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ABSTRACT: Radiative transfer (RT) is a crucial but computationally expensive process in nu-

merical weather/climate prediction. We develop neural networks (NN) to emulate a common RT

parameterization called the Rapid Radiative-transfer Model (RRTM), with the goal of creating a

faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated

a highly simplified version of the shortwave RRTM only – excluding many predictor variables,

driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the

northern hemisphere. In this work we emulate the full shortwave and longwave RRTM – with all

predictor variables, driven by GFSv16 forecasts on the native pressure-sigma grid, using data from

around the globe. We experiment with NNs of widely varying complexity, including the U-net++

and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate

structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave

NN in great detail – as a function of geographic location, cloud regime, and other weather types.

Both NNs produce extremely reliable heating rates and fluxes. The shortwave NN has an overall

RMSE/MAE/bias of 0.14/0.08/-0.002 K day-1 for heating rate and 6.3/4.3/-0.1 W m-2 for net flux.

Analogous numbers for the longwave NN are 0.22/0.12/-0.0006 K day-1 and 1.07/0.76/+0.01 W

m-2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 6579

(96) times faster than the RRTM. Both will soon be tested online in the GFSv16.
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SIGNIFICANCE STATEMENT: Radiative transfer is an important process for weather and29

climate. Accurate radiative-transfer models exist, such as the RRTM, but these models are com-30

putationally slow. We develop neural networks (NN), a type of machine-learning model that is31

often computationally fast after training, to mimic the RRTM. We wish to accelerate the RRTM by32

orders of magnitude without sacrificing much accuracy. We drive both the NNs and RRTM with33

data from the GFSv16, an operational weather model, using locations around the globe during34

all seasons. We show that the NNs are highly accurate and much faster than the RRTM, which35

suggests that the NNs could be used to solve radiative transfer inside the GFSv16.36

1. Introduction37

Radiative transfer (RT) is one of the main drivers of the Earth’s climate and the only process by38

which the Earth can exchange energy with the rest of the universe. In RT studies the electromagnetic39

spectrum is often separated into the shortwave part (wavelength ≲ 4 𝜇m), which is mostly emitted40

by the Sun, and the longwave part (≳ 4 𝜇m), which is mostly emitted by the Earth – both its41

surface and atmosphere. The global distribution of top-of-atmosphere (TOA) incoming shortwave42

radiation is controlled mainly by geographic variations in the solar zenith angle and surface43

albedo, with low (high) zenith angle and albedo at the low (high) latitudes. This sets up a strong44

meridional gradient in TOA incoming shortwave radiation, with higher values at lower latitudes.45

The global distribution of TOA outgoing longwave radiation is somewhat similar, because warmer46

surfaces (at lower latitudes) emit more longwave radiation than colder surfaces. However, the47

longwave distribution is more complicated, because longwave radiation interacts more strongly48

with atmospheric gases. Overall, the low latitudes have a surplus of net radiation (TOA incoming49

shortwave minus TOA outgoing longwave), while the high latitudes have a deficit. This imbalance50

maintains the meridional temperature gradient we observe, as well as driving the global atmospheric51

circulation, including a strong poleward heat flux produced by baroclinic waves. (Wallace and52

Hobbs 2006)53

RT is also crucially important for day-to-day weather prediction, because it causes differential54

diabatic heating. In numerical weather prediction (NWP), this diabatic heating is a subgrid-scale55

process and is therefore parameterized by a separate RT model. The most accurate RT models are56

line-by-line models (Turner et al. 2004; Mlawer and Turner 2016), but these are far too slow for57

3



NWP. A popular compromise is the Rapid Radiative-transfer Model (RRTM; Mlawer et al. 1997),58

a hybrid physical/statistical model that is nearly as accurate as line-by-line models but millions59

of times faster. The RRTM, like most RT models, adopts the independent-column approximation60

(ICA), assuming that RT occurs only in the vertical. Faster variants – such as the RRTM for global61

climate models (RRTMG; Pincus and Stevens 2013), RRTMG Parallel (RRTMGP; Mlawer and62

Delamere 2019), and RRTMG-K (Baek 2017) – are often used in NWP as well. However, the63

RRTM and its variants are still computationally expensive, accounting for 20 to 50% of the total64

computing of the host NWP model (e.g., Cotronei and Slawig 2020).65

This has motivated a body of work on using neural networks (NN; Part II of Goodfellow et al.66

2016), an algorithm from machine learning (ML), to emulate RT models, dating back to Chevallier67

et al. (1998). ML-based emulation of RT and other subgrid-scale processes almost always uses68

NNs, so we omit other ML algorithms from this review. The main advantage of NNs is that they can69

accurately model complex relationships (hence “universal function-approximators”) and are much70

faster than the RRTM and its variants at inference time, i.e., when applying a trained NN to predict71

on new data. The main disadvantage is that they are purely statistical models and, without physical72

constraints, may not generalize well to conditions outside the range of their training data, such as73

future climates. An overall disadvantage of replacing parameterizations such as the RRTM is that74

the host NWP models are very sensitive to changes in parameterizations (Boukabara et al. 2019;75

Rasp 2020; Muñoz-Esparza et al. 2022). Thus, even if the RT-emulator has very small errors in76

offline testing (outside the NWP model), during online testing (inside the NWP model) these errors77

may accumulate or cause undesired feedbacks to other components of the NWP model, degrading78

the quality of the overall weather forecast. However, if successfully integrated into an NWP model,79

a NN-based RT-emulator can decrease computing requirements by orders of magnitude.80

The current article expands on work presented in Lagerquist et al. (2021), henceforth L21.81

Differences between this work and L21 are listed at the end of the introduction. The following82

review focuses on recent work in RT emulation, especially work published after L21. We divide83

recent work into four categories: emulating RT in climate models, emulating RT in weather models,84

emulating only part of an RT model such as gas optics, and miscellaneous.85

In climate-modeling, Pal et al. (2019) developed an RT-emulator for the super-parameterized86

Energy Exascale Earth System Model (SP-E3SM) and found in online testing that the emulator87
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produces a similar climate to the original RT model. Beucler et al. (2021) used climate-invariant88

NNs to emulate both RT and other subgrid-scale processes in climate models. They ensured89

climate-invariance by rescaling three predictor variables for the NN – temperature, humidity,90

and latent-heat flux – to forms that are not projected to increase with global warming. Without91

rescaling, applying the trained NN to future climates involved extrapolating (e.g., applying the NN92

to temperatures higher than any seen in the training data), which degraded performance. Beucler93

et al. found that rescaling allows their NN to predict subgrid-scale processes well, including RT,94

in a climate 8 K warmer than the climate used for training. Belochitski and Krasnopolsky (2021)95

used an emulator developed in 2011 for the Climate Forecast System (CFS) and integrated it into96

version 16 of the Global Forecast System (GFSv16). They found that the emulator generalized97

well between the host models without retraining – i.e., the GFSv16 with the emulator produced a98

similar climate to the GFSv16 with the original RRTMG parameterization. However, this success99

was achieved only after changing the number of heights and prognostic variables in the GFSv16 to100

match the CFS.101

In weather-modeling, much recent work has been done at the Korean Meteorological Agency102

(KMA). Roh and Song (2020) became the first to emulate RT at cloud-resolving resolution,103

developing NNs for a 250-metre version of the Weather Research and Forecasting (WRF) model.104

However, this work was limited by focusing on a single idealized squall-line simulation. Song105

and Roh (2021) developed a more general RT-emulator for use in the Korea Local Analysis and106

Prediction System (KLAPS), an operational version of the WRF used by the KMA. When tested107

online in the KLAPS, the NN produced similar instantaneous temperature and precipitation fields108

to the original RRTMG-K parameterization, suggesting that the NN may be suitable for operational109

use. Kim and Song (2022) used automatic hyperparameter-tuning1 to find the best learning rate110

and training-batch size for the same KLAPS application, improving the performance of the NN111

further.112

Some groups have used NNs to emulate only the gas-optics step of an RT model. Gas optics113

maps the physical/chemical state of the atmosphere to a profile of spectral optical depths, and the114

solver – the second and last step of an RT model – maps the spectral optical depths to heating115

rates and fluxes (Veerman et al. 2020). Specifically, gas optics converts temperature, pressure,116

1A hyperparameter is a NN parameter that, unlike the weights and biases, cannot be adjusted during training. A hyperparameter must be
tuned by trial and error, i.e., training many NNs with different values.
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and chemical concentrations into quantities that directly determine how much radiation is emitted,117

absorbed, and scattered in different directions (Veerman et al. 2020). Gas optics is an empirical118

algorithm in many RT models, relying on observations stored in large lookup tables, whereas119

the RT-solver is a physical algorithm, relying on well known equations. Because large lookup120

tables are computationally slow, gas optics is ripe for acceleration by NNs; because gas optics is121

already empirical, acceleration by NNs does not remove physical knowledge from the RT model.122

Ukkonen et al. (2020) emulated the gas-optics scheme in the RRTMGP and found that at most123

locations on Earth, the emulator introduces an RMSE of < 0.5 W m-2 in fluxes and < 0.1 K124

day-1 in heating rates for both the shortwave and longwave. Veerman et al. (2020) also emulated125

gas optics in the RRTMGP, obtaining similar results. Ukkonen (2022) tested the use of NNs126

for three different emulation tasks: only the gas-optics scheme, only the reflectance-transmission127

calculations in the RT-solver, and the full RT model. They found that replacing only the gas-optics128

scheme leads to the most accurate emulation, followed by replacing the full RT model; replacing129

only the reflectance-transmission calculations leads to the worst performance. However, this study130

is limited by focusing only on shortwave RT for cloudy profiles. Geiss et al. (2022) emulated131

the aerosol-optics scheme of an RT model, using NNs with novel architectures, and found that132

connections between non-adjacent NN layers – which are uncommon in the literature – yielded133

the best performance.134

Other work has explored 3-dimensional RT (e.g., Meyer et al. 2022; Yang et al. 2022) – aban-135

doning the ICA used in most RT models – and more complex NN architectures. For example,136

Liu et al. (2020) compared fully connected and convolutional NNs2, finding that convolutional137

NNs achieve slightly better performance but not enough to justify the added computational cost.138

However, they focused only on longwave RT in clear-sky conditions, and their errors were quite139

large (e.g., heating-rate errors often ≫ 1 K day-1 near the surface). L21 used U-net++ models,140

convolutional NNs designed for image-to-image translation. In offline evaluation, they found that141

U-net++ models outperform fully connected NNs in general and outperform traditional U-nets for142

profiles with multi-layer cloud, where RT is highly complex.143

In this work we use NNs – specifically the U-net++ and U-net3+ architectures – to emulate144

the full RRTM. “Full” means that we emulate both the shortwave and longwave RRTM with145

2Fully connected (or “dense”) NNs treat the predictor variables as independent scalars, while convolutional NNs treat the predictors as images.
Thus, convolutional NNs can leverage spatial structure in gridded data, while fully connected NNs cannot.
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all predictor variables – in contrast to L21, where we emulated a simplified version of only the146

shortwave RRTM without aerosols, trace gases, or information on the particle-size distribution147

