
Generated using the official AMS LATEX template v6.1

Estimating full longwave and shortwave radiative transfer with neural1

networks of varying complexity2

This article has been conditionally accepted to the AMS Journal of3

Atmospheric and Oceanic Technology.4

Ryan Lagerquista,b , David D. Turnerb , Imme Ebert-Uphoffa,c , and Jebb Q. Stewartb5

a Cooperative Institute for Research in the Atmosphere (CIRA)6

b National Oceanic and Atmospheric Administration (NOAA) Global Systems Laboratory (GSL),

Boulder, Colorado

7

8

c Department of Electrical and Computer Engineering, Colorado State University, Fort Collins,

Colorado

9

10

Corresponding author: Ryan Lagerquist, ralager@colostate.edu11

1



ABSTRACT: Radiative transfer (RT) is a crucial but computationally expensive process in nu-

merical weather/climate prediction. We develop neural networks (NN) to emulate a common RT

parameterization called the Rapid Radiative-transfer Model (RRTM), with the goal of creating a

faster parameterization for the Global Forecast System (GFS) v16. In previous work we emulated

a highly simpliőed version of the shortwave RRTM only ś excluding many predictor variables,

driven by Rapid Refresh forecasts interpolated to a consistent height grid, using only 30 sites in the

northern hemisphere. In this work we emulate the full shortwave and longwave RRTM ś with all

predictor variables, driven by GFSv16 forecasts on the native pressure-sigma grid, using data from

around the globe. We experiment with NNs of widely varying complexity, including the U-net++

and U-net3+ architectures and deeply supervised training, designed to ensure realistic and accurate

structure in gridded predictions. We evaluate the optimal shortwave NN and optimal longwave

NN in great detail ś as a function of geographic location, cloud regime, and other weather types.

Both NNs produce extremely reliable heating rates and ŕuxes. The shortwave NN has an overall

RMSE/MAE/bias of 0.14/0.08/-0.002 K day-1 for heating rate and 6.3/4.3/-0.1 W m-2 for net ŕux.

Analogous numbers for the longwave NN are 0.22/0.12/-0.0006 K day-1 and 1.07/0.76/+0.01 W

m-2. Both NNs perform well in nearly all situations, and the shortwave (longwave) NN is 7510

(90) times faster than the RRTM. Both will soon be tested online in the GFSv16.
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SIGNIFICANCE STATEMENT: Radiative transfer is an important process for weather and29

climate. Accurate radiative-transfer models exist, such as the RRTM, but these models are com-30

putationally slow. We develop neural networks (NN), a type of machine-learning model that is31

often computationally fast after training, to mimic the RRTM. We wish to accelerate the RRTM by32

orders of magnitude without sacriőcing much accuracy. We drive both the NNs and RRTM with33

data from the GFSv16, an operational weather model, using locations around the globe during34

all seasons. We show that the NNs are highly accurate and much faster than the RRTM, which35

suggests that the NNs could be used to solve radiative transfer inside the GFSv16.36

1. Introduction37

Radiative heating is a main driver of the Earth’s climate and the only process by which the38

Earth can exchange energy with the rest of the universe; radiative transfer (RT) is the governing39

theory. In RT studies the electromagnetic spectrum is often separated into the shortwave part40

(wavelength ≲ 4 𝜇m), which is mostly emitted by the Sun, and the longwave part (≳ 4 𝜇m),41

which is mostly emitted by the Earth ś both its surface and atmosphere.1 The global distribution42

of top-of-atmosphere (TOA) incoming shortwave radiation is controlled largely by geographic43

variations in the solar zenith angle and surface albedo, with low (high) zenith angle and albedo at44

the low (high) latitudes.2 This sets up a strong meridional gradient in TOA incoming shortwave45

radiation, with higher values at lower latitudes. The global distribution of TOA outgoing longwave46

radiation is somewhat similar, because warmer surfaces (at lower latitudes) emit more longwave47

radiation than colder surfaces. However, the longwave distribution is more complicated, because48

longwave radiation interacts more strongly with atmospheric gases. Overall, the low latitudes have49

a surplus of net radiation (TOA incoming shortwave minus TOA outgoing longwave), while the50

high latitudes have a deőcit. This imbalance maintains the meridional temperature gradient we51

observe, as well as driving the global atmospheric circulation, including a strong poleward heat52

ŕux produced by baroclinic waves. (Wallace and Hobbs 2006)53

RT is also crucially important for day-to-day weather prediction, because it causes differential54

diabatic heating. In numerical weather prediction (NWP), this diabatic heating is a subgrid-scale55

process and is therefore parameterized by a separate RT model. The most accurate RT models are56

1The 4-𝜇m threshold is not an exact constant; sometimes other values are used.

2Clouds (both liquid and ice; Tang et al. 2020) and aerosols (Myhre et al. 2013) also play a major, though highly uncertain, role in the Earth’s

shortwave-radiation budget.
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line-by-line models (Turner et al. 2004; Mlawer and Turner 2016), but these are far too slow for57

NWP. A popular compromise is the Rapid Radiative-transfer Model (RRTM; Mlawer et al. 1997),58

a hybrid physical/statistical model that is nearly as accurate as line-by-line models but millions59

of times faster. The RRTM, like most RT models, performs 1-dimensional RT, assuming that60

RT occurs only in the vertical. Faster variants ś such as the RRTM for global climate models61

(RRTMG; Pincus and Stevens 2013), RRTMG Parallel (RRTMGP; Mlawer and Delamere 2019),62

and RRTMG-K (Baek 2017) ś are often used in NWP as well. However, the RRTM and its variants63

are still computationally expensive, accounting for 20 to 50% of the total computing of the host64

NWP model (e.g., Cotronei and Slawig 2020). We have elected to emulate the RRTM3 because,65

by using more quadrature points, it is more accurate than the RRTMG.66

This has motivated a body of work on using neural networks (NN; Part II of Goodfellow et al.67

2016), an algorithm from machine learning (ML), to emulate RT models, dating back to Chevallier68

et al. (1998). ML-based emulation of RT and other subgrid-scale processes almost always uses69

NNs, so we omit other ML algorithms from this review. The main advantage of NNs is that they70

can accurately model complex relationships (hence łuniversal function-approximatorsž; see, e.g.,71

Sonoda and Murata 2017) and are much faster than the RRTM and its variants at inference time,72

i.e., when applying a trained NN to predict on new data. The main disadvantage is that they are73

purely statistical models and, without physical constraints, may not generalize well to conditions74

outside the range of their training data, such as future climates. Also, adding predictor variables75

to a NN requires complete retraining. An overall disadvantage of replacing parameterizations76

such as the RRTM is that the host NWP models are very sensitive to changes in parameterizations77

(Boukabara et al. 2019; Rasp 2020; Muñoz-Esparza et al. 2022). Thus, even if the RT-emulator78

has very small errors in offline testing (outside the NWP model), during online testing (inside the79

NWP model) these errors may accumulate or cause undesired feedbacks to other components of80

the NWP model, degrading the quality of the overall weather forecast. However, if successfully81

integrated into an NWP model, a NN-based RT-emulator can decrease computing requirements by82

orders of magnitude.83

The current article expands on work presented in Lagerquist et al. (2021), henceforth L21.84

Differences between this work and L21 are listed at the end of the introduction. The following85

3Speciőcally version 2.7.1 of the shortwave model, covering the 0.2ś12.2-𝜇m band, and version 3.3 of the longwave model, covering the

