take into account more structural complexity. We con-653

sider strike-slip faulting in a tectonic setting where the lithosphere is thinned and the Mo-654

horovičić discontinuity (Moho) is deflected upward. We assume that the ductile lower655

crust is advected along at constant thickness. To capture the non-planar geometry, we656

build a curvilinear mesh of the lower crust using tetrahedral volume elements (Figure 7).657

We use a Gaussian function to model the 5 km deflection of the lower crust. Conceptu-658

ally, the mesh is formed by 12 × 12 × 3 parallepiped elements of dimension 5 × 5 × 5 km.659

In practice, each parallepiped is meshed with 6 tetrahedra connecting 4 different vertices,660

resulting in 2,592 tetrahedral volume elements. The shear zone deforms with a long-term661

strain-rate of 10−15/s with lateral variations of viscosity as low as η = 1018 Pa s at the cen-662

ter of the shear zone, gradually increasing to η = 1018 Pa s some 30 km away (Figure 7a).663

The 400-year simulation produces four seismic events with slightly shorter recur-664

rence times than in the previous example due to the curved geometry of the lower crust665

and the different long-term strain-rate. The seismic ruptures nucleate at the center of the666

seismogenic zone near the free surface after a long inward migration of creep inside the667

velocity-weakening domain. The nucleation then transitions to outward rupture propaga-668

tion. When the rupture stops, we enter the postseismic phase of the seismic cycle with669

concentration of afterslip around the rupture and the onset of viscoelastic relaxation in the670

lower crust. After relocking of the seismogenic zone, afterslip continues for several years671

diffusing outward and toward greater depths. After 6 years of viscoelastic relaxation, the672
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Figure 6: Crustal deformation during seismic cycles in a viscoelastic half-space. a) Surface defor-
mation induced exclusively by fault slip. The arrows indicate cumulative horizontal displacements.
The background color indicates uplift and subsidence. The triangle indicates the location of a
geodetic station with time series shown in c). The displacement is anti-symmetric with respect to
the north axis. The extent of the velocity-strengthening and velocity-weakening fault sections are
shown in solid and dashed segments, respectively, for reference. The extent of the rectilinear mesh
for the lower crust is shown with the dashed box. The contribution of viscoelastic flow represents
10% of long-term displacements in the east direction. The use of Green’s functions with the inte-
gral method allows the calculation of surface displacement at arbitrary distances from the mesh. b)
Surface displacements induced exclusively by viscoelastic flow, showing four quadrants of uplift
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displacement is decomposed into the total deformation (black) and the contribution of viscoelastic
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plastic strain still accumulates rapidly below the fault due to quasi-static stress transfer by673

afterslip.674

The examples demonstrate successful simulations of seismic cycles in a viscoelastic675

half-space using cuboidal and tetrahedral volume elements based on a linear viscoelastic676

rheology with lateral variation of rheological properties for earthquakes on a strike-slip677

fault. In the next section, we discuss other cases that illustrate the model for a thrust fault678

with linear and nonlinear rheology in the lower crust.679

3.2 Thrust fault overlying a deflected Mohorovičić discontinuity680

We now consider other applications of the integral method for a more structurally681

complex tectonic setting with a thrust fault overlying a lower crust deflected by the flex-682

ure of the Moho (Figure 8). We will compare results with a linear and nonlinear rheology683

in the lower crust. The fault is 60 km long, 40 km wide, dipping 30.5◦ to the south. The684

fault is characterized by a central velocity-weakening region extending from the surface685

to approximately 22 km in the down-dip direction, corresponding to a depth of 15 km.686

The effective normal stress σ̄ = 50MPa and the characteristic weakening distance L =687

5 cm are uniform, but the steady-state velocity-dependence parameter varies spatially with688

a − b = 0.012 in the velocity-strengthening region and a − b = −0.0065 in the velocity-689

weakening region. We discretize the fault with 60 and 40 square patches in the along-690

strike and down-dip directions, respectively, resulting in 2,400 surface elements (Fig-691

ure 8a).692

The viscoelastic substrate in the lower crust is bulged over a distance of approxi-693

mately 50 km with a uniform thickness of 15 km. The Moho depth varies between 30 and694

35 km. We mesh the viscoelastic domain with 3456 tetrahedral elements (Figure 8a). In695

this first example, the lower crust follows a Maxwell rheology with a uniform viscosity of696

1018 Pa s. The lower-crust is placed in a tectonic regime of horizontal shortening and ver-697

tical thickening. Accordingly, we choose a background strain-rate with ÛεL11 = −10−15 s and698

Ûε33 = 10−15 s, all other terms being identically zero.699

We simulate the seismic cycle for a period of 400 years, producing 3 large ruptures700

that break the entire seismogenic zone with 5m of coseismic slip. The rupture proceeds701

in a similar manner with nucleation on the side of the velocity-weakening region near the702

free surface (Figure 8b). The rupture then fills up the seismogenic zone and propagates703

unilaterally toward the other side of the fault. This is followed by a postseismic phase704

with concentration of afterslip around the coseismic rupture, relocking of the seismogenic705

zone, and the diffusion of afterslip across the fault plane in the following years. The nu-706

cleation of earthquakes often follows a sequence of slow-slip events that propagate at the707

bottom of the seismogenic zone while creep penetrates inside the velocity-weakening do-708

main. As a result, at the end of the interseismic period, the locked zone is much smaller709

than the velocity-weakening region.710

The postseismic phase is characterized by rapid strain-rate in the lower crust, con-711

centrating in the region immediately below the seismogenic zone (Figure 10). The distri-712

bution of plastic strain-rate is stationary for a few days, consistent with the characteristic713

relaxation time of 1 year for a viscosity of 1018 Pa s and a rock rigidity of 30GPa. After 6714

years, plastic strain accumulation migrates toward the bottom of the thrust fault, driven by715

the relaxation of initial stress below the seismogenic zone and the quasi-static stress trans-716

fer by afterslip toward the deep velocity-strengthening region of the fault farther south.717