(PSD) of hydrometeors. Our eventual aim is to integrate the NN-based emulators into the GFSv16,148

a global model with hybrid pressure-sigma coordinates in the vertical. Thus, we train the NNs149

with GFSv16 data from locations around the globe on the native pressure-sigma grid – in contrast150

to L21, we trained with data from 30 sites in the northern hemisphere on a standard height grid.151

2. Data152

This section discusses predictor (input) variables and target (output) variables. The RRTM and153

the NNs we use to emulate the RRTM have the same target variables and mostly the same predictor154

variables; the NNs have two extra predictor variables, as discussed in Section 2a. Most predictor155

variables come from the GFSv16, but some are synthetic, because they are difficult to observe and156

not generally forecast by NWP models. Because the NNs are built to emulate the RRTM, target157

variables produced by the RRTM are considered ground truth – “labels” in ML terminology.158

a. GFSv16-based predictors159

The GFSv16 is a global, non-hydrostatic, operational model with 0.25◦ horizontal spacing160

and 127 vertical levels in hybrid pressure-sigma coordinates, extending to the mesopause at ∼80161

km above sea level3. We have obtained 0000 UTC model runs from the National Environ-162

mental Security Computing Center’s (NESCC) High-performance Storage System (HPSS). The163

HPSS archive contains most days from Sep 1 2018 to Dec 23 2020 and forecast lead times of164

{0,6,12,18,24,30,36} hours. We extract 6-, 12-, 18-, 24-, 30-, and 36-hour forecast profiles165

(columns) from random locations around the globe. We extract all predictor variables used by the166

RRTM that are forecast by the GFSv16, listed in Table 1. We also extract two extra variables – the167

height thickness and pressure thickness of each layer – for use by the NNs but not the RRTM. For168

the work in L21, where all profiles have the same physical height grid (i.e., the 𝑘 th pixel always169

corresponds to the same height in metres), the thickness variables were not necessary. But for the170

current work, where all profiles have a different physical height grid due to the hybrid coordinates,171

we found that the thickness variables improve RT estimation by the NNs. These variables are172

important because they tell the NNs how much “stuff” is in each layer – i.e., how much air there173

3See 2021 update here: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.php
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Table 1: Description of GFSv16-based predictor variables. “Vector?” asks whether the variable
is a profile or a scalar, and “AGL” = above ground level. Downward LWP at height 𝑧 is LWC

integrated from the top of the profile down to 𝑧, and upward LWP at height 𝑧 is LWC integrated
from the bottom of the profile up to 𝑧. The definitions of downward IWP, upward IWP, downward

WVP, and upward WVP are analogous.

Variable Units Predictor for Predictor for Vector?
shortwave RT? longwave RT?

Solar zenith angle ◦ ✓

Surface albedo ✓

Surface temperature K ✓

Surface emissivity ✓

Temperature K ✓ ✓ ✓

Pressure Pa ✓ ✓ ✓

Specific humidity kg kg-1 ✓ ✓ ✓

Relative humidity ✓ ✓ ✓

Liquid-water content (LWC) kg m-3 ✓ ✓ ✓

Ice-water content (LWC) kg m-3 ✓ ✓ ✓

Downward liquid-water path (LWP) kg m-2 ✓ ✓ ✓

Downward ice-water path (IWP) kg m-2 ✓ ✓ ✓

Downward water-vapour path (WVP) kg m-2 ✓ ✓ ✓

Upward LWP kg m-2 ✓ ✓ ✓

Upward IWP kg m-2 ✓ ✓ ✓

Upward WVP kg m-2 ✓ ✓ ✓

O3 mixing ratio kg kg-1 ✓ ✓ ✓

Height m AGL ✓ ✓ ✓

Height thickness m ✓ ✓ ✓

Pressure thickness Pa ✓ ✓ ✓

is to heat and how many other molecules there are to interact with radiation, which cannot be174

determined from molecular concentrations alone.175
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Table 2: Description of synthetic predictor variables.

Variable Units Predictor for Predictor for Vector?
shortwave RT? longwave RT?

Aerosol single-scattering albedo ✓

Aerosol asymmetry parameter ✓

Aerosol extinction coefficient m-1 ✓ ✓

Liquid effective radius m ✓ ✓ ✓

Ice effective radius m ✓ ✓ ✓

N2O concentration ppmv ✓ ✓ ✓

CH4 concentration ppmv ✓ ✓ ✓

CO2 concentration ppmv ✓ ✓ ✓

b. Synthetic predictors176

Some predictors used by the RRTM are not available in the GFSv16; these are listed in Table177

2. Thus, we create synthetic data for these predictors. The synthetic predictors fall into three178

categories: particle sizes, trace gases, and aerosols.179

Particle sizes180

The two relevant variables are ice effective radius (𝑟 ice
eff ) and liquid effective radius (𝑟 liq

eff), both181

summaries of the particle-size distribution (PSD; Mitchell et al. 2011). To create a synthetic profile182

of 𝑟 ice
eff , we apply the following equation from Mishra et al. (2014, their Figure 6b) independently183

to each height in the profile:184

𝑟 ice
eff = 86.73 𝜇m+

(
1.07

𝜇m
◦C

)
𝑇, (1)

where 𝑇 is the temperature (◦C) and each height has a different temperature (Figure 1a). After185

Equation 1, we apply two types of noise to the profile: bulk noise, which shifts the whole profile to186

higher or lower values, and structure noise, which changes the structure of the profile (Figure 1b).187

For bulk noise, we multiply the whole 𝑟 ice
eff profile by 1+ 𝜖𝑏, where 𝜖𝑏 is a random variable drawn188

from a normal distribution with mean = 0 and standard deviation = 0.5, denoted as N(0,0.5). In189

other words, the standard deviation of bulk noise is 50% of the value generated by Equation 1. For190
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structure noise, we multiply the 𝑟 ice
eff value at every height by 1+ 𝜖𝑠, where 𝜖𝑠 is drawn anew at every191

height from N(0,0.05). After adding noise, we bound 𝑟 ice
eff values to the range [17.18,65.33] 𝜇m,192

which is the same as bounding temperature to [−65,−20] ◦C, the range of validity for Equation 1.193

See Figure 1c.194

Figure 1: Procedure for creating synthetic profiles of [a-c] ice effective radius and [d-e] liquid
effective radius.

To create a synthetic profile of 𝑟 liq
eff , we start with the distribution discovered by Miles et al.195

(2000). They found that 𝑟 liq
eff roughly follows the distribution N(6 𝜇m,1 𝜇m) over land and196

N(9.5 𝜇m,1.2 𝜇m) over ocean. See Figure 1d. However, using this information alone would197

lead to constant 𝑟 liq
eff profiles, which are unrealistic. Thus, we add structure noise to each profile,198

using the same method as for 𝑟 ice
eff . See Figure 1e.199

Trace gases200

For trace gases not available in the GFSv16 – N2O, CH4, and CO2 – we use canonical profiles201

provided by Anderson et al. (1986). There is one canonical profile for each gas and each standard202
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Table 3: Definition of standard atmospheres. The categorization is mutually exclusive and
collectively exhaustive, i.e., every profile is assigned to exactly one of the five standard

atmospheres.

Standard atmosphere Months Latitudes
Mid-latitude summer May – Oct [20,65] ◦N
Mid-latitude summer Nov – Apr [20,65] ◦S
Mid-latitude winter Nov – Apr [20,65] ◦N
Mid-latitude winter May – Oct [20,65] ◦S
Polar summer May – Oct [65,90] ◦N
Polar summer Nov – Apr [65,90] ◦S
Polar winter Nov – Apr [65,90] ◦N
Polar winter May – Oct [65,90] ◦S
Tropical All [−20,20] ◦N

atmosphere, the latter defined in Table 3. For example, the five canonical N2O profiles are shown203

in Figure 2a. As for 𝑟 ice
eff , we add both bulk and structure noise to each profile of trace-gas204

concentrations. We use the same noise distributions as for 𝑟 ice
eff . See Figure 2b.205

Figure 2: Procedure for creating synthetic profiles of trace-gas concentration – in this example,
N2O concentration.
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Aerosols206

Due to its complexity, we have relegated our method for creating synthetic aerosol variables –207

single-scattering albedo (SSA), asymmetry parameter, and extinction coefficient – to Section 1 of208

the online Supplement.209

c. Target variables210

We run the shortwave and longwave RRTM separately for each profile. The target variables are211

those needed by an NWP model from its embedded RT model: a profile of heating rates (HR),212

surface downwelling flux (𝐹sfc
down), top-of-atmosphere upwelling flux (𝐹TOA

up ), and net flux (𝐹net).213

All four of these variables have both a shortwave and a longwave version.214

d. Pre-processing215

We apply two types of pre-processing to the data: splitting and normalization. As in L21, we216

use isotonic regression (IR) to bias-correct the NNs, which requires a separate training set. Thus,217

we split the data into four temporally independent subsets: NN-training, IR-training, validation,218

and testing (Table 4). Each subset covers locations around the globe during all seasons. For219

normalization, we use the same methods described in Section 3b of L21, except that we do not220

normalize any target variables. In L21 we normalized the flux variables, but we have since found221

that this has a deleterious effect on the quality of NN predictions.222

3. Deep-learning methods223

This section provides a minimal background on the NN architectures used in L21, followed by a224

more extensive background on the architectures new to the current work, and finally information225

on the loss functions used to train NNs.226

a. U-net and U-net++ without deep supervision227

L21 considered two NN architectures, namely the U-net and U-net++, for shortwave RT. They228

found that the U-net++ outperforms the U-net in situations with multi-layer cloud (their Sup-229

plemental Section Cd), which are the most complex situations for RT and also vitally important230

for weather/climate prediction. In this article we consider the U-net++ architecture and a new231
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Table 4: Partitioning of data into temporally independent subsets. “SW” = shortwave; “LW” =
longwave; and “sample size” = number of profiles. SW and LW sample sizes are different

because the SW radiation scheme (RRTM or NN-based emulator) is not run when the Sun is
below the horizon, i.e., when solar zenith angle > 90◦. Also, “Number of days” ≠ length of “Time

period,” because some days are missing from the archive.