3.07ś1000-𝜇m band.
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review focuses on recent work in RT emulation, especially work published after L21. We divide86

recent work into four categories: emulating RT in climate models, emulating RT in weather models,87

emulating only part of an RT model such as gas optics, and miscellaneous.88

In climate-modeling, Pal et al. (2019) developed an RT-emulator for the super-parameterized89

Energy Exascale Earth System Model (SP-E3SM) and found in online testing that the emulator90

produces a similar climate to the original RT model. Beucler et al. (2021) used climate-invariant91

NNs to emulate both RT and other subgrid-scale processes in climate models. They ensured92

climate-invariance by rescaling three predictor variables for the NN ś temperature, humidity,93

and latent-heat ŕux ś to forms that are not projected to increase with global warming. Without94

rescaling, applying the trained NN to future climates involved extrapolating (e.g., applying the NN95

to temperatures higher than any seen in the training data), which degraded performance. Beucler96

et al. found that rescaling allows their NN to predict subgrid-scale processes well, including RT,97

in a climate 8 K warmer than the climate used for training. Belochitski and Krasnopolsky (2021)98

used an emulator developed in 2011 for the Climate Forecast System (CFS) and integrated it into99

version 16 of the Global Forecast System (GFSv16). They found that the emulator generalized100

well between the host models without retraining ś i.e., the GFSv16 with the emulator produced a101

similar climate to the GFSv16 with the original RRTMG parameterization. However, this success102

was achieved only after changing the number of heights and prognostic variables in the GFSv16 to103

match the CFS.104

In weather-modeling, much recent work has been done at the Korean Meteorological Agency105

(KMA). Roh and Song (2020) became the őrst to emulate RT at cloud-resolving resolution,106

developing NNs for a 250-metre version of the Weather Research and Forecasting (WRF) model.107

However, this work was limited by focusing on a single idealized squall-line simulation. Song108

and Roh (2021) developed a more general RT-emulator for use in the Korea Local Analysis and109

Prediction System (KLAPS), an operational version of the WRF used by the KMA. When tested110

online in KLAPS, the NN produced similar instantaneous temperature and precipitation őelds to111

the original RRTMG-K parameterization, suggesting that the NN may be suitable for operational112

use. Kim and Song (2022) used automatic hyperparameter-tuning4 to őnd the best learning rate and113

training-batch size for the same KLAPS application, improving the performance of the NN further.114

4A hyperparameter is a NN parameter that, unlike the weights and biases, cannot be adjusted during training. A hyperparameter must be

tuned by trial and error, i.e., training many NNs with different values.
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Lastly, researchers at the ECMWF are currently working to integrate NN-based RT-emulators into115

an operational model, namely the Integrated Forecasting System (Chantry et al. 2022, 2023).116

Some groups have used NNs to emulate only the gas-optics step of an RT model. Gas optics117

maps the physical/chemical state of the atmosphere to a proőle of spectral optical depths, and118

the solver ś the second and last step of an RT model ś maps the optical depths to heating rates119

and ŕuxes (Veerman et al. 2020). Speciőcally, gas optics converts temperature, pressure, and120

chemical concentrations into quantities that directly determine how much radiation is emitted,121

absorbed, and scattered in different directions (Veerman et al. 2020). Gas optics is an empirical122

algorithm in many RT models, relying on observations stored in large lookup tables, whereas the123

RT-solver is a physical algorithm, relying on well known equations. Because large lookup tables124

are computationally slow, gas optics is ripe for acceleration by NNs; because gas optics is already125

empirical, acceleration by NNs does not remove physical knowledge from the RT model. Ukkonen126

et al. (2020) emulated the gas-optics scheme in the RRTMGP and found that at most locations on127

Earth, the emulator introduces an RMSE of < 0.5 W m-2 in ŕuxes and < 0.1 K day-1 in heating128

rates for both the shortwave and longwave. Veerman et al. (2020) also emulated gas optics in129

the RRTMGP, obtaining similar results. Stegmann et al. (2022) emulated gas absorption in the130

Community Radiative-transfer Model, which is used in the observation operator for satellite-data131

assimilation. Lastly, Ukkonen (2022) tested the use of NNs for three different emulation tasks:132

only the gas-optics scheme, only the reŕectance-transmission calculations in the RT-solver, and the133

full RT model. They found that replacing only the gas-optics scheme leads to the most accurate134

emulation, followed by replacing the full RT model. However, this study is limited by focusing only135

on shortwave RT for cloudy proőles. Geiss et al. (2022) emulated the aerosol-optics scheme of an136

RT model, using NNs with novel architectures, and found that connections between non-adjacent137

NN layers ś which are uncommon in the literature ś yielded the best performance.138

NNs have additionally been used to simulate 3-dimensional RT (Meyer et al. 2022; Yang et al.139

2022) and hyperspectral RT (Le et al. 2020). Also, one study (Liu et al. 2020) has explored140

the effect of NN-architectural complexity on RT accuracy. They compared fully connected and141

convolutional NNs5, őnding that convolutional NNs achieve slightly better performance but not142

5Fully connected (or łdensež) NNs treat the predictor variables as independent scalars, while convolutional NNs treat the predictors as images.

Thus, convolutional NNs can leverage spatial structure in gridded data, while fully connected NNs cannot. While convolutional NNs are typically

applied to 2-D or 3-D images, they can be applied just as easily to 1-D łimagesž ś such as the vertical proőles in this study ś and leverage spatial

structures therein.
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enough to justify the added computational cost. However, they focused only on longwave RT in143

clear-sky conditions, and their errors were quite large (e.g., heating-rate errors often ≫ 1 K day-1
144

near the surface). L21 explored U-net (Ronneberger et al. 2015) and U-net++ models (Zhou et al.145

2019), convolutional NNs designed for image-to-image translation. In offline evaluation, they146

found that U-net++ models outperform fully connected NNs in general and outperform traditional147

U-nets for proőles with multi-layer cloud, where RT is the most complex. See their Supplemental148

Section Cd for this architectural comparison.149

In this work we use NNs ś speciőcally the U-net++ and U-net3+ architectures ś to emulate the150

full RRTM. łFullž means that we emulate everything: both gas optics and the RT-solver, for both151

the shortwave and longwave, including all predictor variables. This contrasts with L21, where152

we emulated a simpliőed shortwave RRTM without aerosols, trace gases, or information on the153

particle-size distribution (PSD) of hydrometeors. Our eventual aim is to integrate the NN-based154

emulators into the GFSv16, a global model with hybrid pressure-sigma coordinates in the vertical.155

Thus, we train the NNs with GFSv16 data from locations around the globe on the native pressure-156

sigma grid ś in contrast to L21, we trained with data from 30 sites in the northern hemisphere on157

a standard height grid.158

2. Data159

This section discusses predictor (input) variables and target (output) variables. The RRTM and160

the NNs we use to emulate the RRTM have the same target variables and mostly the same predictor161

variables; the NNs have two extra predictor variables, as discussed in Section 2a. Most predictor162

variables come from the GFSv16, but some are synthetic, because they are difficult to observe and163

not available in the GFSv16 output őles. Because the NNs are built to emulate the RRTM, target164

variables produced by the RRTM are considered ground truth ś łlabelsž in ML terminology.165

a. GFSv16-based predictors166

The GFSv16 is a global, non-hydrostatic, operational model with 0.25◦ horizontal spacing167

and 127 vertical levels in hybrid pressure-sigma coordinates, extending to the mesopause at ∼80168

km above sea level6. We have obtained 0000 UTC model runs from the National Environ-169

mental Security Computing Center’s (NESCC) High-performance Storage System (HPSS). The170