After 16 years, the plastic strain-rate returns to its background value, except for the last-718

ing effect of afterslip that causes a plastic strain accumulation at the intersection with the719

thrust fault. The simulation illustrates the effect of mechanical coupling between afterslip720

and viscoelastic flow during the seismic cycle, leading to a non-stationary distribution of721

deformation in the lower crust.722
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Figure 7: Simulation of seismic cycles in a viscoelastic half-space with a curvilinear mesh of
tetrahedral elements in the ductile lower crust. a) Structural model shown in face, side, and top
views. The fault geometry and distribution of frictional properties is similar as in Figure 3. The
lower crust follows the flexure of the Moho with a constant thickness. The distribution of viscosity
is centered about the fault trace, corresponding to a mylonite shear zone. b) Evolution of fault slip
during a single seismic cycle. The color scale and arrows indicates the amplitude and orientation
of slip-rate. The plots illustrate rupture nucleation and propagation, the onset of early afterslip,
and relocking of the seismogenic zone. c) Distribution of plastic strain-rate at the top of the lower
crust immediately after the earthquake, and 6 years later. Viscoelastic flow concentrates below the
fault trace at a later stage of postseismic relaxation because of reloading by afterslip. The triangles
indicate the top of the tetrahedra forming the curvilinear mesh. The plastic strain-rate is uniform
within each volume element.

–26–



Confidential manuscript submitted to J. Geophys. Res.

tend=9.18805309062490E+08

image-012600-log10v.grd-plot

image-012500-log10v.grd-plot

image-011500-log10v.grd-plot

image-011000-log10v.grd-plot

e2

slow-slip
event

nucleationlocked
zone

fault creep

fault creep

crack-like
rupture

propagation

afterslip

locked
asperity

dow
n-dip direction

rupture
propagation

8 years
following
mainshock

50 days
following
mainshock

fault creep

early afterslip

deep afterslip

fault creep

fault
relocking

e1

e2

10 km

velocity
weakening

velocity
weakening

velocity
strengthening

velocity
strengthening

diffusion creep
(linear viscoelasticity)

lower crust

fault plane
(brittle crust)

fault
plane

lower
crust

thrust
fault

lower
crust

brittle
crust

e2

e3

e1

e3

10-6

10-3

10-9 Ve
lo

ci
ty

 (m
/s

)100

1018 1019

Viscosity (Pa s)
1020

(a) Structural model

(b) Fault dynamics

Figure 8: Simulation of seismic cycles on a thrust fault overlying a viscoelastic lower crust in a
half space. a) Structural model with a 30◦-dipping thrust fault extending from the surface to 20 km
depth. The color on the fault indicates the distribution of the steady-state frictional parameter
a − b, as in Figure 5. The lower crust follows the flexure of the Moho with a constant thickness of
15 km. The lower crust discretized in a curvilinear mesh of tetrahedral elements with a uniform
viscosity. b) Evolution of fault slip during a single seismic cycle, with nucleation of the side of
the fault next to a locked zone, unilateral rupture propagation and rapid relocking. Every seismic
event is succeeded by afterslip starting in the periphery of the rupture, diffusing outward inside the
velocity-strengthening region.
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Figure 9: c) Evolution of plastic strain-rate in the lower crust during the postseismic phase of
the seismic cycles for a thrust fault. The snapshots show the distribution of plastic strain-rate
in map view (background color) immediately after the mainshock and 50 days, 6 years, and 16
years into the postseismic period. The thick black line with chevrons indicate the fault trace. The
dashed white box indicates the surface projection of the velocity-weakening region that confines
the coseismic rupture. The horizontal black dashed line indicates the intersection between the
fault and the lower crust. The plastic strain initially concentrates near the bottom of the seismo-
genic zone, which produces high coseismic slip and is closer to the lower crust, leading to a higher
stress change. After 16 years, plastic strain accumulates near the bottom of the thrust fault, due to
reloading by afterslip.
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We evaluate the surface displacement caused by crustal dynamics in the middle of723

the postseismic phase. We decompose surface displacements into the contributions of fault724

slip and distributed plastic strain (Figure 10). Fault slip creates latitudinal shortening and725

uplift above the thrust, as expected (Figure 10a). The effect of viscoelastic relaxation in726

the postseismic period is also latitudinal shortening, but this is accompanied by longitu-727

dinal extension and a distinct pattern of uplift and subsidence (Figure 10b). Postseismic728

subsidence concentrates above the thrust and uplift extends to the south, both contributing729

to a viscoelastic rebound of the Earth’s surface. Furthermore, the viscoelastic longitudinal730

shortening centers in the middle of the fault, creating retrograde motion in the horizontal731

direction.732

Time series of surface displacement reveal the contribution of fault slip and vis-733

coelastic flow (Figure 10c). Viscoelastic effects are relatively small in the horizontal di-734

rection. However, afterslip and viscoelastic relaxation have similar amplitude and sense735

of motion in the postseismic period for the vertical displacement. In principle, measure-736

ments of surface displacements may differentiate these effects provided sufficient geodetic737

coverage in time and space. Notably, viscoelastic effects continue to produce surface dis-738

placements for at least a hundred years.739

We now consider the effect of a nonlinear rheology in the lower crust. We con-740

sider a wet quartz rheology [Rutter and Brodie, 2004] operating at 900◦C with an acti-741

vation energy of 242 kJ/mol and power exponent nM = 3 resulting in a lumped parameter742

AM = 5.0 × 10−11 MPa−n/s. The rheological parameters are uniform. We simulate seismic743

cycles on the thrust fault with the same frictional constitutive parameters for a period of744