Data subset Time period Number SW sample LW sample
of days size size

NN-training Sep 1 2018 – Dec 21 2019 237 873 086 3 503 226
IR-training Dec 24-30 2019, 63 213 275 939 181

Feb 3-9 2020,
Mar 15-21 2020,
Apr 26 – May 2 2020,
Jun 7-13 2020,
Jul 18-24 2020,
Aug 28 – Sep 3 2020,
Oct 10-16 2020,
Nov 21-27 2020

Validation Jan 2-15 2020, 126 479 806 1 934 460
Feb 12-25 2020,
Mar 24 – Apr 6 2020,
May 5-18 2020,
Jun 16-29 2020,
Jul 27 – Aug 9 2020,
Sep 6-19 2020,
Oct 19 – Nov 2 2020,
Nov 30 – Dec 13 2020

Testing Jan 18-31 2020, 120 474 726 1 929 078
Feb 28 – Mar 12 2020,
Apr 9-22 2020,
May 22 – Jun 4 2020,
Jul 2-15 2020,
Aug 12-25 2020,
Sep 22 – Oct 7 2020,
Nov 5-18 2020,
Dec 16-23 2020

13



architecture called U-net3+. L21 contains a detailed background on the U-net and U-net++ (their232

Section 2), and we attempt to reproduce as little of this background as possible – only that which233

is necessary for understanding the current article.234

The U-net (Ronneberger et al. 2015) is a type of NN designed for making predictions on a spatial235

grid, often called “image-to-image translation” in the ML literature. U-nets are typically applied236

to images with two or three spatial dimensions, but in our case the “images” are vertical profiles,237

containing only one spatial dimension. The task is to translate a 127-by-𝑀 image of predictors238

(𝑀 , the number of variables, is different for longwave vs. shortwave RT) into a 127-by-1 image of239

HRs4.240

U-nets contain four key components (Figure 3a): convolutional layers, pooling (downsampling)241

layers, upsampling layers, and skip connections. The role of the convolutional layers is to detect242

spatial and multivariate features – i.e., features including many pixels and predictor variables –243

using convolutional filters with weights optimized during training to detect the most useful features244

for prediction. The role of the pooling and upsampling layers is to change the resolution of the245

feature maps – a “feature map” being either the original or a transformed version of the predictors –246

so that convolutional layers at different depths in the network can detect features at different spatial247

scales. The role of the skip connections is to preserve high-resolution information – i.e., to carry248

through the network high-resolution information that has not been degraded by downsampling, a249

lossy operation that cannot be fully reversed by upsampling. The left side of the U-shaped network250

(Figure 3a) is the encoder side, where the predictors are converted to feature maps with decreasing251

spatial resolution (fewer height levels) and increasing spectral resolution (more channels). The right252

side is the decoder side, where feature maps are upsampled and converted to the final prediction253

– an image of HRs. To make our networks also predict the three flux variables, which are scalars254

and not images, we attach fully connected layers to the deepest encoder layer, as shown in Figure255

3a. These are the layers used in fully connected NNs (Chapter 6 of Goodfellow et al. 2016), which256

are still a popular choice for scalar data.257

4There is a second learning task, which involves image-to-scalar translation – namely to translate the same 127-by-𝑀 image of predictors
into 3 flux components.
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Figure 3: Sample architectures for [a] U-net and [b] U-net++. Labels F , G, and H are referred to
in the main text. Actual models used in this study differ in the number of channels and depth

(number of encoder/decoder layers, i.e., number of horizontal rows in this figure). For each set of
feature maps (green box), the two dimensions are number of heights and channels, respectively.

When the U-net++ is trained without deep supervision, all feature maps labeled “pseudo-HRs” go
away, along with the arrows pointing to them. In the remaining discussion, let 𝐾 be the number of
convolutional layers per block, a user-chosen hyperparameter. Each orange “convolution” arrow

corresponds to 𝐾 convolutional layers with 3-pixel filters; each “downsampling” arrow
corresponds to 𝐾 convolutional layers with 3-pixel filters, followed by a maximum-pooling layer

with a 2-pixel window; each “upsampling” arrow corresponds to an upsampling layer with a
2-pixel window, followed by a convolutional layer with 3-pixel filters; each “skip connection”

arrow includes 𝐾 convolutional layers with 3-pixel filters; each black “convolution” arrow
corresponds to one convolutional layer with 1-pixel filters; and lastly, each “fully connected layer”

arrow corresponds to one fully connected layer.

The U-net++ (Zhou et al. 2019) contains more skip connections than the U-net, which more258

effectively preserve small-scale features such as cloud boundaries, leading to better predictions for259

multi-layer cloud in L21. The U-net3+ (Huang et al. 2020) contains even more skip connections260

than the U-net++, so we hypothesize that the U-net3+ will perform even better in situations with261
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multi-layer cloud and perhaps overall. Also, the U-net++ and U-net3+ may be trained with deep262

supervision, which was not used in L21.263

b. U-net++ with deep supervision264

When a NN is trained without deep supervision, the loss function optimized by the NN compares265

the ground truth (here, a length-127 profile of HRs) only to the final prediction, i.e., output from266

the last NN layer. With deep supervision, the ground truth is also compared to intermediate267

representations, i.e., layer outputs that are ultimately transformed to the final prediction. Zhou268

et al. (2019) found that deep supervision improves image segmentation for phenomena that occur269

at different scales, such as lung nodules. We hypothesize that deep supervision will also improve270

RT estimation, since relevant features for RT estimation also occur at different scales – e.g., cloud271

depths range from O(10 m) to O(10 km).272

Figure 3b shows a sample U-net++ architecture with and without deep supervision. The only273

difference is that deep supervision requires extra convolutional layers – those producing pseudo-274

HRs – to transform the intermediate representations from many channels to one channel. With275

deep supervision, all four outputs (the three pseudo-HR profiles and the actual-HR profile) are276

produced; without deep supervision, only one output (the actual-HR profile) is produced. For277

details on the loss function, which compares both psuedo-HRs and actual HRs to the ground truth,278

see Section 3d. Note that deep supervision is applied only to the spatial outputs (HRs) and not279

the scalar outputs (fluxes). Deep supervision was invented for spatial data, and there is no clear280

analogue for scalars.281
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c. U-net3+ with and without deep supervision282

Figure 4: Sample architectures for U-net3+ [a] without and [b] with deep supervision. Labels F
and G are referred to in the main text. Actual models used in this study differ in the number of

channels and depth. Formatting is explained in the caption of Figure 3, except that the solid black
arrows are slightly different in this figure. The solid black arrow pointing to actual HRs (top
right) corresponds to one convolutional layer with 1-pixel filters, while a solid black arrow

pointing to pseudo-HRs corresponds to an upsampling layer followed by a convolutional layer
with 1-pixel filters.

The U-net3+ has one property that distinguishes it from the U-net++, namely full-scale skip283

connections. Full-scale skip connections pass information from all scales to each decoder layer,284

whereas skip connections in the U-net++ pass information from only two scales to each decoder285

layer. For example, in the U-net++ shown in Figure 3b, the feature maps labeled F combine286

information from the same scale (other feature maps with 31 heights) and the next-largest scale287

(feature maps with 15 heights). But in the U-net3+ shown in Figure 4a, the feature maps labeled288

F combine information from equal and smaller scales (feature maps with ≥ 31 heights) on the289
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encoder side, as well as information from larger scales (feature maps with < 31 heights) on the290

decoder side.291

Stated differently, full-scale skip connections more effectively carry high-resolution information292

through the network. For example, the feature maps labeled G (in both Figures 3b and 4a) contain293

information at the smallest scale that has not been degraded by downsampling. In the U-net++294

(Figure 3b), skip connections carry this information to only one level on the decoder side, namely295

the feature maps labeled H . Other levels on the decoder side cannot access the undegraded high-296

resolution information in G. But in the U-net3+ (Figure 4a), full-scale skip connections carry the297

information in G to all levels on the decoder side, allowing this information to be used in decoded298

feature maps at all resolutions.299

Figures 4a and 4b show how to add deep supervision to the U-net3+ architecture. For the U-300

net3+, deep supervision requires two architecture changes. The first is extra convolutional layers301

to reduce the number of channels to one (pseudo-HR), as in the U-net++. The second is extra302

upsampling layers to increase the number of heights to 127.303

d. Loss function304

In machine learning, the standard loss function for regression tasks – where the model predicts305

a continuous value instead of a category – is the mean squared error (MSE). However, in L21 we306

found that using the MSE causes two problems. First, the MSE does not adequately emphasize large307

HRs, which are rare but important for weather/climate prediction, causing the NN to dramatically308

underpredict large HRs. Second, the MSE does not ensure that the following conservation law is309

respected:310

𝐹
(𝑏)
net = 𝐹sfc

down
(𝑏) −𝐹TOA

up
(𝑏)
, (2)

where the superscript (𝑏) denotes that all three variables must come from the same band, either311

shortwave or longwave. To remedy the first problem, we used the dual-weighted MSE (DWMSE)312

for HRs, which emphasizes cases with a large actual or predicted HR, “nudging” the NN to predict313

these cases correctly. See Section 3c2 of L21. To remedy the second problem, we used the basic314

MSE for flux variables but enforced the law of Equation 2 inside the NN. See Section 3c1 of L21.315

Because L21 is concerned with shortwave RT only, the present work requires two updates to the316

loss function. First, the weight in the DWMSE becomes the maximum of the absolute actual and317
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predicted HRs, because although shortwave HR is always ≥ 0, longwave HR may be negative (i.e.,318

longwave cooling). Second, the flux law must be applied to both shortwave and longwave RT. The319

total loss function becomes the following:320

L (𝑏) =
1
𝑁𝐻

𝑁∑︁
𝑖=1

𝐻∑︁
𝑗=1

max
{
|𝑟 (𝑏)
𝑖 𝑗

|, |𝑟 (𝑏)
𝑖 𝑗

|
} [
𝑟
(𝑏)
𝑖 𝑗

− 𝑟 (𝑏)
𝑖 𝑗

]2
+ 1
𝑁𝑀

𝑁∑︁
𝑖=1

𝑀∑︁
𝑘=1

[
𝐹
(𝑏)
𝑖𝑘

− 𝐹̂ (𝑏)
𝑖𝑘

]2
, (3)

where 𝑁 is the number of examples; 𝐻 = 127 is the number of heights per example; 𝑟 (𝑏)
𝑖 𝑗

is the321

actual HR for the 𝑗 th height in the 𝑖th example; 𝑟 (𝑏)
𝑖 𝑗

is the corresponding prediction; 𝑀 = 3 is the322

number of flux components; 𝐹 (𝑏)
𝑖𝑘

is the actual value of the 𝑘 th flux component in the 𝑖th example;323

and 𝐹̂ (𝑏)
𝑖𝑘

is the corresponding prediction. There is one version of Equation 3 for the shortwave,324

where the superscript (𝑏) is SW, and one version for the longwave.325

For NNs without deep supervision, Equation 3 is the whole story. However, for NNs with326

deep supervision, the loss function includes extra terms for the pseudo-HRs. Specifically, the loss327

function becomes328

L (𝑏)
deep-sup = L (𝑏) + 1

𝑃𝑁𝐻

𝑃∑︁
𝑝=1

𝑁∑︁
𝑖=1

𝐻∑︁
𝑗=1

max
{
|𝑟 (𝑏)
𝑖 𝑗

|, |𝑟 (𝑏)
𝑝𝑖 𝑗

|
} [
𝑟
(𝑏)
𝑖 𝑗

− 𝑟 (𝑏)
𝑝𝑖 𝑗

]2
, (4)

where 𝑃 is the number of layers with deep supervision and thus the number of pseudo-HR profiles,329

and 𝑟 (𝑏)
𝑝𝑖 𝑗

is the pseudo-HR produced by the 𝑝th layer with deep supervision for the 𝑗 th height in the330

𝑖th example.331

4. Experiment with neural networks of varying complexity332

This section describes a hyperparameter-tuning experiment used to find the optimal level of NN333

complexity for estimating RT. We tune four hyperparameters: the NN type (U-net++ or U-net3+334

with or without deep supervision), NN depth, NN width, and spectral complexity. NN depth is the335

number of encoder/decoder levels (e.g., all architectures shown in Figures 3-4 have a depth of 4);336

NN width is the number of convolutional layers per set (𝐾 in the caption of Figure 3); and spectral337

complexity is the number of feature maps produced by the first set of convolutional layers (e.g., all338

architectures shown in Figures 3-4 have a spectral complexity of 64). Following common practice,339

we always double the number of feature maps with each downsampling operation. For example,340
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Table 5: Experimental hyperparameters.