6See 2021 update here: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.php
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HPSS archive contains most days from Sep 1 2018 to Dec 23 2020 and forecast lead times of171

{0,6,12,18,24,30,36} hours. We extract 6-, 12-, 18-, 24-, 30-, and 36-hour forecast proőles172

(columns) from locations around the globe. Speciőcally, for each model solution (i.e., each com-173

bination of initialization time and valid time), we randomly select 4000 grid points from the global174

grid. We extract all predictor variables used by the RRTM that are in GFSv16 output őles, listed in175

Table 1. We also extract two extra variables ś the height thickness and pressure thickness of each176

layer ś for use by the NNs but not the RRTM. For the work in L21, where all proőles have the177

same physical height grid (i.e., the 𝑘 th pixel always corresponds to the same height in metres), the178

thickness variables were not necessary. But for the current work, where all proőles have a different179

physical height grid due to the hybrid coordinates, we found that the thickness variables improve180

RT estimation by the NNs. These variables are important because they tell the NNs how much181

łstuffž is in each layer ś i.e., how much air there is to heat and how many other molecules there182

are to interact with radiation, which cannot be determined from molecular concentrations alone.183

b. Synthetic predictors184

Predictors not in GFSv16 output őles are listed in Table 2. We create synthetic data for these185

predictors, which fall into three categories: particle sizes, trace gases, and aerosols.186

Particle sizes187

The two relevant variables are ice effective radius (𝑟 ice
eff

) and liquid effective radius (𝑟
liq

eff
), both188

summaries of the particle-size distribution (PSD; Mitchell et al. 2011). To create a synthetic proőle189

of 𝑟 ice
eff

, we apply the following equation from Mishra et al. (2014, their Figure 6b) independently190

to each height in the proőle:191

𝑟 ice
eff = 86.73 𝜇m+

(
1.07

𝜇m
◦C

)
𝑇, (1)

where 𝑇 is the temperature (◦C) and each height has a different temperature (Figure 1a). After192

Equation 1, we apply two types of noise to the proőle: bulk noise, which shifts the whole proőle to193

higher or lower values, and structure noise, which changes the structure of the proőle (Figure 1b).194

For bulk noise, we multiply the whole 𝑟 ice
eff

proőle by 1+ 𝜖𝑏, where 𝜖𝑏 is a random variable drawn195

from a normal distribution with mean = 0 and standard deviation = 0.5, denoted as N(0,0.5). In196
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Table 1: Description of GFSv16-based predictor variables. łVector?ž asks whether the variable
is a proőle or a scalar, and łAGLž = above ground level. Downward LWP at height 𝑧 is LWC

integrated from the top of the proőle down to 𝑧, and upward LWP at height 𝑧 is LWC integrated
from the bottom of the proőle up to 𝑧. The deőnitions of downward IWP, upward IWP, downward

WVP, and upward WVP are analogous.

Variable Units Predictor for Predictor for Vector?

shortwave RT? longwave RT?

Solar zenith angle ◦ ✓

Surface albedo ✓

Surface temperature K ✓

Surface emissivity ✓

Temperature K ✓ ✓ ✓

Pressure Pa ✓ ✓ ✓

Speciőc humidity kg kg-1 ✓ ✓ ✓

Relative humidity ✓ ✓ ✓

Liquid-water content (LWC) kg m-3 ✓ ✓ ✓

Ice-water content (LWC) kg m-3 ✓ ✓ ✓

Downward liquid-water path (LWP) kg m-2 ✓ ✓ ✓

Downward ice-water path (IWP) kg m-2 ✓ ✓ ✓

Downward water-vapour path (WVP) kg m-2 ✓ ✓ ✓

Upward LWP kg m-2 ✓ ✓ ✓

Upward IWP kg m-2 ✓ ✓ ✓

Upward WVP kg m-2 ✓ ✓ ✓

O3 mixing ratio kg kg-1 ✓ ✓ ✓

Height m AGL ✓ ✓ ✓

Height thickness m ✓ ✓ ✓

Pressure thickness Pa ✓ ✓ ✓

other words, the standard deviation of bulk noise is 50% of the value generated by Equation 1. For197

structure noise, we multiply the 𝑟 ice
eff

value at every height by 1+ 𝜖𝑠, where 𝜖𝑠 is drawn anew at every198

height from N(0,0.05). After adding noise, we bound 𝑟 ice
eff

values to the range [17.18,65.33] 𝜇m,199

which is the same as bounding temperature to [−65,−20] ◦C, the range of validity for Equation 1.200

See Figure 1c.201
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Table 2: Description of synthetic predictor variables.

Variable Units Predictor for Predictor for Vector?

shortwave RT? longwave RT?

Aerosol single-scattering albedo ✓

Aerosol asymmetry parameter ✓

Aerosol extinction coefficient m-1 ✓ ✓

Liquid effective radius m ✓ ✓ ✓

Ice effective radius m ✓ ✓ ✓

N2O concentration ppmv ✓ ✓ ✓

CH4 concentration ppmv ✓ ✓ ✓

CO2 concentration ppmv ✓ ✓ ✓

Figure 1: Procedure for creating synthetic proőles of [a-c] ice effective radius and [d-e] liquid
effective radius.
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Table 3: Deőnition of standard atmospheres. The categorization is mutually exclusive and
collectively exhaustive, i.e., every proőle is assigned to exactly one of the őve standard

atmospheres.

Standard atmosphere Months Latitudes

Mid-latitude summer May ś Oct [20,65] ◦N

Mid-latitude summer Nov ś Apr [20,65] ◦S

Mid-latitude winter Nov ś Apr [20,65] ◦N

Mid-latitude winter May ś Oct [20,65] ◦S

Polar summer May ś Oct [65,90] ◦N

Polar summer Nov ś Apr [65,90] ◦S

Polar winter Nov ś Apr [65,90] ◦N

Polar winter May ś Oct [65,90] ◦S

Tropical All [−20,20] ◦N

To create a synthetic proőle of 𝑟
liq

eff
, we start with the distribution discovered by Miles et al.202

(2000). They found that 𝑟
liq

eff
roughly follows the distribution N(6 𝜇m,1 𝜇m) over land and203

N(9.5 𝜇m,1.2 𝜇m) over ocean. See Figure 1d. However, using this information alone would204

lead to constant 𝑟
liq

eff
proőles, which are unrealistic. Thus, we add structure noise to each proőle,205

using the same method as for 𝑟 ice
eff

. See Figure 1e.206

Trace gases207

For trace gases not in the GFSv16 output őles ś N2O, CH4, and CO2 ś we use canonical208

proőles provided by Anderson et al. (1986). There is one canonical proőle for each gas and each209

standard atmosphere, the latter deőned in Table 3. For example, the őve canonical N2O proőles are210

shown in Figure 2a. As for 𝑟 ice
eff

, we add both bulk and structure noise to each proőle of trace-gas211

concentrations. We use the same noise distributions as for 𝑟 ice
eff

. See Figure 2b.212

Note that the values provided in Anderson et al. (1986) are outdated, corresponding to a past cli-213

mate. However, by adding noise we sample a wide range of atmospheric conditions, corresponding214

to both present-day and hypothetical future climates. For example, Supplemental Figure S3 shows215

that our dataset includes many CO2 concentrations well above the present-day value of ∼412 ppm.216
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Figure 2: Procedure for creating synthetic proőles of trace-gas concentration ś in this example,
N2O concentration.