400 years. The sequence features similar characteristics as for the linear rheology, but the745

recurrence time of earthquakes is slightly affected, occurring about 1-1.5 years sooner than746

with a Maxwelian lower crust. The deformation of the lower crust during the postseismic747

period is localized to high coseismic stress regions (Figure 10). The deformation is sta-748

tionary for a few days after the mainshock, but eventually migrates south after 5 years of749

postseismic relaxation. After 15 years, the deformation of the lower crust localizes at the750

intersection with the thrust fault, similar to, but in a more pronounced way than with a751

linear rheology.752

The surface displacements in the postseismic period are shown in Figure 11. The753

surface displacements caused by viscoelastic relaxation of a power-law rheology has a754

similar spatial pattern as with the linear rheology, with retrograde horizontal motion and755

viscoelastic rebound in the vertical direction, but the vertical displacements are more sub-756

dued. This is caused by the smaller deforming volume of the lower crust, as the plastic757

strain accumulation concentrates in regions of high coseismic stress. Overall, the deforma-758

tion of the lower crust with the nonlinear rheology considered is slower than in the linear759

case by a factor of two.760

These examples illustrate some key capabilities of the integral method, such as the761

integration of nonlinear frictional and rheological constitutive laws, lateral variations of762

constitutive parameters, and curvilinear domains. The method captures the dynamics of763

the lithosphere during all phases of the seismic cycle for strike-slip, thrust, and normal764

faults, and resolves time series of crustal deformation at arbitrary distances from the source,765

documenting separately the contributions of fault-related processes and viscoelastic flow.766

In the next section, we illustrate applications in a two-dimensional viscoelastic half-space.767

4 Seismic cycles in a two-dimensional viscoelastic half-space768

Finally, we illustrate applications of the integral method for a two-dimensional vis-769

coelastic half-space within the in-plane strain approximation. Other useful applications in770

anti-plane strain are readily implemented and tested. However, they are typically less nu-771

merically intensive or structurally complex than for in-plane strain, so we do not present772
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Figure 10: Crustal deformation during seismic cycles on a thrust fault overlying a viscoelastic
lower crust. a) Surface displacement caused exclusively by fault slip. b) Surface displacements
caused by viscoelastic flow. The shortening occurs farther south leading to retrograde postseismic
motion with a vertical rebound. The horizontal and vertical displacements are shown with arrows
and background color, respectively, showing shortening across the fault trace and uplift above the
thrust fault. The thick black line with chevrons indicates the fault trace. The surface projection
of the fault is shown with the solid black box. The extent of the seismogenic zone is shown with
the white dashed box. The footprint of the curvilinear mesh of the lower crust is shown in dashed
black rectangle. c) Cumulative displacement time series during the seismic cycle for the geodetic
station shown with a triangle in a) and b) for north and vertical components. The east component
is identically zero for this station. The total displacement is shown in black and the contribution
of viscoelastic flow by diffusion creep in blue. The shortening is mostly contributed by faulting.
However, viscoelastic effect dominate the surface deformation during the postseismic phase in the
vertical direction. The results for dislocation creep in Figure 10 are shown in the thin red line, for
comparison.
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Figure 11: Viscoelastic relaxation in the lower crust with power-law flow. The postseismic tran-
sient is caused by a coseismic rupture on a thrust fault, as shown in Figures 8-11. The figures
show the distribution of plastic strain-rate in map view immediately after a coseismic event, and
31 days, 5 years, and 15 years after the mainshock. The stress-dependent viscosity creates a con-
centration of plastic strain accumulation below the rupture, toward the bottom of the seismogenic
zone. The triangles indicate the faces of tetrahedra that form the curvilinear mesh of the lower
crust. The thick lines with chevrons indicate the fault trace. The thin black dashed line indicates
the intersection of the fault and the lower crust. The dashed white box indices the extent of the
velocity-weakening region, where coseismic slip occurs.
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Figure 12: Crustal deformation during seismic cycles on a thrust fault overlying a viscoelastic
lower crust with a nonlinear rheology. a) Cumulative surface displacement during the postseismic
period showing the contribution of fault-related processes. The displacements include the effects
of coseismic slip, afterslip, relocking of the seismogenic zone, and fault creep. The horizontal
and vertical components are shown with arrows and background color, respectively. b) Surface
displacements caused by viscoelastic flow in the lower crust. The vertical displacements are more
subdued than in the case of a linear rheology. The thick segment with chevrons indicate the fault
trace and the direction of motion. The boxes indicate the extents of the fault, velocity-weakening
region, and the curvilinear mesh of the lower crust in map view. The triangle indicates the location
of the geodetic station with the time series in c). c) Time series of displacement at the surface of
the half-space. The total displacement is shown in black and the contribution of viscoelastic flow
is shown in red. The viscoelastic effects for a different model with a linear rheology is shown for
reference (blue line). Fault slip and viscoelastic flow induce vertical displacement in opposite or
the same direction during the postseismic period depending on location.
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them in detail. The integral method in two dimensions is similar as presented in Sec-773

tion 2.2. However, only the in-plane components of stress and strain are considered, re-774

sulting in a much smaller computational load. The surface and volume elements are con-775

sidered infinite in the x1 direction. The volume average of the stress tensor discussed in776