Hyperparameter Values attempted
NN type U-net++ without deep supervision,

U-net++ with deep supervision,
U-net3+ without deep supervision,
U-net3+ with deep supervision,

NN depth 3, 4, 5
NN width 1, 2, 3, 4
Spectral complexity 4, 8, 16, 32, 64, 128

Figure 3 shows that with a depth of 4 and spectral complexity of 64, the deepest set of feature341

maps (i.e., that with the coarsest spatial resolution, designed to capture the largest-scale features)342

has 1024 feature maps. We chose to experiment with NN type so that we could try new methods343

(deep supervision and U-net3+) from the ML literature. We chose to experiment with the other344

three hyperparameters because they strongly control overall NN complexity, i.e., the number of345

trainable weights. As shown in Supplemental Figures S9 and S17, the number of trainable weights346

varies from O(105) to O(108.5).347

Table 5 lists the exact values attempted for each hyperparameter. We perform a grid search348

(Section 11.4.3 of Goodfellow et al. 2016), training one NN for every combination of values,349

which leads to 4 × 3 × 4 × 6 = 288 NNs for each band (shortwave and longwave). Most350

constant hyperparameters (those not varied during the experiment) are illustrated in Figures 3 and351

4. Constants not included in these figures are documented in Supplemental Table S3.352

a. Evaluation methods used for model selection353

Model evaluation is a multi-faceted problem, and there are many possible ways to choose the best354

model. Most hyperparameter experiments optimize one evaluation metric, often the loss function355

used for training. However, we care about several aspects of model performance. In previous work356

we have noticed that even when overall performance is acceptable, the following regime-based357

errors are unacceptably high:358

• HR errors near the surface, especially in the longwave;359
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Table 6: Metrics used for model selection. “Column-averaged” = averaged over all 127 heights;
“near-surface” = at the lowest grid level, which averages 21 m AGL; and “all-flux RMSE” is the
square root of the MSE averaged over all three flux variables. Metrics computed on fog profiles

are used only to evaluate longwave models, not shortwave models.

Set of profiles Metrics used
All Column-averaged HR DWMSE,

column-averaged HR bias,
near-surface HR DWMSE,
near-surface HR bias,
all-flux RMSE,
net-flux RMSE,
net-flux bias

Profiles with multi-layer cloud Column-averaged HR DWMSE,
column-averaged HR bias,
near-surface HR DWMSE,
near-surface HR bias,
all-flux RMSE,
net-flux RMSE,
net-flux bias

Profiles with fog Near-surface HR DWMSE,
(longwave only) near-surface HR bias,

all-flux RMSE,
net-flux RMSE,
net-flux bias

• flux and HR errors in profiles with multi-layer cloud, in both the shortwave and longwave;360

• longwave HR errors near the surface in profiles with fog, i.e., cloud reaching the lowest grid361

level.362

Thus, we use the metrics listed in Table 6, computed on validation data only, for model selection.363

Our choice of the best model is based on a subjective combination of these metrics.364
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b. Evaluation methods used for best models365

As in L21, we evaluate the best models (shortwave and longwave) on the testing dataset as a366

whole and on meaningful subsets of the testing data. We split the testing data in four ways.367

First, we split by cloud regime, because clouds add immense complexity to RT, making the368

process difficult to emulate, and can result in extreme HRs (large positive values in the shortwave369

and large negative values in the longwave), which are important for weather and climate. For a more370

detailed explanation of these effects, see Section 5a of L21. As in L21, we focus on liquid cloud371

– which has a much greater effect on RT than ice cloud – and define a cloud layer as a contiguous372

set of model heights with liquid-water content (LWC) > 0 g m-3 and total liquid-water path ≥ 25373

g m-2. As in L21, we define three cloud regimes, which are mutually exclusive and collectively374

exhaustive (MECE): no cloud, single-layer cloud, and multi-layer cloud. For the longwave we add375

a fourth cloud regime – fog – defined as a liquid cloud reaching the surface (i.e., LWC > 0 g m-3
376

at the lowest model height). Thus, cloud regimes for the longwave are not MECE, as every profile377

with fog is also a profile with single- or multi-layer cloud. We include fog because it causes large378

longwave errors near the surface.379

Second, we split the testing data by geographic location, specifically on a global latitude-longitude380

grid with 5◦ spacing. This spacing highlights large RT errors due to features such as high terrain381

and persistent stratocumulus cloud. Third, for the shortwave model only, we split the testing data by382

aerosol optical depth (AOD) and solar zenith angle (SZA). In earlier work we found that shortwave383

errors increase with higher AOD, which adds complexity to RT, and lower SZA5, which increases384

HRs and the frequency of extreme HRs. Fourth, for the longwave model only, we split the testing385

data by near-surface thermodynamics, specifically temperature lapse rate (Γsfc
𝑇

) and humidity lapse386

rate (Γsfc
𝑞 ). These are defined as387 

Γsfc
𝑇

=
𝑇1−𝑇2
𝑧2−𝑧1 ,

Γsfc
𝑞 =

𝑞1−𝑞2
𝑧2−𝑧1 ,

(5)

where 𝑇1 and 𝑇2 are temperature (K) at the lowest and second-lowest model heights (sigma levels),388

respectively; 𝑞1 and 𝑞2 are specific humidity (kg kg-1) at the same heights; and 𝑧1 and 𝑧2 are the389

corresponding physical heights (m AGL). Longwave RT near the surface is highly sensitive to390

5Lower SZA means that the Sun is higher above the horizon. Specifically, SZA is 0◦ when the Sun is directly overhead, and 90◦ when the
Sun is on the horizon.
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the near-surface temperature and moisture profiles (Schmetz 1989). We also experimented with391

splitting by surface temperature and humidity, instead of their near-surface lapse rates, but found392

that lapse rates have a greater impact on longwave-RT errors.393

We use several evaluation metrics and plotting tools, most of which are familiar to atmospheric394

scientists, such as the mean absolute error and bias (mean signed error). We also use the attributes395

diagram, which is a reliability curve with added reference lines (Hsu and Murphy 1986). However,396

we have adapted this plot for regression (predicting a continuous value, like flux in W m-2) instead of397

their typical use, which is binary classification (predicting the probability of an event). For readers398

interested in the details, see Section 5a of L21. You can interpret the regression- and classification-399

based version of the attributes diagram in roughly the same way: the curve should be close to400

the diagonal reference line, indicating perfect reliability, and inside the shaded area, indicating401

a positive skill score. For the regression-based attributes diagram, this is the MSE skill score.402

A positive MSE skill score means that the NN model has a better MSE than the climatological403

model. The climatological model is a simple model that always predicts the climatological mean,404

estimated as the average in the training data. For example, if the mean net flux in the training data405

is 100 W m-2, the climatological model will predict a net flux of 100 W m-2 for every case.406

5. Results and discussion407

We start with a brief discussion of the hyperparameter experiment (used to determine the best408

models), followed by an in-depth discussion of the best shortwave model and best longwave model.409

a. Hyperparameter experiment410

Results are discussed briefly here and at length in Section 2 of the online Supplement. For both411

shortwave and longwave RT, the most important hyperparameter is spectral complexity, while NN412

depth and width are of secondary importance. The better NNs have large spectral complexity,413

large depth, and small width. In other words, the better NNs are deep and narrow with many414

feature maps. For the other hyperparameter – NN type – we hypothesized that the U-net3+415

architecture would outperform U-net++ (Section 3a) and that NNs trained with deep supervision416

would outperform those with no deep supervision (Section 3b). We are unable to confirm either417

hypothesis – deep supervision leads to worse performance, and architecture has little effect on418
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performance. The best shortwave model – based on our subjective assessment of the metrics listed419

in Table 6 – is a U-net++ with no deep supervision, depth of 3, width of 1, and spectral complexity420

of 128, leading to 107.52 trainable weights. The best longwave model – again based on Table 6421

– is a U-net3+ with no deep supervision, depth of 5, width of 1, and spectral complexity of 64,422

leading to 107.28 trainable weights.423

The best shortwave and longwave models are both at the upper end of the overall-complexity424

range in our experiment – where number of trainable weights varies from O(105) to O(108.5) –425

making them more computationally expensive than most. The original motivation for NNs was426

to decrease computing time. To this point, we have compared the wall-clock time of the RRTM427

and best NNs when run on the same hardware – i.e., one node with 24 CPUs and no GPUs –428

to predict thousands of profiles. The shortwave RRTM (NN) processes 0.13 (843) profiles per429

second, resulting in a speedup factor of 6579. The longwave RRTM (NN) processes 4.8 (460)430

profiles per second, resulting in a speedup factor of 96. Thus, we have accelerated the RRTM by431

orders of magnitude.432
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b. Best shortwave model433

Figure 5: Performance of best shortwave model on testing data. [a-c] Attributes diagram for each
flux variable. The orange curve is the reliability curve; the diagonal grey line is the

perfect-reliability line; the vertical grey line is the climatology line; the horizontal grey line is the
no-resolution line; the blue shading is the positive-skill area, where MSE skill score > 0; and the
inset histograms show the distributions of predicted and observed values. [d-f] Profiles of bias,
MAE, and MAE skill score for HR. [g] Attributes diagram for HR, including all heights. In all
panels, the orange line represents the mean and the lighter shading around it represents the 99%
confidence interval, both estimated from a bootstrapping test with 1000 replicates. However, in
some panels the 99% confidence interval is narrower than the line representing the mean and is

therefore invisible.
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Figure 5 shows the overall performance – i.e., averaged over the whole testing set – of the434

best shortwave model. For all flux variables (Figures 5a-c), the model is almost perfectly reliable435