Aerosols217

Due to its complexity, we have relegated our method for creating synthetic aerosol variables ś218

single-scattering albedo (SSA), asymmetry parameter, and extinction coefficient ś to Supplemental219

Section 1.220

c. Target variables221

We run the shortwave and longwave RRTM separately for each proőle. The target variables are222

those needed by an NWP model from its embedded RT model: a proőle of heating rates (HR),223

surface downwelling ŕux (𝐹sfc
down

), top-of-atmosphere upwelling ŕux (𝐹TOA
up ), and net ŕux (𝐹net).224

All four of these variables have both a shortwave and a longwave version. In machine learning225

the goal is often to improve accuracy, but our goal is to improve efficiency ś i.e., to accelerate226

the RRTM ś while emulating it as faithfully as possible. This means that we treat the RRTM as227

a perfect model, considering its HRs and ŕuxes to be the correct answers. Although the RRTM228

is imperfect, its errors are quite small, at less than 0.1 K day-1 for HRs and less than 1 W m-2 for229

ŕuxes (Iacono et al. 2008).230
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d. Pre-processing231

We apply two types of pre-processing to the data: splitting and normalization. As in L21, we232

use isotonic regression (IR) to bias-correct the NNs, which requires a separate training set. Thus,233

we split the data into four temporally independent subsets: NN-training, IR-training, validation,234

and testing (Table 4). Each subset covers locations around the globe during all seasons. For235

normalization, we use the same methods described in Section 3b of L21, except that we do not236

normalize any target variables. In L21 we normalized the ŕux variables, but we have since found237

that this has a deleterious effect on the quality of NN predictions.238

3. Deep-learning methods239

This section provides a minimal background on the NN architectures used in L21, followed by a240

more extensive background on the architectures new to the current work, and őnally information241

on the loss functions used to train NNs.242

a. U-net and U-net++ without deep supervision243

L21 considered two NN architectures, namely the U-net and U-net++, for shortwave RT. They244

found that the U-net++ outperforms the U-net in situations with multi-layer cloud (their Sup-245

plemental Section Cd), which are the most complex situations for RT and also vitally important246

for weather/climate prediction. In this article we consider the U-net++ architecture and a new247

architecture called U-net3+. L21 contains a detailed background on the U-net and U-net++ (their248

Section 2), and we attempt to reproduce as little of this background as possible ś only that which249

is necessary for understanding the current article.250

The U-net (Ronneberger et al. 2015) is a type of NN designed for making predictions on a spatial251

grid, often called łimage-to-image translationž in the ML literature. U-nets are typically applied252

to images with two or three spatial dimensions, but in our case the łimagesž are vertical proőles,253

containing only one spatial dimension. The task is to translate a 127-by-𝑀 image of predictors254

(𝑀 , the number of variables, is different for longwave vs. shortwave RT) into a 127-by-1 image of255

HRs7.256

7There is a second learning task, which involves image-to-scalar translation ś namely to translate the same 127-by-𝑀 image of predictors

into 3 ŕux components.
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Table 4: Partitioning of data into temporally independent subsets. łSWž = shortwave; łLWž =
longwave; and łsample sizež = number of proőles. SW and LW sample sizes are different

because the SW radiation scheme (RRTM or NN-based emulator) is not run when the Sun is
below the horizon, i.e., when solar zenith angle > 90◦. Also, łNumber of daysž ≠ length of łTime

period,ž because some days are missing from the archive.

Data subset Time period Number SW sample LW sample

of days size size

NN-training Sep 1 2018 ś Dec 21 2019 237 873 086 3 503 226

IR-training Dec 24-30 2019, 63 213 275 939 181

Feb 3-9 2020,

Mar 15-21 2020,

Apr 26 ś May 2 2020,

Jun 7-13 2020,

Jul 18-24 2020,

Aug 28 ś Sep 3 2020,

Oct 10-16 2020,

Nov 21-27 2020

Validation Jan 2-15 2020, 126 479 806 1 934 460

Feb 12-25 2020,

Mar 24 ś Apr 6 2020,

May 5-18 2020,

Jun 16-29 2020,

Jul 27 ś Aug 9 2020,

Sep 6-19 2020,

Oct 19 ś Nov 2 2020,

Nov 30 ś Dec 13 2020

Testing Jan 18-31 2020, 120 474 726 1 929 078

Feb 28 ś Mar 12 2020,

Apr 9-22 2020,

May 22 ś Jun 4 2020,

Jul 2-15 2020,

Aug 12-25 2020,

Sep 22 ś Oct 7 2020,

Nov 5-18 2020,

Dec 16-23 2020

14



U-nets contain four key components (Figure 3a): convolutional layers, pooling (downsampling)257

layers, upsampling layers, and skip connections. The role of the convolutional layers is to detect258

spatial and multivariate features ś i.e., features including many pixels and predictor variables ś259

using convolutional őlters with weights optimized during training to detect the most useful features260

for prediction. The role of the pooling and upsampling layers is to change the resolution of the261

feature maps ś a łfeature mapž being either the original or a transformed version of the predictors ś262

so that convolutional layers at different depths in the network can detect features at different spatial263

scales. The role of the skip connections is to preserve high-resolution information ś i.e., to carry264

through the network high-resolution information that has not been degraded by downsampling, a265

lossy operation that cannot be fully reversed by upsampling. The left side of the U-shaped network266

(Figure 3a) is the encoder side, where the predictors are converted to feature maps with decreasing267

spatial resolution (fewer height levels) and increasing spectral resolution (more channels). The right268

side is the decoder side, where feature maps are upsampled and converted to the őnal prediction269

ś an image of HRs. To make our networks also predict the three ŕux variables, which are scalars270

and not images, we attach fully connected layers to the deepest encoder layer, as shown in Figure271

3a. These are the layers used in fully connected NNs (Chapter 6 of Goodfellow et al. 2016), which272

are still a popular choice for scalar data.273
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Figure 3: Sample architectures for [a] U-net and [b] U-net++. Labels F , G, and H are referred to
in the main text. Actual models used in this study differ in the number of channels and depth

(number of encoder/decoder layers, i.e., number of horizontal rows in this őgure). For each set of
feature maps (green box), the two dimensions are number of heights and channels, respectively.

When the U-net++ is trained without deep supervision, all feature maps labeled łpseudo-HRsž go
away, along with the arrows pointing to them. In the remaining discussion, let 𝐾 be the number of
convolutional layers per block, a user-chosen hyperparameter. Each orange łconvolutionž arrow

corresponds to 𝐾 convolutional layers with 3-pixel őlters; each łdownsamplingž arrow
corresponds to 𝐾 convolutional layers with 3-pixel őlters, followed by a maximum-pooling layer

with a 2-pixel window; each łupsamplingž arrow corresponds to an upsampling layer with a
2-pixel window, followed by a convolutional layer with 3-pixel őlters; each łskip connectionž

arrow includes 𝐾 convolutional layers with 3-pixel őlters; each black łconvolutionž arrow
corresponds to one convolutional layer with 1-pixel őlters; and lastly, each łfully connected layerž

arrow corresponds to one fully connected layer.