Section 2.3 becomes a surface integral.777

We consider a subduction zone setting with a 300 km-long megathrust extending778

from the surface to 30 km depth (Figure 12). The megathrust is planar with a dip angle779

of 5.71◦. We consider a velocity-weakening section between 20 and 30 km depth with a780

frictional parameter a − b = −4 × 10−3 surrounded by velocity-strengthening segments781

with a − b = 4 × 10−3. We assume the direct effect parameter a = 0.01, effective normal782

stress σ̄ = 100MPa, and characteristic weakening distance L = 5 cm to be uniform. We783

discretize the fault with 500m patches, resulting in 600 line elements.784

We consider viscoelastic flow in the underlying oceanic asthenosphere and in the785

mantle wedge on the continental or arc side. For simplicity, we assume a uniform tem-786

perature profile using a cooling half space with a 60-million-year-old plate and mantle787

temperature of 1, 400◦C. However, we separate the oceanic lithosphere from the mantle788

wedge by a cold, elastic slab dipping 60 degrees. We ignore the viscoelastic relaxation in789

the lower crust below the volcanic arc. We will compare the effects of two end-member790

rheology, a Maxwell viscosity and power-law flow. We discretize the domain with triangle791

elements with edge length of approximately 20 km, resulting in a mesh of 530 vertices and792

907 surface elements. We use a background deviatoric strain-rate with Ûε22 = −10−15/s,793

Ûε23 = 0, and Ûε33 = 10−15/s, corresponding to horizontal shortening.794

We first consider the case of a linear rheology with a linear viscosity in the ductile795

domains. Viscoelastic flow is thermally activated with an activation energy of 335 kJ/mol796

and activation volume of 4 cm3/mol, compatible with diffusion creep in wet olivine [Hirth797

and Kohlstedt, 2003]. With the background temperature, this results in a minimum viscos-798

ity of 1.4 × 1020 Pa s. We simulate seismic cycles for a period of 950 years, producing 3799

earthquakes with recurrence times of 313 and 373 years for the last two events. The seis-800

mic ruptures initiate at the bottom of the seismogenic zone and propagate upward after801

a long interseismic period where creep migrates into the velocity-weakening region, re-802

sulting in long-term variations of coupling. Each rupture is followed by afterslip along803

the megathrust and viscoelastic relaxation in the oceanic lithosphere and mantle wedge.804

Viscoelastic flow initially concentrates between 100 and 200 km depth in the oceanic as-805

thenosphere below the mainshock. The peak strain-rate of 10−14/s occurs at 150 km. The806

low strain-rate between 50 and 100 km depth is caused by the low temperature at these807

depths. The distribution of plastic strain-rate is stationary for a few decades, but subse-808

quently migrates outward, returning to the background value after 300 years, compatible809

with a relaxation time of 140 years. During the late postseismic phase, plastic deforma-810

tion accumulates more rapidly around the subducting slab. After 313 years, the relaxation811

is interrupted by another earthquake, implying that viscoelastic effects endure for multiple812

seismic cycles.813

We compare these results with a simulation of seismic cycles assuming nonlinear814

rheology on the upper mantle. With the same physical properties for the megathrust, we815

assume power-law flow in the oceanic asthenosphere and mantle wedge. We take the rhe-816

ological parameters for dislocation creep of wet olivine [Hirth and Kohlstedt, 2003], with817

an activation energy of 480 kJ/mol, activation volume of 11 cm3/mol, and power expo-818

nent nM = 3.5. The simulation also produces three earthquakes, but the recurrence times819

of 267 and 434 years for the last two events differ from the case with a linear rheology.820

With the stress-dependent viscosity, the plastic strain-rates attain 10−12/s in the oceanic821

asthenosphere, much faster than in the linear case. After 4 and 33 years, the peak plastic822

strain-rate decays to 10−13/s and 10−14/s, respectively. After 64 years, viscoelastic relax-823

ation is most active in the mantle wedge, with only small pockets of deformation in the824

oceanic asthenosphere. Deformation continues, albeit slowly and at great depths, when825
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the next earthquake happens, some 267 years after the previous mainshock. The rapid vis-826

coelastic response by a stress-driven, initially low viscosity allows much of the viscoelas-827

tic relaxation to take place before the occurrence of the next earthquake. However, the828

change of pre-stress leads to a different distribution of plastic strain-rate following the sec-829

ond earthquake, illustrating the evolution of viscoelastic effects during seismic cycles, even830

at constant rheological properties. The third earthquake will happen some 434 years later,831

illustrating the modulation of earthquake recurrence times by viscoelastic flow.832

5 Discussion833

We provide a consistent methodology to simulate lithosphere dynamics and crustal834

deformation during seismic cycles, taking into account key aspects of lithosphere me-835

chanics. Faulting and distributed plastic flow are incorporated using surface and volume836

elements, and their interactions is captured by Green’s functions. Using surface elements837

resolves the extreme localization of deformation along fault without meshing the surround-838

ing elastic domains. Using volume elements allows us to include viscoelastic flow in the839

ductile substrate. Viscoelastic flow by crystal plasticity is expected in the favorable hy-840

drothermal conditions found in the asthenosphere below the roots of continents or in the841

oceanic upper mantle, below volcanic arcs at subduction zones, and near the base of the842

continental crust. Viscoelastic effects are routinely measured during the postseismic phase843

of the seismic cycle, post-glacial rebound, seasonal hydrological loads, and the desiccation844

of fluvial lakes. The viscosity of rock is also well understood from laboratory experiments845

at high-pressure, high-temperature conditions. The impact of earthquakes on lower-crustal846

and mantle flow is well identified, as the sudden coseismic stress change drives transient847

deformation in the ductile substrate. The other direction of coupling is less well under-848

stood, as the principle effect of viscoelastic relaxation is the modulation of recurrence849

times of large earthquakes, taking decades and centuries to unfold. This effect may ex-850

plain some of the variability in paleoseismic catalogues.851

The integral method is an important tools for the study of earthquake physics and852

crustal deformation, connecting tectonic geodesy, rocks mechanics, and rupture dynamics.853