(see overlap between reliability curve and diagonal reference line) and almost perfectly reproduces436

the observed distribution (see similarity between the two histograms). However, the model has437

slight conditional biases, namely an overprediction of ∼10 W m-2 for the highest 𝐹sfc
down and 𝐹TOA

up438

predictions. In other words, when the model predicts an extremely large downwelling or upwelling439

flux, the prediction is slightly too extreme. However, these two biases offset in the calculation440

of 𝐹net (Equation 2), resulting in near-zero bias for all predicted 𝐹net values. The model has an441

absolute bias < 0.1 K day-1 for HR at every height (Figure 5d), which suggests that it could be442

stably integrated into an NWP system (Iacono et al. 2008) such as the GFS. The model has a443

substantially larger MAE than bias for HR at every height (Figures 5d-e), which indicates that444

most of the model’s HR error is random instead of systematic. Both bias and MAE are largest in445

the upper stratosphere, where shortwave RT is dominated by O3 absorption. The bias and MAE446

profiles in L21 were similar – even with a dataset that used a constant profile for trace gases such as447

O3 – which suggests that O3 absorption is a fundamentally difficult process to emulate. Since the448

average HR in the upper stratosphere is large (e.g., 21.6 K day-1 at 47 km AGL), the climatological449

model also has a large MAE here, so the NN’s spike in MAE translates to only a small dip in450

its MAE skill score (Figure 5f). Lastly, the attributes diagram for HR (Figure 5g) tells a similar451

story to those for the flux variables: the model is almost perfectly reliable and almost perfectly452

reproduces the observed distribution. However, the model has a slight positive bias (≪ 1 K day-1)453

for the highest predicted HR values.454
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Figure 6: Performance of best shortwave model on testing data, separated by cloud regime. [a-c]
Attributes diagram (formatting explained in the caption of Figure 5) for each flux variable. The

inset histograms are based only on cases with multi-layer cloud. [d-f] Profiles of bias, MAE, and
MAE skill score for HR. [g] Attributes diagram for HR, including all heights, only for cases with
no cloud. [h] Same but for single-layer cloud. [i] Same but for multi-layer cloud. In all panels,

the green/orange/purple line represents the mean and the lighter shading around it represents the
99% confidence interval, both estimated from a bootstrapping test with 1000 replicates.

Figure 6 shows the model’s performance as a function of cloud regime. The attributes diagram455

for each flux variable (Figures 6a-c) tells a similar story to its cloud-agnostic analogue (Figures456

5a-c): slight conditional bias for extreme predictions of 𝐹sfc
down and 𝐹TOA

up but with no absolute bias457
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exceeding 20 W m-2. The following discussion of error profiles for HR (Figures 6d-f) focuses458

on the troposphere (below ∼15 km AGL), where shortwave heating is dominated by cloud rather459

than O3. In the bottom few 100 m, errors are largest for clear-sky profiles and smallest for cloudy460

profiles, because in cloudy profiles most of the incoming solar radiation has already been absorbed461

by clouds above, which leaves little shortwave radiation in the bottom few 100 m, thus making462

shortwave RT an easier problem here. Meanwhile, in the troposphere above ∼1 km, errors are463

smallest for clear-sky profiles and largest for cloudy profiles, because this is the region where most464

clouds and their associated extreme HRs occur. Also, errors for multi-layer cloud are greater than465

for single-layer cloud, because multi-layer cloud produces non-local effects that are difficult to466

emulate. For example, consider a profile with two clouds of equal thickness and structure (i.e.,467

equal series of LWC values), one based at 10 km AGL and the other based at 1 km AGL. The468

upper cloud will absorb most of the incoming solar radiation, leaving little shortwave radiation to469

be absorbed by the lower cloud; thus, the upper cloud will cause much larger HRs, even though470

the two clouds are identical except for location. This is a non-local effect, as the two clouds are471

far (more than a few grid cells) apart. Lastly, the attributes diagrams for HR (Figures 6g-i) tell a472

similar story to their cloud-agnostic analogue (Figure 5g): positive bias for the highest predicted473

HR values and near-zero bias for all other values. However, this positive bias is much larger for474

cloudy profiles – ∼2 K day-1 for single-layer cloud and ∼1 K day-1 for multi-layer cloud – likely475

due to a small sample size for the highest predicted HR values, indicated by the wide confidence476

intervals in Figures 6g-i.477
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Figure 7: Performance of best shortwave model on testing data, binned by geographic location on
a 5◦-by-5◦ grid. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-flux MAE, averaged over the
three flux variables. [f] MAE for net flux only. [g] Bias for net flux only.
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Figure 7 shows the model’s performance as a function of location. The column-averaged MAE478

for HR (Figure 7a) is mostly between6 0.07 and 0.11 K day-1; it exceeds 0.11 K day-1 at a few479

locations, notably the Tibetan Plateau and east Antarctica. The MAE for near-surface HR (Figure480

7b) is larger – mostly between 0.07 and 0.23 K day-1, exceeding 0.23 K day-1 at a few locations,481

again notably Tibet and east Antarctica. The column-averaged bias for HR (Figure 7c) is mostly482

between -0.02 and +0.03 K day-1, with absolute bias not exceeding 0.05 K day-1 at any location.483

The bias for near-surface HR (Figure 7d) is larger – mostly between -0.09 and +0.09 K day-1, with484

absolute value exceeding 0.09 K day-1 over high-latitude continents such as Canada, Siberia, and485

Antarctica. The all-flux MAE (Figure 7e) is mostly between 2.5 and 6.4 W m-2, exceeding 6.4 W486

m-2 mainly in the southern-hemisphere stratocumulus regions. These are regions of semi-persistent487

stratocumulus cloud in the subtropics off the west coast of a continent – including South America,488

southern Africa, and Australia (Figure 6 of Neubauer et al. 2014). The net-flux MAE (Figure 7f)489

follows a similar pattern to the all-flux MAE. Lastly, the net-flux bias (Figure 7g) is mostly between490

-2.2 and +2.0 W m-2, with mostly negative bias in the southern hemisphere and positive bias in the491

northern hemisphere.492

Figure S1 in the online Supplement is analogous to Figure 7 but shows relative, instead of493

raw, errors. For example, “relative net-flux MAE” at grid point 𝑃 is raw net-flux MAE at 𝑃
mean observed net flux at 𝑃 . We494

make two observations from the two figures. First, for column-averaged HR MAE (panel a), the495

highest relative errors are collocated with the highest raw errors – in Tibet and east Antarctica.496

This indicates that shortwave HR is fundamentally harder to predict at said locations – i.e., these497

maxima in HR error are not just caused by maxima in HR itself. Second, for all other error metrics498

(panels b-g), the largest relative errors occur at polar latitudes, where raw errors are small. Polar499

latitudes receive little solar radiation, leading to small shortwave HRs and fluxes, so a small raw500

error translates to a large relative error.501

6Henceforth, “mostly between” corresponds to the middle 95% of the distribution, i.e., the 2.5th to 97.5th percentiles.
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Figure 8: Geography-based case studies for the best shortwave model. [a-b] Case study from
Tibet; [c-d] another case study from Tibet; [e-f] case study from east Antarctica; [g-h] another

case study from east Antarctica. For each case study, the left panel shows actual (solid line) and
predicted (dashed line) RT solutions, while the right panel shows four of the most important

predictor variables for shortwave RT. In each left panel, the legend shows column-averaged MAE
for HR (labeled “HR MAE”), errors for the three flux variables (labeled “bias” to emphasize that

they are predicted minus actual), aerosol optical depth (AOD), and solar zenith angle (SZA).
AOD is a summary of an important predictor variable (the height-integrated aerosol extinction),

while SZA is an important predictor variable itself.
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Figure 8 shows case studies from two regions with high model error: Tibet (panels a-d) and east502

Antarctica (panels e-h). To select these case studies, we first plotted 400 random profiles – 200503

from each region – and then manually selected 4 profiles that are representative of the original504

400. In the following conclusions, although we reference Figure 8, we have ensured that they505

represent most of the original 400 profiles as well. First, Tibet experiences a lot of cloud, often506

complex mixtures of liquid and ice. Second, east Antarctica also experiences a lot of cloud, often507

ice cloud reaching the surface as fog. Third, although the model matches the shape of the HR508

profile well, it often misses extreme HRs associated with cloud by > 1 K day-1. Sometimes the509

model underestimates HR maxima (e.g., ∼3 km in panel a, ∼6 km in panel c), and sometimes it510

overestimates (e.g., ∼7 km in panel a, ∼3 km in panel c, ∼8 km in panel e). Fourth, both regions511

have very high surface elevation and albedo. High elevation increases near-surface HR; high albedo512

decreases near-surface HR; and both extremes are rare in the training data, causing high model513

error under these extremes. For example, panels e and g are manifestations of the model’s positive514

near-surface HR bias in east Antarctica (Figure 7d).515
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Figure 9: Performance of best shortwave model on testing data, binned by AOD and SZA, with
AOD bins of width 0.15 and SZA bins of width 10◦. [a] Column-averaged MAE for HR. [b] MAE
for near-surface HR. [c] Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-flux
MAE, averaged over the three flux variables. [f] MAE for net flux only. [g] Bias for net flux only.
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Figure 9 shows the model’s performance as a function of SZA and AOD. Supplemental Figure S2516

is analogous but shows relative, instead of raw, errors. We make three observations from the two517

figures. First, for all error metrics except net-flux bias (panels a-f), raw error decreases strongly518

with SZA and increases weakly with AOD. In other words, raw errors are worst when there is a519

lot of incoming solar radiation and a lot of interaction with aerosols. Second, for the same error520

metrics, relative error increases strongly with SZA (the opposite relationship to raw error) and has521

no apparent relationship with AOD. Thus, higher solar radiation and aerosol content do not make522

shortwave RT fundamentally harder to predict; raw errors increase because the actual values (HRs523

and fluxes) increase. Third, for net-flux bias (panel g), when SZA < 20◦, both raw and relative524

error increase with decreasing SZA and increasing AOD. In other words, when SZA < 20◦, higher525

solar radiation and aerosol content make it fundamentally harder to predict net flux without bias.526

34



Figure 10: Regime-based case studies for the best shortwave model, specifically from the
low-SZA/high-AOD regime, defined as SZA ≤ 20◦ and AOD ≥ 0.75. Formatting is explained in

the caption of Figure 8.
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Figure 10 shows case studies from the low-SZA/high-AOD regime (defined as SZA ≤ 20◦ and527

AOD ≥ 0.75), where raw errors are highest. The following observations aim to represent 200528

random profiles, a superset of the four shown in Figure 10. First, many low-SZA/high-AOD cases529

feature ice cloud near the tropopause, including the first three in Figure 10. This is a known530

climatological feature of the tropics (Jensen et al. 2013), where the vast majority of low-SZA/high-531

AOD cases occur. Second, low-SZA/high-AOD cases without liquid cloud (Figures 10e-h) feature532

large HRs in the bottom ∼1 km of the atmosphere, where the model sometimes overestimates533

(Figure 10e) but generally underestimates (Figure 10g) – consistent with the bottom grid row in534

Figure 9d. Third, the model generally overestimates net flux for these cases (by a large amount535

in Figure 10e). In a separate analysis (not shown) we determined that this is due mainly to536

overestimating 𝐹sfc
down in the low-SZA/high-AOD regime. The model also overestimates 𝐹TOA

up in537

the same regime, but this small bias (∼1 W m-2) is not enough to cancel out the large bias (∼4 W538

m-2) in 𝐹sfc
down. The systematic overestimation of net flux is consistent with the bottom grid row in539

Figure 9g.540
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c. Best longwave model541

Figure 11: Performance of best longwave model on testing data. Formatting is explained in the
caption of Figure 5. [a-c] Attributes diagram for each flux variable. [d-f] Profiles of bias, MAE,

and MAE skill score for HR. [g] Attributes diagram for HR, including all heights.