The U-net++ (Zhou et al. 2019) contains more skip connections than the U-net, which more274

effectively preserve small-scale features such as cloud boundaries, leading to better predictions for275

multi-layer cloud in L21. The U-net3+ (Huang et al. 2020) contains even more skip connections276

than the U-net++, so we hypothesize that the U-net3+ will perform even better in situations with277

16



multi-layer cloud and perhaps overall. Also, the U-net++ and U-net3+ may be trained with deep278

supervision, which was not used in L21.279

b. U-net++ with deep supervision280

When a NN is trained without deep supervision, the loss function optimized by the NN compares281

the ground truth (here, a length-127 proőle of HRs) only to the őnal prediction, i.e., output from282

the last NN layer. With deep supervision, the ground truth is also compared to intermediate283

representations, i.e., layer outputs that are ultimately transformed to the őnal prediction. Zhou284

et al. (2019) found that deep supervision improves image segmentation for phenomena that occur285

at different scales, such as lung nodules. We hypothesize that deep supervision will also improve286

RT estimation, since relevant features for RT estimation also occur at different scales ś e.g., cloud287

depths range from O(10 m) to O(10 km).288

Figure 3b shows a sample U-net++ architecture with and without deep supervision. The only289

difference is that deep supervision requires extra convolutional layers ś those producing pseudo-290

HRs ś to transform the intermediate representations from many channels to one channel. With291

deep supervision, all four outputs (the three pseudo-HR proőles and the actual-HR proőle) are292

produced; without deep supervision, only one output (the actual-HR proőle) is produced. For293

details on the loss function, which compares both psuedo-HRs and actual HRs to the ground truth,294

see Section 3d. Note that deep supervision is applied only to the spatial outputs (HRs) and not295

the scalar outputs (ŕuxes). Deep supervision was invented for spatial data, and there is no clear296

analogue for scalars.297
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c. U-net3+ with and without deep supervision298

Figure 4: Sample architectures for U-net3+ [a] without and [b] with deep supervision. Labels F
and G are referred to in the main text. Actual models used in this study differ in the number of

channels and depth. Formatting is explained in the caption of Figure 3, except that the solid black
arrows are slightly different in this őgure. The solid black arrow pointing to actual HRs (top
right) corresponds to one convolutional layer with 1-pixel őlters, while a solid black arrow

pointing to pseudo-HRs corresponds to an upsampling layer followed by a convolutional layer
with 1-pixel őlters.

The U-net3+ has one property that distinguishes it from the U-net++, namely full-scale skip299

connections. Full-scale skip connections pass information from all scales to each decoder layer,300

whereas skip connections in the U-net++ pass information from only two scales to each decoder301

layer. For example, in the U-net++ shown in Figure 3b, the feature maps labeled F combine302

information from the same scale (other feature maps with 31 heights) and the next-largest scale303

(feature maps with 15 heights). But in the U-net3+ shown in Figure 4a, the feature maps labeled304

F combine information from equal and smaller scales (feature maps with ≥ 31 heights) on the305
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encoder side, as well as information from larger scales (feature maps with < 31 heights) on the306

decoder side.307

Stated differently, full-scale skip connections more effectively carry high-resolution information308

through the network. For example, the feature maps labeled G (in both Figures 3b and 4a) contain309

information at the smallest scale that has not been degraded by downsampling. In the U-net++310

(Figure 3b), skip connections carry this information to only one level on the decoder side, namely311

the feature maps labeled H . Other levels on the decoder side cannot access the undegraded high-312

resolution information in G. But in the U-net3+ (Figure 4a), full-scale skip connections carry the313

information in G to all levels on the decoder side, allowing this information to be used in decoded314

feature maps at all resolutions.315

Figures 4a and 4b show how to add deep supervision to the U-net3+ architecture. For the U-316

net3+, deep supervision requires two architecture changes. The őrst is extra convolutional layers317

to reduce the number of channels to one (pseudo-HR), as in the U-net++. The second is extra318

upsampling layers to increase the number of heights to 127.319

d. Loss function320

In machine learning, the standard loss function for regression tasks ś where the model predicts321

a continuous value instead of a category ś is the mean squared error (MSE). However, in L21 we322

found that using the MSE causes two problems. First, the MSE does not adequately emphasize large323

HRs, which are rare but important for weather/climate prediction, causing the NN to dramatically324

underpredict large HRs. Second, the MSE does not ensure that the following conservation law is325

respected:326

𝐹
(𝑏)
net = 𝐹sfc

down

(𝑏)
−𝐹TOA

up

(𝑏)
, (2)

where the superscript (𝑏) denotes that all three variables must come from the same band, either327

shortwave or longwave. To remedy the őrst problem, we used the dual-weighted MSE (DWMSE)328

for HRs, which emphasizes cases with a large actual or predicted HR, łnudgingž the NN to predict329

these cases correctly. See Section 3c2 of L21. To remedy the second problem, we used the basic330

MSE for ŕux variables but enforced the law of Equation 2 inside the NN. See Section 3c1 of L21.331

Because L21 is concerned with shortwave RT only, the present work requires two updates to the332

loss function. First, the weight in the DWMSE becomes the maximum of the absolute actual and333
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predicted HRs, because although shortwave HR is always ≥ 0, longwave HR may be negative (i.e.,334

longwave cooling). Second, the ŕux law must be applied to both shortwave and longwave RT. The335

total loss function becomes the following:336

L (𝑏)
=

1

𝑁𝐻

𝑁∑︁

𝑖=1

𝐻∑︁

𝑗=1

max
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(𝑏)
𝑖 𝑗

|, |𝑟
(𝑏)
𝑖 𝑗

|

} [
𝑟
(𝑏)
𝑖 𝑗

− 𝑟
(𝑏)
𝑖 𝑗

]2

+
1

𝑁𝑀

𝑁∑︁

𝑖=1

𝑀∑︁

𝑘=1

[
𝐹
(𝑏)

𝑖𝑘
− �̂�

(𝑏)

𝑖𝑘

]2

, (3)

where 𝑁 is the number of examples; 𝐻 = 127 is the number of heights per example; 𝑟
(𝑏)
𝑖 𝑗

is the337

actual HR for the 𝑗 th height in the 𝑖th example; 𝑟
(𝑏)
𝑖 𝑗

is the corresponding prediction; 𝑀 = 3 is the338

number of ŕux components; 𝐹
(𝑏)

𝑖𝑘
is the actual value of the 𝑘 th ŕux component in the 𝑖th example;339

and �̂�
(𝑏)

𝑖𝑘
is the corresponding prediction. There is one version of Equation 3 for the shortwave,340

where the superscript (𝑏) is SW, and one version for the longwave.341

For NNs without deep supervision, Equation 3 is the whole story. However, for NNs with342

deep supervision, the loss function includes extra terms for the pseudo-HRs. Speciőcally, the loss343

function becomes344

L
(𝑏)

deep-sup
= L (𝑏) +

1

𝑃𝑁𝐻

𝑃∑︁

𝑝=1

𝑁∑︁

𝑖=1

𝐻∑︁

𝑗=1

max

{
|𝑟
(𝑏)
𝑖 𝑗

|, |𝑟
(𝑏)
𝑝𝑖 𝑗

|

} [
𝑟
(𝑏)
𝑖 𝑗

− 𝑟
(𝑏)
𝑝𝑖 𝑗

]2

, (4)

where 𝑃 is the number of layers with deep supervision and thus the number of pseudo-HR proőles,345

and 𝑟
(𝑏)
𝑝𝑖 𝑗

is the pseudo-HR produced by the 𝑝th layer with deep supervision for the 𝑗 th height in the346

𝑖th example.347

4. Experiment with neural networks of varying complexity348

This section describes a hyperparameter-tuning experiment used to őnd the optimal level of NN349

complexity for estimating RT. We tune four hyperparameters: the NN type (U-net++ or U-net3+350

with or without deep supervision), NN depth, NN width, and spectral complexity. NN depth is the351

number of encoder/decoder levels (e.g., all architectures shown in Figures 3-4 have a depth of 4);352

NN width is the number of convolutional layers per set (𝐾 in the caption of Figure 3); and spectral353

complexity is the number of feature maps produced by the őrst set of convolutional layers (e.g., all354

architectures shown in Figures 3-4 have a spectral complexity of 64). Following common practice,355

we always double the number of feature maps with each downsampling operation. For example,356
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Table 5: Experimental hyperparameters.