The simulations capture the rupture style and recurrence patterns of earthquakes, including854

slow-slip events, tremors, slow earthquakes, seismic swarms, and crack-like and pulse-like855

ruptures. The recurrence patterns may include periodicity, multiple-periodic sequences,856

clustering, deterministic chaos, and super-cycles of full and partial ruptures. The variety857

of rupture styles emanate from the nonlinear, thermally activated constitutive behavior,858

fault geometry, and interactions among faults. However, the model also captures the dy-859

namics of ductile flow, including viscoelastic relaxation and long-term migration of the860

brittle-ductile transition. The spatio-temporal evolution of plastic deformation is controlled861

by the rheology of rocks at the relevant temperatures, which is affected by grain-size, tem-862

perature, pressure, fluid content, and is modulated by seismic cycles. The interactions be-863

tween fault dynamics and lithosphere deformation create an intricate mechanical system864

with complex interactions in space and time. The integral method allows us to resolve865

these effects and simulate the resulting surface deformation, allowing comparison with866

seismological and geodetic data.867

The integral method affords a natural link with geodynamics, which provides an ef-868

ficient way to simulate long-term deformation with finite strain. Admittedly, the example869

simulations described in this study assume simplistic long-term deformation models with870

a homogeneous background plastic strain-rate. In principle, the method may incorporate871

long-term plastic strain-rates from geodynamic simulations or geological reconstruction of872

local plate tectonics, providing a bridge between the time scales of geological processes873

and seismic cycles. These simulations may incorporate realistic long-term deformation874

and estimate its impact on seismic cycles. The integral method constitutes a staple toolkit875

to connect different aspects of lithosphere mechanics at different time scales to improve876

our understanding of earthquake physics. A caveat of the approach is the quasi-dynamic877
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approximation, producing unrealistic, slow rupture propagation. Future work should over-878

come this simplification.879

6 Conclusions880

We derive the fundamentals of the integral method to simulate the mechanical cou-881

pling between faulting and ductile processes during seismic cycles in a viscoelastic half-882

space. Earthquakes induce rapid stress changes in the ductile substrate that drive vis-883

coelastic relaxation and postseismic transient deformation. The spatial distribution of vis-884

coelastic flow in not stationary during the postseismic period, with outward migration of885

the initial plastic strain-rate. The quasi-static diffusion of stress by viscoelastic flow in the886

lower crust and asthenosphere modulates the recurrence time of earthquakes, resulting in887

full coupling between brittle and ductile deformation. The integral method provides a use-888

ful tool to simulate the deformation of Earth’s surface during seismic cycles as the use889

of Green’s functions accommodates observation points at arbitrary locations in the half890

space, regardless of the underlying mesh, with decomposition of the contributions of fault891

slip and viscoelastic flow. The numerical approach is derived for three-dimensional and892

two-dimensional cases and provide a robust, accurate, and stable numerical solution. The893

numerical method is implemented in an open-source software with distributed memory894

parallelization. Incorporating viscoelastic effects implies a higher computational burden895

than an elastic half-space. Future work will integrate more general volume elements to896

reduce the mesh size and the corresponding computational burden, and accelerate the cal-897

culation with dedicated numerical techniques. Additional work is needed to create more898

general surface elements with non-uniform slip distributions to incorporate structurally899

complex fault geometry.900
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Figure 13: Seismic cycles in a subduction zone with a megathrust overlying a viscoelastic upper
mantle with a linear rheology. The simulation operates in two dimensions with the in-plane strain
approximation. Earthquakes develop on a 5.71◦-dipping megathrust overlying a viscoelastic as-
thenosphere with a depth-dependent viscosity. The oceanic asthenosphere and mantle wedge are
separated by a cold subducting slab dipping 60◦. The rheology of the upper mantle is compatible
with diffusion creep in wet olivine. a) Dynamics of slip on the megathrust for a simulation period
of 950 years. The ruptures are followed by afterslip in the velocity-strengthening regions and long
waves of partial coupling at the boundary of the velocity-weakening region. The stars indicate
the hypocenter of earthquakes. b) Evolution of plastic strain-rate in the upper mantle during the
postseismic period of the first simulated earthquake. The distribution of plastic strain-rate is mod-
ulated by the coseismic stress change and the temperature and pressure dependence of viscosity.
The triangles indicate the curvilinear mesh. The slip-rate on the megathrust is indicated by colors,
showing the sections of coseismic slip, afterslip, creep, and relocking.
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Figure 14: Seismic cycles on a megathrust overlying a viscoelastic upper mantle with a nonlinear
rheology. The frictional properties of the megathrust are identical as in the previous simulation
with a linear rheology (Figure 12). The rheology of the oceanic asthenosphere and mantle wedge
corresponds to dislocation creep of wet olivine modulated by temperature and confining pressure.
a) Dynamics of the megathrust for a period of 950 years with three seismic events (red star for
hypocenter) followed by afterslip during the postseismic period and long-term creep waves at the
boundary of the velocity-weakening region during the interseismic period. The background color
indicates the amplitude of slip-rate. b) Distribution of plastic strain-rate in the oceanic astheno-
sphere and mantle wedge and slip-rate on the megathrust.
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A: Appendix912

In this Appendix, we describe a procedure to accelerate the calculation of stress in-913

teractions in Equations 29 and 31. The Green’s functions for displacement can decom-914

posed into terms that depend on the distance of a receiver with the source and image, as915

in916

Gi j = Gs
i j + Gi

i j , (A.1)

involving the radii917

R1 = ((x1 − y1)
2 + (x2 − y2)

2 + (y3 − x3)
2)1/2

R2 = ((x1 − y1)
2 + (x2 − y2)

2 + (x3 + y3)
2)1/2 ,

(A.2)

representing the source-receiver and the image-receiver distances, respectively. By con-918

struction, the Green’s function component Gs
i j depends only of the distance radius R1.919

Similarly, the Green’s function component Gi
i j depends only on R2. The Green’s function920

for the direct effect of the source follows a simple closed-form expression921

Gs
i j =

1
16πµ(1 − ν)

[
3 − 4ν

R1
δi j +

(xi − yi)(xj − yj)