Figure 11 shows the overall performance of the best longwave model. For all flux variables542

(Figures 11a-c), the model is almost perfectly reliable and almost perfectly reproduces the observed543

distribution. The model has only one perceptible conditional bias, namely an underprediction of544
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∼10 W m-2 for the lowest 𝐹TOA
up predictions. In other words, when the model predicts an extremely545

low 𝐹TOA
up , the prediction is slightly too extreme. The model has an absolute bias ≪ 0.1 K day-1

546

for HR at every height (Figure 11d) but much larger MAEs (Figure 11e), reaching 0.55 and 0.24547

K day-1 at the bottom two grid levels (∼21 and ∼44 m AGL). As will be shown, longwave RT548

near the surface is sensitive to fine-scale details of the thermodynamic profile, which the model549

struggles to capture. Because the climatological model also has its largest HR MAE at the surface,550

the NN model’s local maximum in MAE does not translate to a local minimum in MAE skill score551

(Figure 11f). Lastly, the attributes diagram for HR (Figure 11g) tells a similar story to those for the552

flux variables: the model is almost perfectly reliable and almost perfectly reproduces the observed553

distribution.554
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Figure 12: Performance of best longwave model on testing data, separated by cloud regime.
Formatting is explained in the caption of Figure 6. [a-c] Attributes diagram for each flux variable.

[d-f] Profiles of bias, MAE, and MAE skill score for HR. [g] Attributes diagram for HR,
including all heights, only for cases with no cloud. [h] Same but for single-layer cloud. [i] Same

but for multi-layer cloud. [j] Same but for fog.
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Figure 12 shows the model’s performance as a function of cloud regime. The attributes diagrams555

for flux variables (Figures 12a-c) tell a similar story to the cloud-agnostic versions (Figures 11a-c):556

a few slight conditional biases but no absolute bias exceeding 20 W m-2. In the bottom few 100557

m of the troposphere, HR errors (Figures 12d-f) are best for clear-sky profiles, followed by single-558

and multi-layer cloud, and worst for foggy profiles. In other words, the largest HR errors in the559

bottom few 100 m are caused by clouds, especially clouds that reach the surface. Meanwhile, in560

the troposphere above ∼1 km, HR errors (Figures 12d-f) are best for clear-sky profiles, worst for561

single- and multi-layer cloud. Errors for foggy profiles above ∼1 km are intermediate, because562

many surface-based clouds are not thick enough to reach these heights. Lastly, the attributes563

diagram for HR (Figures 12g-j) is nearly perfect in all cloud regimes.564
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Figure 13: Performance of best longwave model on testing data, binned by geographic location on
a 5◦-by-5◦ grid. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-flux MAE, averaged over the
three flux variables. [f] MAE for net flux only. [g] Bias for net flux only.
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Figure 13 shows the model’s performance as a function of location. The column-averaged MAE565

for HR (Figure 13a) is mostly between 0.10 and 0.15 K day-1; it exceeds 0.15 K day-1 at a few566

locations, notably Tibet, southern Peru, and the northwestern Rocky Mountains. The MAE for567

near-surface HR (Figure 13b) is much larger – mostly between 0.35 and 0.94 K day-1, exceeding568

0.94 K day-1 at the same locations. The column-averaged bias for HR (Figure 13c) is mostly569

between -0.01 and +0.01 K day-1, with absolute bias not exceeding 0.02 K day-1 at any location.570

The bias for near-surface HR (Figure 13d) is larger – mostly between -0.24 and +0.22 K day-1, with571

absolute value exceeding 0.24 K day-1 in Tibet, northern South America, and the northwestern572

Rockies. The all-flux MAE (Figure 13e) is mostly between 0.24 and 0.63 W m-2, exceeding 0.63 W573

m-2 mainly in Tibet. The net-flux MAE (Figure 13f) follows a similar pattern to the all-flux MAE.574

The net-flux bias (Figure 13g) is mostly between -0.23 and +0.24 W m-2, with absolute bias not575

exceeding 0.72 K day-1 at any location. Lastly, maxima in raw error mostly correspond to maxima576

in relative error (Supplemental Figure S3), which indicates that longwave RT is fundamentally577

harder to predict in these regions.578
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Figure 14: Geography-based case studies for the best longwave model. [a-b] Case study from
Tibet; [c-d] another case study from Tibet; [e-f] case study from northwestern Rockies; [g-h] case

study from southern Peru. For each case study, the left panel shows actual (solid line) and
predicted (dashed line) RT solutions, while the right panel shows four of the most important

predictor variables for longwave RT. In each left panel, the legend shows column-averaged MAE
for HR (labeled “HR MAE”), errors for the three flux variables (labeled “bias” to emphasize that

they are predicted minus actual), near-surface temperature lapse rate (Γsfc
𝑇

in Equation 5), and
near-surface humidity lapse rate (Γsfc

𝑞 in Equation 5).
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Figure 14 shows case studies from regions with high model error: Tibet (panels a-d), the579

northwestern Rockies (panels e-f), and southern Peru (panels g-h). The following observations580

aim to represent 800 random profiles (200 per region), a superset of the four shown in Figure581

14. First, most of the 800 profiles feature liquid and/or ice cloud. Like the shortwave model, the582

longwave model matches the shape of the HR profile well but often misses extreme HRs associated583

with cloud by > 1 K day-1. Sometimes the model overestimates longwave cooling above clouds584

(e.g., ∼2.5 and ∼10 km in panel a, ∼8 km in panel c), and sometimes it underestimates cooling585

(e.g., ∼0.4 and ∼4 km in panel g). Second, as for shortwave RT, regions with high longwave error586

have very high surface elevations, which are rare in the training data. Third, sometimes longwave587

HR error near the surface is large even for profiles that appear uncomplicated near the surface588

(e.g., panels e-f), because near-surface longwave RT is sensitive to fine details of the near-surface589

thermodynamic profile.590
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Figure 15: Performance of best longwave model on testing data, binned by near-surface
thermodynamic lapse rates, with Γsfc

𝑇
bins of width 10 K km-1 and Γsfc

𝑞 bins of width 2 g kg-1

km-1. The three labeled regimes (positive/positive, negative/negative, and common) are explained
in the main text. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-flux MAE, averaged over the
three flux variables. [f] MAE for net flux only. [g] Bias for net flux only. [h] Number of testing

samples per bin, in logarithmic scale.
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Figure 15 shows the model’s performance as a function of near-surface thermodynamics, specif-591

ically the temperature lapse rate (Γsfc
𝑇

in Equation 5) and humidity lapse rate (Γsfc
𝑞 in Equation 5).592

First, we note that all error metrics (Figures 15a-g) are worst in two regimes, which we call the593

positive/positive and negative/negative regimes. The positive/positive regime has large positive594

Γsfc
𝑇

and Γsfc
𝑞 – i.e., both temperature and humidity decrease strongly with height. The nega-595

tive/negative regime has large negative lapse rates – i.e., both temperature and humidity exhibit a596

strong inversion, increasing with height. Second, both the positive/positive and negative/negative597

regimes are quite rare, as shown in Figure 15h. Most profiles have a small positive Γsfc
𝑇

and598

small positive Γsfc
𝑞 , the “common” regime labeled in Figure 15. Third, while all error metrics599

are worst in the positive/positive and negative/negative regimes, the most egregious errors are for600

near-surface HR, where both MAE (Figure 15b) and absolute bias (Figure 15d) can be ≫ 1 K601

day-1. Fourth, relative error (Supplemental Figure S4) is also maximized in the positive/positive602

and negative/negative regimes, which indicates that extreme near-surface thermodynamics make603

longwave RT fundamentally harder to predict.604
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Figure 16: Regime-based case studies for the best longwave model. [a-b] Case study from the
negative/negative regime, defined as Γsfc

𝑇
< -30 K km-1 and Γsfc

𝑞 < -13 g kg-1 km-1. [c-d] Another
case study from the negative/negative regime. [e-f] Case study from the positive/positive regime,

defined as Γsfc
𝑇
> 40 K km-1 and Γsfc

𝑞 > 1 g kg-1 km-1. [g-h] Another case study from the
positive/positive regime. Formatting is explained in the caption of Figure 14.
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Figure 16 shows case studies from the negative/negative regime (panels a-d) and positive/positive605

regime (panels e-h). The following observations aim to represent 400 random profiles (200 per606

regime), a superset of the four shown in Figure 16. First, we note that most of these profiles feature607

extreme near-surface heating or cooling. Second, like the geography-based case studies (Figure608

14), the model generally performs well for these regime-based case studies, except for near-surface609

HR and a few extremes associated with cloud (e.g., ∼1.5 km in Figure 16e). Third, the model’s610

fractional error for near-surface HR is generally quite low; cases like Figure 16a do not occur very611

often.612

6. Summary and future work613

We have developed neural networks (NN) to emulate the full RRTM, i.e., the shortwave and614

longwave RRTM with all predictor variables. Both the RRTM and NN-based emulators are driven615

by forecast profiles from the GFSv16 on the native vertical grid, which uses hybrid pressure-sigma616

coordinates. We experimented with novel deep-learning methods designed to produce realistic and617

accurate spatial structure in gridded predictions: the U-net++ architecture, U-net3+ architecture,618

and deep-supervision training method. We hypothesized that the best NNs would be those with619

the U-net3+ architecture and deep supervision. Contrary to our hypotheses, we found that deep620

supervision leads to worse performance and architecture has little impact. We also experimented621

with three other hyperparameters – NN width, depth, and spectral complexity – which strongly622

control the NN’s overall complexity, causing the number of trainable weights to vaey from O(105)623

to O(108.5). We found that the best NNs are at the more complex end of the spectrum; the selected624

shortwave and longwave NNs have 107.52 and 107.28 trainable weights, respectively. Overall, the625

better NNs are deep (have encoders and decoders at many spatial resolutions), narrow (have only626

one convolutional layer per block), and have large spectral complexity (many convolutional filters627

and thus many feature maps). While NN type (U-net++ or U-net3+) has only a weak effect on628

performance, the best shortwave NN is a U-net++ model, while the best longwave NN is a U-net3+629

model. Our NNs are an example of knowledge-guided machine learning, identified as a major630

need in ML applications to the geosciences (Gil et al. 2019; Reichstein et al. 2019). Specifically,631

we enforce energy conservation in the NNs (Equation 2); use a custom loss function to emphasize632
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large heating rates (HR), which are rare but important for weather and climate (Equation 3); and633

include custom predictors to account for vertically non-local effects (Section 3c3 of L21).634