Hyperparameter Values attempted

NN type U-net++ without deep supervision,

U-net++ with deep supervision,

U-net3+ without deep supervision,

U-net3+ with deep supervision,

NN depth 3, 4, 5

NN width 1, 2, 3, 4

Spectral complexity 4, 8, 16, 32, 64, 128

Figure 3 shows that with a depth of 4 and spectral complexity of 64, the deepest set of feature maps357

(i.e., that with the coarsest spatial resolution, designed to capture the largest-scale features) has358

1024 feature maps. We chose to experiment with NN type so that we could try new methods (deep359

supervision and U-net3+) from the ML literature. We chose to experiment with the other three360

hyperparameters because they strongly control overall NN complexity, i.e., the number of trainable361

weights. As shown in Supplemental Figures S10 and S18, the number of trainable weights varies362

from O(10
5) to O(10

8.5).363

Table 5 lists the exact values attempted for each hyperparameter. We perform a grid search364

(Section 11.4.3 of Goodfellow et al. 2016), training one NN for every combination of values,365

which leads to 4 × 3 × 4 × 6 = 288 NNs for each band (shortwave and longwave). Most366

constant hyperparameters (those not varied during the experiment) are illustrated in Figures 3 and367

4. Constants not included in these őgures are documented in Supplemental Table S3.368

a. Evaluation methods used for model selection369

Model evaluation is a multi-faceted problem, and there are many possible ways to choose the best370

model. Most hyperparameter experiments optimize one evaluation metric, often the loss function371

used for training. However, we care about several aspects of model performance. In previous work372

we have noticed that even when overall performance is acceptable, the following regime-based373

errors are unacceptably high:374

• HR errors near the surface, especially in the longwave;375
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Table 6: Metrics used for model selection. łColumn-averagedž = averaged over all 127 heights;
łnear-surfacež = at the lowest grid level, which averages 21 m AGL; and łall-ŕux RMSEž is the
square root of the MSE averaged over all three ŕux variables. Metrics computed on fog proőles

are used only to evaluate longwave models, not shortwave models.

Set of profiles Metrics used

All Column-averaged HR DWMSE,

column-averaged HR bias,

near-surface HR DWMSE,

near-surface HR bias,

all-ŕux RMSE,

net-ŕux RMSE,

net-ŕux bias

Proőles with multi-layer liquid-only cloud Column-averaged HR DWMSE,

column-averaged HR bias,

near-surface HR DWMSE,

near-surface HR bias,

all-ŕux RMSE,

net-ŕux RMSE,

net-ŕux bias

Proőles with fog Near-surface HR DWMSE,

(longwave only) near-surface HR bias,

all-ŕux RMSE,

net-ŕux RMSE,

net-ŕux bias

• ŕux and HR errors in proőles with multi-layer liquid-only cloud, in both the shortwave and376

longwave;377

• longwave HR errors near the surface in proőles with fog, i.e., cloud reaching the lowest grid378

level.379

Thus, we use the metrics listed in Table 6, computed on validation data only, for model selection.380

Our choice of the best model is based on a subjective combination of these metrics.381
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b. Evaluation methods used for best models382

As in L21, we evaluate the best models (shortwave and longwave) on the testing dataset as a383

whole and on meaningful subsets of the testing data. We split the testing data in four ways.384

First, we split by cloud regime, because clouds add immense complexity to RT, making the385

process difficult to emulate, and can result in extreme HRs (large absolute values in both the386

shortwave and longwave), which are important for weather and climate. For a more detailed387

explanation of these effects, see Section 5a of L21. We focus on liquid-only cloud, which we have388

found to have a greater effect on RT than ice-only, mixed-phase, or any-phase cloud. We deőne389

a liquid-only cloud layer as a contiguous set of model heights with liquid-water content (LWC) >390

0 g m-3, total liquid-water path ≥ 25 g m-2, and total ice-water path = 0 g m-2. As in L21, we391

deőne three cloud regimes, which are mutually exclusive and collectively exhaustive (MECE): no392

cloud, single-layer cloud, and multi-layer cloud. For the longwave we add a fourth cloud regime393

ś fog ś deőned as a cloud reaching the surface (i.e., LWC > 0 g m-3 at the lowest model height).394

Thus, cloud regimes for the longwave are not MECE, as every proőle with fog is also a proőle395

with single- or multi-layer cloud. We include fog because it causes large longwave errors near the396

surface.397

Second, we split the testing data by geographic location, speciőcally on a global latitude-longitude398

grid with 5◦ spacing. This spacing highlights large RT errors due to features such as high terrain399

and persistent stratocumulus cloud. Third, for the shortwave model only, we split the testing data by400

aerosol optical depth (AOD) and solar zenith angle (SZA). In earlier work we found that shortwave401

errors increase with higher AOD, which adds complexity to RT, and lower SZA8, which increases402

HRs and the frequency of extreme HRs. Fourth, for the longwave model only, we split the testing403

data by near-surface thermodynamics, speciőcally temperature lapse rate (Γsfc
𝑇

) and humidity lapse404

rate (Γsfc
𝑞 ). These are deőned as405




Γ
sfc
𝑇

=
𝑇1−𝑇2

𝑧2−𝑧1
,

Γ
sfc
𝑞 =

𝑞1−𝑞2

𝑧2−𝑧1
,

(5)

where 𝑇1 and 𝑇2 are temperature (K) at the lowest and second-lowest model heights (sigma levels),406

respectively; 𝑞1 and 𝑞2 are speciőc humidity (kg kg-1) at the same heights; and 𝑧1 and 𝑧2 are the407

8Lower SZA means that the Sun is higher above the horizon. Speciőcally, SZA is 0◦ when the Sun is directly overhead, and 90◦ when the

Sun is on the horizon.
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corresponding physical heights (m AGL). Longwave RT near the surface is highly sensitive to408

the near-surface temperature and moisture proőles (Schmetz 1989). We also experimented with409

splitting by surface temperature and humidity, instead of their near-surface lapse rates, but found410

that lapse rates have a greater impact on longwave-RT errors.411

We use several evaluation metrics and plotting tools, most of which are familiar to atmospheric412

scientists, such as the mean absolute error and bias (mean signed error). We also use the attributes413

diagram, which is a reliability curve with added reference lines (Hsu and Murphy 1986). However,414

we have adapted this plot for regression (predicting a continuous value, like ŕux in W m-2) instead of415

their typical use, which is binary classiőcation (predicting the probability of an event). For readers416

interested in the details, see Section 5a of L21. You can interpret the regression- and classiőcation-417

based version of the attributes diagram in roughly the same way: the curve should be close to418

the diagonal reference line, indicating perfect reliability, and inside the shaded area, indicating419

a positive skill score. For the regression-based attributes diagram, this is the MSE skill score.420

A positive MSE skill score means that the NN model has a better MSE than the climatological421

model. The climatological model is a simple model that always predicts the climatological mean,422

estimated as the average in the training data. For example, if the mean net ŕux in the training data423

is 100 W m-2, the climatological model will predict a net ŕux of 100 W m-2 for every case.424

5. Results and discussion425

We start with a brief discussion of the hyperparameter experiment (used to determine the best426

models), followed by a comparison of computing time between the RRTM and our NN-based427

emulators, then an in-depth discussion of the best shortwave model and best longwave model.428

a. Hyperparameter experiment429

Results are discussed brieŕy here and at length in Supplemental Section 3. For both shortwave430

and longwave RT, the most important hyperparameter is spectral complexity, while NN depth and431

width are of secondary importance. The better NNs have large spectral complexity, large depth,432

and small width. In other words, the better NNs are deep and narrow with many feature maps.433

For the other hyperparameter ś NN type ś we hypothesized that the U-net3+ architecture would434

outperform U-net++ (Section 3a) and that NNs trained with deep supervision would outperform435
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Table 7: Timing tests for the RRTM and NN-based emulators, based on the testing dataset. All
computing times are given in wall-clock time. Because the RRTM is slower for cloudy proőles

and faster for cloud-free proőles, the łTime per proőlež reported is an average over all
atmospheric conditions represented in the dataset. Meanwhile, the NNs have constant computing

time for each proőle, regardless of atmospheric conditions.