R1
3

]
, (A.3)

involving one term when i , j and two terms when i = j. In contrast, the components of922

the Green’s function depending on the distance with the image involve some 35 terms. For923

the u1 component, they are924

Gi
11 =

1
16πµ(1 − ν)

[
1
R2
+
(3 − 4ν)(x1 − y1)

2

R2
3

+
2 x3y3

(
R2

2 − 3 (x1 − y1)
2)

R2
5

+
4(1 − 2ν)(1 − ν)

(
R2

2 − (x1 − y1)
2 + R2 (x3 + y3)

)
R2 (R2 + x3 + y3)

2

]
,

Gi
21 =

(x1 − y1) (x2 − y2)

16πµ(1 − ν)

[
3 − 4ν

R2
3 −

6 x3y3

R2
5 −

4(1 − 2ν)(1 − ν)
R2 (R2 + x3 + y3)

2

]
,

Gi
31 =

(x1 − y1)

16πµ(1 − ν)

[
(3 − 4ν) (x3 − y3)

R2
3

+
6 x3y3 (x3 + y3)

R2
5 −

4 (1 − 2ν)(1 − ν)
R2 (R2 + x3 + y3)

]
.

(A.4)

For the u2 component, they read925

Gi
12 =

(x1 − y1) (x2 − y2)

16πµ(1 − ν)

[
3 − 4ν

R2
3 −

6 x3y3

R2
5 −

4(1 − 2ν)(1 − ν)
R2 (R2 + x3 + y3)

2

]
,

Gi
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1
16πµ(1 − ν)
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1
R2
+
(3 − 4ν) (x2 − y2)

2

R2
3

+
2 x3y3
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2
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R2
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+
4(1 − 2ν)(1 − ν)

(
R2

2 − (x2 − y2)
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)
R2 (R2 + x3 + y3)

2

]
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16πµ(1 − ν)
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R2
3

+
6 x3y3 (x3 + y3)
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(A.5)
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For the displacement component u3, they are given by926

Gi
13 =

(x1 − y1)

16πµ(1 − ν)

[
(3 − 4ν) (x3 − y3)

R2
3

−
6 x3y3 (x3 + y3)

R2
5 +

4(1 − 2ν)(1 − ν)
R2 (R2 + x3 + y3)

]
,

Gi
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(x2 − y2)

16πµ(1 − ν)

[
(3 − 4ν) (x3 − y3)

R2
3

−
6 x3y3 (x3 + y3)

R2
5 +

4(1 − 2ν)(1 − ν)
R2 (R2 + x3 + y3)

]
Gi

33 =
1

16πµ(1 − ν)
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+
6 x3y3 (x3 + y3)

2

R2
5 +

(3 − 4ν) (x3 + y3)
2 − 2 x3y3

R2
3

]
.

(A.6)

The image-receiver distance is always greater than the source-receiver distance, especially927

if the source is confined at great depth. We take advantage of this situation by using a928

low-order quadrature for the Green’s function components depending on the source-image929

distance and a high-order quadrature for the Green’s function components that depend on930

the source-receiver distance. For the calculation of displacements, this leads to an accel-931

eration of the Green’s function calculation by an order of magnitude without loss of accu-932

racy.933

A similar approach can be devised for the calculations of the displacement gradient,934

which is used to evaluate stress and traction. The Green’s function for the displacement935

gradient can also be decomposed in terms of distance of the receiver from the source and936

from the image, as follows937

Gi j,k = Gs
i j,k + Gi

i j,k , (A.7)

where the Green’s function Gs
i j,k

depends only on the distance from the source R1 and938

Gi
i j,k

depends only on the distance from the image. The direct effect of the source follows939

the expression940

Gs
i j,k =

1
16πµ(1 − ν)

[
− (3 − 4ν)

xk − yk

R3
1

δi j

+
(δikrj + δjkri)R2

1 − 3(xi − yi)(xj − yj)(xk − yk)

R5
1

] (A.8)

containing 1 to 4 terms per component. The other part of the Green’s function that de-941

pends on the distance with the image are given below. For the derivatives of the Gi
11 com-942

–39–
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ponent, we have943

Gi
11,1 =

(x1 − y1)

16πµ(1 − ν)

[
−

1
R2

3 + (3 − 4 ν)
2R2

2 − 3 (x1 − y1)
2

R2
5 − 6 y3 x3

3R2
2 − 5(x1 − y1)

2

R2
7

− 12
(1 − 2ν) (1 − ν)

R2 (R2 + x3 + y3)
2

+
4 (1 − 2ν)(1 − ν) (x1 − y1)

2

R2
3 (R2 + x3 + y3)

2 +
8 (1 − 2ν)(1 − ν) (x1 − y1)

2

R2
2 (R2 + x3 + y3)

3

]
,

Gi
11,2 =

(x2 − y2)

16πµ(1 − ν)

[
−

1
R2

3 −
3 (3 − 4 ν) (x1 − y1)

2

R2
5

− 6 y3 x3
R2

2 − 5(x1 − y1)
2

R2
7 −

4 (1 − 2ν) (1 − ν)
R2 (R2 + x3 + y3)

2

+ 4 (1 − 2ν) (1 − ν) (x1 − y1)
2 3R2 + x3 + y3

R2
3 (R2 + x3 + y3)

3

]
,

Gi
11,3 =

1
16πµ(1 − ν)

[
−
(x3 + y3)

R2
3 − 3

(3 − 4 ν) (x1 − y1)
2 (x3 + y3)

R2
5

+ 2 y3
R2

2 − 3 x3(x3 + y3)

R2
5

− 6 y3 (x1 − y1)
2 R2

2 − 5 x3(x3 + y3)

R2
7

− 4
(1 − 2ν) (1 − ν)

R2 (R2 + x3 + y3)