The best shortwave NN model performs extremely well in an aggregate sense, i.e., averaged over635

all the testing data. Highlights include reliable fluxes, with all conditional biases < 10 W m-2
636

in absolute value; reliable HRs, with all conditional biases ≪ 1 K day-1 in absolute value; and637

absolute HR bias < 0.1 K day-1 at all heights, suggesting that the NN could be stably integrated into638

the GFSv16 as a parameterization. The model also performs extremely well in all cloud regimes,639

at most geographic locations, and in most regimes defined by solar zenith angle (SZA) and aerosol640

optical depth (AOD). The largest errors occur in Tibet and east Antarctica, which feature high641

surface elevation/albedo, and in the low-SZA/high-AOD regime, which features a lot of incoming642

solar radiation and interaction with aerosols. However, even these largest errors are quite small:643

mean absolute error (MAE) for HR does not exceed 0.6 K day-1, even near the surface; absolute644

HR bias does not exceed 0.3 K day-1, even near the surface; MAE for flux variables does not exceed645

10 W m-2; and net-flux bias does not exceed 5 W m-2. Table 7 compares our model to NN-based646

emulators of shortwave RT from three other studies: Krasnopolsky et al. 2012 (K12), Song and647

Roh 2021 (SR21), and Kim and Song 2022 (KS22). Although our model appears to perform best,648

this comparison is not apples-to-apples, due to different vertical resolutions (127 levels here, 64649

in K12, 39 in the other two studies), testing cases (time period and spatial domain), and predictor650

variables. The three comparison studies omit aerosols, all trace gases other than O3, LWC and IWC651

(they use cloud fraction instead, with no distinction between liquid and ice), and the particle-size652

distribution (for which we use liquid and ice effective radii). Lastly, our shortwave NN runs 6579653

times faster than the shortwave RRTM.654

The best longwave NN model also performs extremely well in an aggregate sense; highlights655

include near-perfect reliability for both fluxes and HRs and absolute HR bias ≪ 0.1 K day-1 at every656

height. The model’s main deficiency is a large error in near-surface HR, e.g., an MAE of 0.55 K657

day-1 at the lowest grid level. However, longwave RT near the surface is complicated, and errors658

here are often quite large. For example, in Veerman et al. (2020), who emulated only the gas-optics659

part of the RRTMGP, near-surface HR bias is on the order of 1 K day-1 (their Figure 2c). The model660

performs well in all cloud regimes, at most geographic locations, and in most regimes defined by661

near-surface thermodynamics. The largest errors occur with fog, where the bias and MAE for near-662
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Table 7: Comparison of NN-based emulators for shortwave RT. For our model, we use the testing
data only. For the comparison studies, we take results from Table 2 of K12, page 7 of SR21 for
HR errors, Table 3 (the “WRF15” column) of SR21 for flux errors, and Figure 1 of KS22 (these
values are estimated visually). “Profile RMSE” is defined in Equation A1 of K12; “near-surface”

means for the lowest model level; and “N/A” means that the statistic is not reported. Although
KS22 reports flux errors, the statistic is all-flux RMSE, computed by averaging over three

variables: 𝐹sfc
down, 𝐹TOA

up , and 𝐹sfc
up . We predict a different set of flux variables – 𝐹net instead of 𝐹sfc

up
– and thus do not compare our flux errors with KS22.

Model Ours K12 SR21 KS22
Statistic

Column-averaged HR RMSE (K day-1) 0.14 0.26 0.17 ∼0.2
Column-averaged HR bias (K day-1) -0.002 -0.007 N/A N/A
HR profile RMSE (K day-1) 0.12 0.18 N/A N/A
Near-surface HR RMSE (K day-1) 0.20 0.20 N/A N/A
Near-surface HR bias (K day-1) +0.0001 -0.03 N/A N/A
𝐹sfc

down RMSE (W m-2) 5.85 N/A 43.75 N/A
𝐹TOA

up RMSE (W m-2) 3.94 N/A 36.20 N/A

surface HR reach -0.4 and 1.1 K day-1 respectively; in Tibet, where near-surface bias and MAE663

reach almost 1 and 2 K day-1 respectively; and under extreme near-surface thermodynamics, where664

near-surface absolute bias and MAE are ≫ 1 K day-1. However, the extreme thermodynamic665

regimes are quite rare, so this last number is affected by small sample size. Also, even in the666

aforementioned regimes with large error in near-surface HR, column-averaged bias for HR does667

not exceed 0.15 K day-1 in absolute value; column-averaged MAE for HR does not exceed 0.6 K668

day-1; MAE for flux variables does not exceed 10 W m-2; and net-flux bias does not exceed 7 W669

m-2. Table 8 shows that our longwave NN compares very favourably to other studies. Lastly, our670

longwave NN runs 96 times faster than the longwave RRTM.671

Future work will include three items. First, we will develop grid-agnostic NNs that work on672

profiles with any vertical resolution. This work may benefit from Fourier neural operators (FNO;673

Lu et al. 2019; Li et al. 2020), which naturally learn physics in a grid-agnostic manner. Second, we674

will implement NNs as an RT parameterization in the GFSv16. To this end we have converted the675

NNs to a Fortran-friendly format, using the Infero library (ECMWF 2022), and ensured that the676

NNs yield the same predictions in Fortran as in Python. Third, we will perform thorough online677
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Table 8: Comparison of NN-based emulators for longwave RT. For technical notes, see the
caption of Table 7.

Model Ours K12 SR21 KS22
Statistic

Column-averaged HR RMSE (K day-1) 0.22 0.52 0.46 ∼0.375
Column-averaged HR bias (K day-1) -0.0006 +0.008 N/A N/A
HR profile RMSE (K day-1) 0.20 0.38 N/A N/A
Near-surface HR RMSE (K day-1) 0.83 0.55 N/A N/A
Near-surface HR bias (K day-1) -0.002 +0.02 N/A N/A
𝐹sfc

down RMSE (W m-2) 0.64 N/A 5.71 N/A
𝐹TOA

up RMSE (W m-2) 0.81 N/A 7.11 N/A

testing inside the GFSv16. Specifically, we will conduct month-long retrospective simulations in678

both the summer and winter, using a control model (original parameterization) and experimental679

model (NN parameterization). We will compare the two models against each other and against680

observations, using methods as in Turner et al. (2012) and Turner et al. (2020).681
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Estimating full longwave and shortwave radiative transfer with neural1

networks of varying complexity2

3

Supplemental material4

1. Creating synthetic aerosol variables5

We use the following procedure for each profile. Recall that the three aerosol-based predictors6

are single-scattering albedo (SSA), asymmetry parameter, and extinction coefficient – and that the7

first two are scalars. All other variables created in this procedure are intermediate.8

Figure S1: Aerosol regions. Five of the eight regions (urban #1, urban #2, desert dust #1, desert
dust #2, and biomass-burning) are outlined in coloured polygons. Outside the coloured polygons,

the region defaults to “land” or “ocean” if latitude ∈
[
−60,60

] ◦N and “polar” otherwise.

1. Determine region. Assign the profile to one of eight regions (Figure S1): polar, land, ocean,9

urban #1, urban #2, desert dust #1, desert dust #2, and biomass-burning.10

2. Determine SSA. Draw the SSA from a normal distribution with region-dependent parameters11

(Table S1), then bound values to the range
[
0,1

]
. Values outside this range are non-physical.12

3. Determine asymmetry parameter. Draw the asymmetry parameter from a normal distribution13

with region-dependent parameters (Table S1), then bound values to the range
[
0,1

]
. Values14

outside this range are non-physical.15

4. Determine scale height. Draw the scale height – i.e., the e-folding height for extinction16

coefficient – from a normal distribution with region-dependent parameters (Table S1), then17

bound values to the range
[
0.1,∞

)
km.18
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5. Compute baseline AOD.19

(a) Compute the baseline extinction coefficient at each grid level:20

ϵz = e− z
H ·1 km−1, (1)

where z is the grid-point height and H is the scale height computed in step 4, both in21

km above ground. See Figure S2a.22

(b) Compute the baseline AOD:23

AODbaseline =
ztop
zbottom ϵzdz, (2)

ztop and zbottom are the top and bottom heights in the grid (km above ground) and ϵz24

comes from Equation 1.25

6. Determine actual AOD.26

(a) Create narrow AOD distribution, using region-dependent parameters listed in Table S2.27

See Figure S2b.28

(b) Create wide AOD distribution, using region-dependent parameters listed in Table S2.29

See Figure S2c.30

(c) Shift wide AOD distribution, giving it the same mean as the narrow distribution. Specif-31

ically, subtract AODwide − AODnarrow from every value in the wide AOD distribution,32

where AODwide and AODnarrow are the means of the two distributions.33

(d) Censor wide AOD distribution, bounding values to the range
[
0,1.5

]
. Negative values34

are non-physical, and values > 1.5 are very rare. See Figure S2d.35

7. Compute the actual extinction coefficient at each grid level:36

ϵz =
AODactual

AODbaseline
e− z

H ·1 km−1. (3)

Note that, while each level has a different height z, all other variables on the right-hand side37

are constant throughout the profile. See Figure S2e.38
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Table S1: Region-dependent distribution parameters for aerosol variables other than AOD. Each
cell contains the mean, followed by the standard deviation, of a normal distribution. SSA =

single-scattering albedo.

Variable SSA Asymmetry parameter Scale height
(unitless) (unitless) (m)

Region
Polar 0.95, 0.02 0.72, 0.03 500, 100
Land 0.95, 0.02 0.70, 0.03 1500, 300
Ocean 0.96, 0.02 0.75, 0.03 1000, 100
Urban #1 0.94, 0.02 0.70, 0.03 1500, 300
Urban #2 0.91, 0.04 0.70, 0.03 1500, 100
Desert dust #1 0.95, 0.02 0.78, 0.05 1500, 200
Desert dust #2 0.95, 0.02 0.78, 0.03 1500, 200
Biomass-burning 0.91, 0.05 0.72, 0.03 2000, 300

In step 6, the narrow distribution is based on observations of the real atmosphere, while the wide39

observation is designed to increase the frequency of large AOD values. In previous work we found40

that NNs trained with AODs from the narrow distribution failed on large AOD values, which were41

underrepresented in the training data. The distributional parameters in Tables S1 and S2 were42

selected by co-author Turner, based on numerous presentations and journal papers; our values for43

SSA, AOD, and asymmetry parameter largely agree with Kinne (2019).44
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Table S2: Region-dependent distribution parameters for AOD. Each cell contains the shape
parameter, followed by the scale parameter, of a gamma distribution. After applying the gamma

distribution, all outputs (sampled AOD values) are divided by 10.