Model Number of profiles Total time Time per profile

Model (seconds) (seconds)

Shortwave RRTM 472 412 4 207 793 0.11

Shortwave NN 474 726 563 843

Longwave RRTM 1 894 239 369 363 5.13

Longwave NN 1 929 078 4194 460

those with no deep supervision (Section 3b). We are unable to conőrm either hypothesis ś deep436

supervision leads to worse performance, and architecture has little effect on performance. The437

best shortwave model ś based on our subjective assessment of the metrics listed in Table 6 ś is a438

U-net++ with no deep supervision, depth of 3, width of 1, and spectral complexity of 128, leading439

to 10
7.52 trainable weights. The best longwave model ś again based on Table 6 ś is a U-net3+440

with no deep supervision, depth of 5, width of 1, and spectral complexity of 64, leading to 10
7.28

441

trainable weights. Therefore, the best models are on the high end of the overall-complexity range442

in our experiment, with number of weights ranging from O(10
5) to O(10

8.5). This is because443

spectral complexity is the main control on both performance (allowing the models to represent and444

leverage many features of the input data) and number of weights (see Supplemental Figures S10445

and S18).446

b. Computing time447

The original motivation for NNs was to decrease computing time. To this point, we have448

compared the wall-clock time of the RRTM and best NNs when run on the same hardware ś i.e.,449

one node with 24 CPUs and no GPUs ś in stand-alone mode. See Table 7 for details. In summary,450

the shortwave RRTM (NN) processes 0.11 (843) proőles per second, resulting in a speedup factor451

of 7510; while the longwave RRTM (NN) processes 5.13 (460) proőles per second, resulting in a452

speedup factor of 90. Thus, we have accelerated the RRTM by orders of magnitude.453
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c. Best shortwave model454

Figure 5: Performance of best shortwave model on testing data. [a-c] Attributes diagram for each
ŕux variable. The orange curve is the reliability curve; the diagonal grey line is the

perfect-reliability line; the vertical grey line is the climatology line; the horizontal grey line is the
no-resolution line; the blue shading is the positive-skill area, where MSE skill score > 0; and the
inset histograms show the distributions of predicted and observed values. [d-f] Proőles of bias,
MAE, and MAE skill score for HR. [g] Attributes diagram for HR, including all heights. In all
panels, the orange line represents the mean and the lighter shading around it represents the 99%
conődence interval, both estimated from a bootstrapping test with 1000 replicates. However, in
some panels the 99% conődence interval is narrower than the line representing the mean and is

therefore invisible.
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Figure 5 shows the overall performance ś i.e., averaged over the whole testing set ś of the455

best shortwave model. For all ŕux variables (Figures 5a-c), the model is almost perfectly reliable456

(see overlap between reliability curve and diagonal reference line) and almost perfectly reproduces457

the observed distribution (see similarity between the two histograms). However, the model has458

slight conditional biases, namely an overprediction of ∼10 W m-2 for the highest 𝐹sfc
down

and 𝐹TOA
up459

predictions. In other words, when the model predicts an extremely large downwelling or upwelling460

ŕux, the prediction is slightly too extreme. However, these two biases offset in the calculation461

of 𝐹net (Equation 2), resulting in near-zero bias for all predicted 𝐹net values. The model has an462

absolute bias < 0.1 K day-1 for HR at every height (Figure 5d); this suggests that it could be stably463

integrated into an NWP system such as the GFS (Iacono et al. 2008), as systematic errors for an464

RT parameterization are much more important than random errors (Pincus et al. 2003). The model465

has a substantially larger MAE than bias for HR at every height (Figures 5d-e), which indicates466

that most of the model’s HR error is random instead of systematic. Both bias and MAE are largest467

in the upper stratosphere, where shortwave RT is dominated by O3 absorption. The bias and MAE468

proőles in L21 were similar ś even with a dataset that used a constant proőle for trace gases such as469

O3 ś which suggests that O3 absorption is a fundamentally difficult process to emulate. Since the470

average HR in the upper stratosphere is large (e.g., 21.6 K day-1 at 47 km AGL), the climatological471

model also has a large MAE here, so the NN’s spike in MAE translates to only a small dip in472

its MAE skill score (Figure 5f). Lastly, the attributes diagram for HR (Figure 5g) tells a similar473

story to those for the ŕux variables: the model is almost perfectly reliable and almost perfectly474

reproduces the observed distribution. However, the model has a slight positive bias (≪ 1 K day-1)475

for the highest predicted HR values.476

Supplemental Figures S22-S23 are analogous to Figure 5 but only for extreme cases ś i.e., the477

3% of testing proőles with the greatest height-maximum and height-averaged HR, respectively.478

Although errors are expectedly higher for the extreme cases, HR and ŕux predictions are still479

almost perfectly reliable and absolute HR bias is well below 0.1 K day-1 at almost every height.480
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Figure 6: Performance of best shortwave model on testing data, separated by liquid-only cloud
regime. [a-c] Attributes diagram (formatting explained in the caption of Figure 5) for each ŕux
variable. The inset histograms are based only on cases with multi-layer cloud. [d-f] Proőles of

bias, MAE, and MAE skill score for HR. [g] Attributes diagram for HR, including all heights, only
for cases with no cloud (89.67% of the testing data). [h] Same but for single-layer cloud (9.98%
of the testing data). [i] Same but for multi-layer cloud (0.35% of the testing data). In all panels,
the green/orange/purple line represents the mean and the lighter shading around it represents the

99% conődence interval, both estimated from a bootstrapping test with 1000 replicates.