+ 4 (1 − 2ν) (1 − ν) (x1 − y1)
2 2R2 + x3 + y3

R2
3 (R2 + x3 + y3)

2

]
,

(A.9)

and944

Gi
21,1 =

(x2 − y2)

16πµ(1 − ν)

[
(3 − 4ν)

R2
2 − 3(x1 − y1)

2

R2
5

− 6 y3 x3
R2

2 − 5(x1 − y1)
2

R2
7 −

4(1 − 2ν)(1 − ν)
R2(R2 + x3 + y3)2

+ 4 (1 − 2ν)(1 − ν) (x1 − y1)
2 3R2 + x3 + y3

R2
3(R2 + x3 + y3)3

]
,

Gi
21,2 =

(x1 − y1)

16πµ(1 − ν)

[
(3 − 4ν)

R2
2 − 3(x2 − y2)

2

R2
5

− 6 y3 x3
R2

2 − 5(x2 − y2)
2

R2
7 −

4(1 − 2ν)(1 − ν)
R2(R2 + x3 + y3)2

+ 4(1 − 2ν)(1 − ν)(x2 − y2)
2 3R2 + x3 + y3

R2
3(R2 + x3 + y3)3

]
,

Gi
21,3 =

(x1 − y1) (x2 − y2)

16πµ(1 − ν)

[
− 3 (3 − 4ν)

(x3 + y3)

R2
5

− 6 y3
R2

2 − 5 x3 (x3 + y3)

R2
7

+ 4 (1 − 2ν) (1 − ν)
2R2 + x3 + y3

R2
3 (R2 + x3 + y3)

2

]
.

(A.10)
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Continuing for the derivatives of Gi
31,945

Gi
31,1 =

1
16πµ(1 − ν)

[
(3 − 4ν)(x3 − y3)

R2
2 − 3(x1 − y1)

2

R2
5

+ 6 x3 y3 (x3 + y3)
R2

2 − 5(x1 − y1)
2

R2
7

− 4 (1 − 2ν)(1 − ν)
1

R2(R2 + x3 + y3)

+ 4 (1 − 2ν)(1 − ν)(x1 − y1)
2 2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
31,2 =

(x1 − y1)(x2 − y2)

16πµ(1 − ν)

[
− 3(3 − 4ν)

(x3 − y3)

R2
5

− 30 y3 x3
(x3 + y3)

R2
7 + 4(1 − 2ν)(1 − ν)

2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
31,3 =

(x1 − y1)

16πµ(1 − ν)

[
+ (3 − 4ν)

R2
2 − 3(x3 + y3)(x3 − y3)

R2
5

+ 6 y3
R2

2(2x3 + y3) − 5x3(x3 + y3)
2

R2
7 + 4

(1 − 2ν)(1 − ν)
R2

3

]
.

(A.11)

The derivatives of the Gi
12 component are the same as for Gi

21 component, given by946

Gi
12,1 =

(x2 − y2)

16πµ(1 − ν)

[
+ (3 − 4ν)

R2
2 − 3(x1 − y1)

2

R2
5

− 6 y3 x3
R2

2 − 5(x1 − y1)
2

R2
7 −

4(1 − ν)(1 − 2ν)
R2(R2 + x3 + y3)2

+ 4(1 − ν)(1 − 2ν)(x1 − y1)
2 3R2 + x3 + y3

R2
3(R2 + x3 + y3)3

]
,

Gi
12,2 =

(x1 − y1)

16πµ(1 − ν)

[
+ (3 − 4ν)

R2
2 − 3(x2 − y2)

2

R2
5

− 6 y3 x3
R2

2 − 5(x2 − y2)
2

R2
7 −

4(1 − ν)(1 − 2ν)
R2(R2 + x3 + y3)2

+ 4(1 − ν)(1 − 2ν) (x2 − y2)
2 3R2 + x3 + y3

R2
3(R2 + x3 + y3)3

]
,

Gi
12,3 =

(x1 − y1) (x2 − y2)

16πµ(1 − ν)

[
− 3 (3 − 4ν)

(x3 + y3)

R2
5

− 6 y3
R2

2 − 5 x3 (x3 + y3)

R2
7

+ 4 (1 − 2ν) (1 − ν)
2R2 + x3 + y3

R2
3 (R2 + x3 + y3)

2

]
.

(A.12)
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The derivatives of the Gi
22 can be obtained exploiting the symmetry with those of the Gi

11947

component by permutation of the 1 and 2 indices, giving the following expressions948

Gi
22,1 =

(x1 − y1)

16πµ(1 − ν)

[
−

1
R2

3 −
3 (3 − 4 ν) (x2 − y2)

2

R2
5

− 6 y3 x3
R2

2 − 5(x2 − y2)
2

R2
7 −

4 (1 − 2ν) (1 − ν)
R2 (R2 + x3 + y3)

2

+ 4 (1 − 2ν) (1 − ν) (x2 − y2)
2 3R2 + x3 + y3

R2
3 (R2 + x3 + y3)

3

]
,

Gi
22,2 =

(x2 − y2)

16πµ(1 − ν)

[
−

1
R2

3 + (3 − 4 ν)
2R2

2 − 3 (x2 − y2)
2

R2
5 − 6 y3 x3

3R2
2 − 5(x2 − y2)

2

R2
7

− 12
(1 − 2ν) (1 − ν)

R2 (R2 + x3 + y3)
2

+ 4 (1 − 2ν) (1 − ν) (x2 − y2)
2 3R2 + x3 + y3

R2
3 (R2 + x3 + y3)

3

]
,

Gi
22,3 =

1
16πµ(1 − ν)

[
−
(x3 + y3)

R2
3 − 3 (3 − 4 ν)

(x2 − y2)
2 (x3 + y3)

R2
5

+ 2 y3
R2

2 − 3 x3(x3 + y3)