Region Narrow distribution Wide distribution
Polar 0.675, 1.333 2.7, 4.0
Land 7.5, 0.4 30.0, 1.2
Ocean 14.7, 0.143 58.8, 0.429
Urban #1 16.875, 0.267 67.5, 0.8
Urban #2 13.333, 0.45 53.333, 1.35
Desert dust #1 13.333, 0.45 53.333, 1.35
Desert dust #2 7.5, 0.6 30.0, 1.8
Biomass-burning 13.333, 0.45 53.333, 1.35

Figure S2: Procedure for creating synthetic profile of aerosol-extinction coefficients. In the case
shown, the randomly drawn scale height is 1.318 km; the resulting baseline AOD is 1.297; and

the randomly drawn actual AOD, from the distribution in panel d, is 0.409.
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2. Hyperparameter experiment45

Table S3 documents constant hyperparameters – i.e., those not varied during the experiment –46

that are not shown in the architecture schematics (Figures 3-4 in the main text). Subsections a and47

b discuss results of the experiment.48
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Table S3: Constant NN hyperparameters, i.e., not varied during the experiment.

Hyperparameter Value chosen Justification

Activation function for
flux-output layer

Rectified linear unit
(ReLU; Nair and Hinton
2010)

ReLU sets negative values to 0 and leaves positive values alone. This
is appropriate for the two free flux variables – F sfc

down and F TOA
up –

which cannot be negative. The other flux variable is Fnet, which
can be negative, but this is computed as F sfc

down minus F TOA
up after

applying ReLU.

Activation function for
HR-output layer

ReLU ReLU is appropriate for HR, which cannot be negative.

Activation function for
internal layers

Leaky ReLU (Maas
et al. 2013) with slope
of 0.2

The “internal layers” are all non-terminal convolutional and fully
connected layers – i.e., all convolutional layers except the HR output
and all fully connected layers except the flux output. Leaky ReLU
reduces the magnitude of negative values (with the chosen slope,
replaces negative values x with 0.2x) and leaves positive values
alone. Strict ReLU solves the problem of vanishing gradients, and
leaky ReLU solves the problem of dead neurons that arises from
strict ReLU, as discussed in Chapter 4 of Lagerquist (2020).

Batch normalization Used for internal layers,
not output layers

Batch normalization (Ioffe and Szegedy 2015) produces negative
values, so it is inappropriate for the output layers. In general, batch
normalization alleviates the vanishing-gradient problem (Chapter 4
of Lagerquist 2020).

Number of epochs 1000 In one epoch, each training example is presented to the NN once.
Early stopping (below) occurs for all NNs in the experiment, so
training never continues for 1000 epochs.

Batch size 724 examples Each update of the NN’s trainable weights is based on 724 profiles.
In early experiments (not shown), we found that smaller batches
make training susceptible to noise and therefore unstable, while
larger batches require too much memory. Both issues are discussed
in Li et al. (2014).

Early stopping Patience of 100 epochs If the loss on validation data has not reached a new minimum in
the last 100 epochs, we stop training and restore NN weights to
the epoch with minimum validation loss. In early experiments (not
shown) we found that a longer patience merely prolongs training,
without helping the NN achieve a lower validation loss.

Optimizer Adam Adam (Kingma and Ba 2014) is a sophisticated version of stochastic
gradient descent (Section 8.3.1 of Goodfellow et al. 2016). Adam
uses a different learning rate for each NN weight and adjusts the
learning rates during training, which generally leads to a better
model.

Learning rate Start with 0.001, reduce
by 40% upon 10-epoch
plateau

A start value of 0.001 is the default in the Keras library. “Reduce
by 40% upon 10-epoch plateau” means that, if validation loss has
not reached a new minimum in the last 10 epochs and we have not
performed a reduction step in the last 10 epochs, we multiply every
learning rate by 0.6. The patience (10 epochs) and reduction factor
(0.6) are hyperparameters, which we tuned in early experiments (not
shown).
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a. Results for shortwave RT49

Figures S3-S8 show validation error as a function of hyperparameters for a few of the metrics50

listed in Table 7 of the main text. 12 of the 288 NNs could not be trained, due to memory issues;51

these NNs are marked by grey squares in Figures S3-S8. NN type has little effect on model52

performance – note that each figure has one panel per NN type and errors do not vary much53

across the panels. For unsigned errors (all other than bias; Figures S3-S4 and S7-S8), the most54

important hyperparameter is spectral complexity, while NN depth and width are of secondary55

importance. Unsigned errors decrease as spectral complexity increases up to 64, then show little56

variation as spectral complexity increases beyond 64, which suggests that the optimal value is ≳57

64. Also, unsigned errors decreases as NN depth increases and NN width decreases; this suggests58

that the optimal NN is deep and narrow, with encoders/decoders at many spatial resolutions but59

only convolutional layer per block.60

For HR biases (Figures S5-S6), the most important hyperparameter is again spectral complexity.61

The relationship between spectral complexity and near-surface HR bias for multi-layer cloud (Figure62

S6) is similar to the above-mentioned relationship between spectral complexity and unsigned errors.63

Specifically, absolute bias decreases as spectral complexity increases up to 64, suggesting that the64

optimal value is ≳ 64. However, the relationship between spectral complexity and column-averaged65

HR bias (Figures S5) is quite different, suggesting that the optimal spectral complexity is ∼8. In66

other words, making unbiased predictions of HR in general requires much less spectral complexity67

than making unbiased predictions of near-surface HR under multi-layer cloud, which is a more68

difficult problem.69

Based on all 14 shortwave error metrics (Table 7 of the main text), we select as “best” the70

U-net++ trained without deep supervision, with a depth of 3, width of 1, and spectral complexity71

of 128. The best model achieves the following ranks (1st being the best and 276th being the worst)72

on metrics for all profiles, in the order that they appear in Table 7: 1st, 120th, 9th, 24th, 1st, 1st, and73

85th. The model achieves the following ranks on metrics for profiles with multi-layer cloud, in the74

order that they appear in Table 7: 8th, 66th, 18th, 50th, 1st, 1st, 79th. The model contains 33 240 17475

(107.52) learned weights, making it one of the more complex models attempted (Figure S9).76
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Figure S3: Column-averaged DWMSE for HR on all profiles (K3 day-3), computed on validation
data for each set of hyperparameters. Each panel shows one NN type; within each panel the other
three hyperparameters vary. Grey squares correspond to NNs that could not be trained. The white

circle marks the selected model, and the white star (hidden behind the white circle) marks the
model with the lowest value for this error metric.
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Figure S4: DWMSE for near-surface HR on profiles with multi-layer cloud (K3 day-3), computed
on validation data for each set of hyperparameters. The white circle marks the selected model,

and the white star marks the model with the lowest value for this error metric. Other formatting is
explained in the caption of Figure S3.
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Figure S5: Column-averaged HR bias for all profiles (K day-1), computed on validation data for
each set of hyperparameters. Formatting is explained in the caption of Figure S3.
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Figure S6: Near-surface HR bias for profiles with multi-layer cloud (K day-1), computed on
validation data for each set of hyperparameters. Formatting is explained in the caption of Figure

S3.
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Figure S7: Net-flux RMSE for all profiles (W m-2), computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S3.
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Figure S8: Net-flux RMSE for profiles with multi-layer cloud (W m-2), computed on validation
data for each set of hyperparameters. Formatting is explained in the caption of Figure S3.
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Figure S9: Number of trainable model weights for each set of hyperparameters, in log10 scale.
The white circle marks the selected model. Other formatting is explained in the caption of Figure

S3.
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b. Results for longwave RT77

Figures S10-S16 show validation error vs. hyperparameters for a few metrics listed in Table 778

of the main text. As for the shortwave hyperparameter experiment, 12 of 288 NNs could not be79

trained, due to memory issues – see grey squares in Figures S10-S16. Our broad conclusions for80

the shortwave experiment (Section 2a) hold for the longwave experiment as well. Specifically, the81

most important hyperparameter is spectral complexity, with an optimal value of ≳64; NN width82

and depth are of secondary importance, with narrow and deep networks performing best; and NN83

type appears to be unimportant.84

Based on all 19 longwave error metrics, we select as “best” the U-net3+ trained without deep85

supervision, with a depth of 5, width of 1, and spectral complexity of 64. This model achieves the86

following ranks (1st being the best and 276th being the worst) on metrics for all profiles, in the order87

that they appear in Table 7: 1st, 14th, 1st, 16th, 2nd, 2nd, and 83rd. The model achieves the following88

ranks on metrics for profiles with multi-layer cloud, in the order that they appear in Table 7: 1st,89

76th, 1st, 9th, 2nd, 3rd, 95th. Finally, the model achieves the following ranks on metrics for profiles90

with fog, in the order that they appear in Table 7: 1st, 50th, 3rd, 4th, 120th. The model contains 1991

189 566 (107.28) learned weights, making it one of the more complex models attempted (Figure92

S17).93
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Figure S10: Column-averaged DWMSE for HR on all profiles (K3 day-3), computed on validation
data for each set of hyperparameters. Each panel shows one NN type; within each panel the other
three hyperparameters vary. Grey squares correspond to NNs that could not be trained. The white

circle marks the selected model, and the white star (hidden behind the white circle) marks the
model with the lowest value for this error metric.
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Figure S11: DWMSE for near-surface HR on profiles with multi-layer cloud (K3 day-3),
computed on validation data for each set of hyperparameters. Formatting is explained in the

caption of Figure S10.
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Figure S12: DWMSE for near-surface HR on profiles with fog (K3 day-3), computed on validation
data for each set of hyperparameters. Formatting is explained in the caption of Figure S10.
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Figure S13: Column-averaged HR bias for all profiles (K day-1), computed on validation data for
each set of hyperparameters. The black circle marks the selected model, and the black star marks
the model with the lowest value for this error metric. Other formatting is explained in the caption

of Figure S10.
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Figure S14: Near-surface HR bias for profiles with fog (K day-1), computed on validation data for
each set of hyperparameters. Formatting is explained in the caption of Figure S10.
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Figure S15: Net-flux RMSE for all profiles (W m-2), computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S10.
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Figure S16: Net-flux RMSE for profiles with fog (W m-2), computed on validation data for each
set of hyperparameters. Formatting is explained in the caption of Figure S10.
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Figure S17: Number of trainable model weights for each set of hyperparameters, in log10 scale.
The white circle marks the selected model. Other formatting is explained in the caption of Figure

S10.
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3. Extended analysis of best models94

This section contains figures referenced in the main text, used for extended analysis of the best95

shortwave and longwave models.96
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Figure S18: Fractional errors for best shortwave model on testing data, binned by geographic
location. This figure is analogous to Figure 7 in the main text but shows fractional errors instead

of raw errors.
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Figure S19: Fractional errors for best shortwave model on testing data, binned by aerosol optical
depth (AOD) and solar zenith angle (SZA). This figure is analogous to Figure 9 in the main text

but shows fractional errors instead of raw errors.
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Figure S20: Fractional errors for best longwave model on testing data, binned by geographic
location. This figure is analogous to Figure 13 in the main text but shows fractional errors instead

of raw errors.
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Figure S21: Fractional errors for best longwave model on testing data, binned by near-surface
thermodynamic lapse rates. This figure is analogous to Figure 15 in the main text but shows

fractional errors instead of raw errors.
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