R2
5

− 6 y3 (x2 − y2)
2 R2

2 − 5 x3(x3 + y3)

R2
7

− 4
(1 − 2ν) (1 − ν)

R2 (R2 + x3 + y3)

+ 4 (1 − 2ν) (1 − ν) (x2 − y2)
2 2R2 + x3 + y3

R2
3 (R2 + x3 + y3)

2

]
,

(A.13)

Similarly, the derivatives of the Gi
32 term can be obtained from the Gi

31 term by permuta-949

tion of the 1 and 2 indices, given us950

Gi
32,1 =

(x1 − y1)(x2 − y2)

16πµ(1 − ν)

[
− 3(3 − 4ν)

(x3 − y3)

R2
5

− 30 y3 x3
(x3 + y3)

R2
7 + 4(1 − 2ν)(1 − ν)

2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
32,2 =

1
16πµ(1 − ν)

[
(3 − 4ν)(x3 − y3)

R2
2 − 3(x2 − y2)

2

R2
5

+ 6 y3 x3 (x3 + y3)
R2

2 − 5(x2 − y2)
2

R2
7

− 4 (1 − 2ν) (1 − ν)
1

R2(R2 + x3 + y3)

+ 4 (1 − 2ν) (1 − ν) (x2 − y2)
2 2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
32,3 =

(x2 − y2)

16πµ(1 − ν)

[
+ (3 − 4ν)

R2
2 − 3(x3 − y3)(x3 + y3)

R2
5

+ 6 y3
(2x3 + y3)

R2
5 − 30 y3 x3

(x3 + y3)
2

R2
7 + 4

(1 − 2ν)(1 − ν)
R2

3

]
.

(A.14)

–42–



Confidential manuscript submitted to J. Geophys. Res.

The derivatives of the Green’s function component Gi
13 are given by951

Gi
13,1 =

1
16πµ(1 − ν)

[
(3 − 4ν) (x3 − y3)

R2
2 − 3(x1 − y1)

2

R2
5

− 6 y3 x3 (x3 + y3)
R2

2 − 5(x1 − y1)
2

R2
7 +

4(1 − 2ν)(1 − ν)
R2(R2 + x3 + y3)

− 4(1 − 2ν)(1 − ν)(x1 − y1)
2 2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
13,2 =

(x1 − y1)(x2 − y2)

16πµ(1 − ν)

[
− 3 (3 − 4ν) (x3 − y3)

1
R2

5

+ 30 y3 x3 (x3 + y3)
1

R2
7

− 4(1 − 2ν)(1 − ν)
2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
13,3 =

(x1 − y1)

16πµ(1 − ν)

[
(3 − 4ν)

R2
2 − 3(x3 − y3)(x3 + y3)

R2
5

− 6 y3
2x3 + y3

R2
5 + 30 y3 x3

(x3 + y3)
2

R2
7

− 4(1 − 2ν)(1 − ν)
1

R2
3

]
.

(A.15)

The derivatives of the Gi
23 can be obtained from the Gi

13 derivatives by permutation of the952

1 and 2 indices, providing953

Gi
23,1 =

(x1 − y1)(x2 − y2)

16πµ(1 − ν)

[
− 3 (3 − 4ν) (x3 − y3)

1
R2

5

+ 30 y3 x3 (x3 + y3)
1

R2
7

− 4(1 − 2ν)(1 − ν)
2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
23,2 =

1
16πµ(1 − ν)

[
(3 − 4ν) (x3 − y3)

R2
2 − 3(x2 − y2)

2

R2
5

− 6 y3 x3 (x3 + y3)
R2

2 − 5(x2 − y2)
2

R2
7 +

4(1 − 2ν)(1 − ν)
R2(R2 + x3 + y3)

− 4(1 − 2ν)(1 − ν)(x2 − y2)
2 2R2 + x3 + y3

R2
3(R2 + x3 + y3)2

]
,

Gi
23,3 =

(x2 − y2)

16πµ(1 − ν)

[
(3 − 4ν)

R2
2 − 3(x3 − y3)(x3 + y3)

R2
5

− 6 y3
2x3 + y3

R2
5 + 6 y3 x3

(x3 + y3)
2

R2
7

− 4(1 − 2ν)(1 − ν)
1

R2
3

]
.

(A.16)
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Finally, the derivatives of the Gi
33 component are given by954

Gi
33,1 =

(x1 − y1)

16πµ(1 − ν)

[
− (5 − 12ν + 8ν2)

1
R2

3

− 30 y3 x3
(x3 + y3)

2

R2
7 − 3(3 − 4ν)

(x3 + y3)
2

R2
5 + 6

y3x3

R2
5

]
,

Gi
33,2 =

(x2 − y2)

16πµ(1 − ν)

[
− (5 − 12ν + 8ν2)

1
R2

3

− 30 y3 x3
(x3 + y3)

2

R2
7 − 3(3 − 4ν)

(x3 + y3)
2

R2
5 + 6

y3x3

R2
5

]
,

Gi
33,3 =

1
16πµ(1 − ν)

[
− (5 − 12ν + 8ν2)

(x3 + y3)

R2
3

+ 6 y3
(x3 + y3)

2

R2
5

+ 6 y3 x3 (x3 + y3)
2R2

2 − 5(x3 + y3)
2

R2
7

+ (3 − 4ν) (x3 + y3)
2R2

2 − 3(x3 + y3)
2

R2
5

− 2 y3
R2

2 − 3x3(x3 + y3)

R2
5

]
.

(A.17)

The Green’s function components Gi
i j,k

contain another 158 terms. Hence, using a high-955

order quadrature for the source terms and a low-order quadrature for the image terms ac-956

celerate the calculation by a factor of about 2 to 3. We use this approach to optimize the957

calculation of Green’s functions for displacement and deformation without loss of numeri-958

cal accuracy.959
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