Figure 6 shows the model’s performance as a function of liquid-only cloud regime. Performance481

for other cloud phases (ice-only, mixed-phase, and any-phase) is shown in Supplemental Figures482
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S19-S21. The attributes diagram for each ŕux variable (Figures 6a-c) tells a similar story to its483

cloud-agnostic analogue (Figures 5a-c): slight conditional bias for extreme predictions of 𝐹sfc
down

484

and 𝐹TOA
up but with no absolute bias exceeding 20 W m-2. The following discussion of error proőles485

for HR (Figures 6d-f) focuses on the troposphere (below ∼15 km AGL), where shortwave heating486

is dominated by cloud rather than O3. In the bottom few 100 m, errors are largest for clear-sky487

proőles and smallest for cloudy proőles, because in cloudy proőles most of the incoming solar488

radiation has already been absorbed by clouds above, which leaves little shortwave radiation in489

the bottom few 100 m, thus making shortwave RT an easier problem here. Meanwhile, in the490

troposphere above ∼1 km, errors are smallest for clear-sky proőles and largest for cloudy proőles,491

because this is the region where most clouds and their associated extreme HRs occur. Also, errors492

for multi-layer cloud are greater than for single-layer cloud, because multi-layer cloud produces493

non-local effects that are difficult to emulate. For example, consider a proőle with two clouds of494

equal thickness and structure (i.e., equal series of LWC values), one based at 10 km AGL and the495

other based at 1 km AGL. The upper cloud will absorb most of the incoming solar radiation, leaving496

little shortwave radiation to be absorbed by the lower cloud; thus, the upper cloud will cause much497

larger HRs, even though the two clouds are identical except for location. This is a non-local effect,498

as the two clouds are far (more than a few grid cells) apart. Lastly, the attributes diagrams for HR499

(Figures 6g-i) tell a similar story to their cloud-agnostic analogue (Figure 5g): an overall positive500

bias for the highest predicted HR values and near-zero bias for all other values. However, this501

positive bias is largest for multi-layer cloud (up to ∼2 K day-1) ś likely due to a small sample size502

for the highest predicted HR values, indicated by the wide conődence intervals in Figure 6i.503
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Figure 7: Performance of best shortwave model on testing data, binned by geographic location on
a 5◦-by-5◦ grid. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-ŕux MAE, averaged over the
three ŕux variables. [f] MAE for net ŕux only. [g] Bias for net ŕux only.
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Figure 7 shows the model’s performance as a function of location. The column-averaged MAE504

for HR (Figure 7a) is mostly between9 0.07 and 0.11 K day-1; it exceeds 0.11 K day-1 at a few505

locations, notably the Tibetan Plateau and east Antarctica. The MAE for near-surface HR (Figure506

7b) is larger ś mostly between 0.07 and 0.23 K day-1, exceeding 0.23 K day-1 at a few locations,507

again notably Tibet and east Antarctica. The two locations have very high surface elevation and508

albedo, the latter due to snow/ice cover. High elevation decreases atmospheric thickness and509

therefore increases near-surface HR; high albedo decreases near-surface HR; and both extremes510

are globally rare, causing high model error under these extremes. Many error metrics (panels a-b,511

d, f) are especially large over the Tibetan Plateau, as it is the largest and highest plateau in the512

world, thus exacerbating both the thickness and albedo effects. The column-averaged bias for HR513

(Figure 7c) is mostly between -0.02 and +0.03 K day-1, with absolute bias not exceeding 0.05 K514

day-1 at any location. The bias for near-surface HR (Figure 7d) is larger ś mostly between -0.09515

and +0.09 K day-1, with absolute value exceeding 0.09 K day-1 over high-latitude continents such516

as Canada, Siberia, and Antarctica. The all-ŕux MAE (Figure 7e) is mostly between 2.5 and 6.4517

W m-2, exceeding 6.4 W m-2 mainly in the southern-hemisphere stratocumulus regions. These are518

regions of semi-persistent stratocumulus cloud in the subtropics off the west coast of a continent519

ś including South America, southern Africa, and Australia (Figure 6 of Neubauer et al. 2014).520

The net-ŕux MAE (Figure 7f) follows a similar pattern to the all-ŕux MAE. Lastly, the net-ŕux521

bias (Figure 7g) is mostly between -2.2 and +2.0 W m-2, with mostly negative bias in the southern522

hemisphere and positive bias in the northern hemisphere.523

Supplemental Figure S24 is analogous to Figure 7 but shows relative, instead of raw, errors.524

For example, łrelative net-ŕux MAEž at grid point 𝑃 is raw net-ŕux MAE at 𝑃
mean observed net ŕux at 𝑃

. We make two525

observations from the two őgures. First, for column-averaged HR MAE (panel a), the highest526

relative errors are collocated with the highest raw errors ś in Tibet and east Antarctica. This527

indicates that shortwave HR is fundamentally harder to predict at said locations ś i.e., these528

maxima in HR error are not just caused by maxima in HR itself. Second, for all other error metrics529

(panels b-g), the largest relative errors occur at polar latitudes, where raw errors are small. Polar530

latitudes receive little solar radiation, leading to small shortwave HRs and ŕuxes, so a small raw531

error translates to a large relative error. Supplemental Figure S25 is another variant of Figure 7,532

9Henceforth, łmostly betweenž corresponds to the middle 95% of the distribution, i.e., the 2.5th to 97.5th percentiles. However, note that the

colour bar in each panel shows 100% of the distribution, ranging from the minimum to the maximum.
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but showing errors for individual ŕux variables instead of averaging to produce all-ŕux quantities.533

The main conclusion from this őgure is that 𝐹sfc
down

errors are worst at the low latitudes, including534

in the stratocumulus-cloud regions, while 𝐹TOA
up errors are worst at the high latitudes.535
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Figure 8: Geography-based case studies for the best shortwave model. [a-b] Case study from
Tibet, with AOD of 0.61 and SZA of 16.6◦; [c-d] another case study from Tibet, with AOD of
0.72 and SZA of 11.2◦; [e-f] case study from east Antarctica, with AOD of 0.23 and SZA of

67.7◦; [g-h] another case study from east Antarctica, with AOD of 0.17 and SZA of 70.7◦. For
each case study, the left panel shows actual and predicted RT solutions, while the right panel
shows four of the most important predictor variables for shortwave RT. In each left panel, the

legend shows column-averaged MAE for HR (labeled łHR MAEž) and errors for the three ŕux
variables (predicted minus actual). AOD is a summary of an important predictor variable (the

height-integrated aerosol extinction), while SZA is an important predictor variable itself. These
scalars are thus reported in the caption for each panel.33



Figure 8 shows case studies from two regions with high model error: Tibet (panels a-d) and east536

Antarctica (panels e-h). To select these case studies, we őrst plotted 400 random proőles ś 200537

from each region ś and then manually selected 4 proőles that are representative of the original538

400. In the following conclusions, although we reference Figure 8, we have ensured that they539

represent most of the original 400 proőles as well. First, Tibet experiences a lot of cloud, often540

complex mixtures of liquid and ice. Second, east Antarctica also experiences a lot of cloud, often541

ice cloud reaching the surface as fog. Third, although the model matches the shape of the HR542

proőle well, it often misses extreme HRs associated with cloud by > 1 K day-1. Sometimes the543

model underestimates HR maxima (e.g., ∼3 km in panel a, ∼6 km in panel c), and sometimes it544

overestimates (e.g., ∼7 km in panel a, ∼3 km in panel c, ∼8 km in panel e). Fourth, panels e and g545

are manifestations of the model’s positive near-surface HR bias in east Antarctica (Figure 7d).546
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Figure 9: Performance of best shortwave model on testing data, binned by AOD and SZA, with
AOD bins of width 0.15 and SZA bins of width 10◦. [a] Column-averaged MAE for HR. [b] MAE
for near-surface HR. [c] Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-ŕux
MAE, averaged over the three ŕux variables. [f] MAE for net ŕux only. [g] Bias for net ŕux only.
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Figure 9 shows the model’s performance as a function of SZA and AOD. Supplemental Figure547

S26 is analogous but shows relative, instead of raw, errors. We make three observations from the548

two őgures. First, for all error metrics except net-ŕux bias (panels a-f), raw error decreases strongly549

with SZA and increases weakly with AOD. In other words, raw errors are worst when there is a550

lot of incoming solar radiation and a lot of interaction with aerosols. Second, for the same error551

metrics, relative error increases strongly with SZA (the opposite relationship to raw error) and has552

no apparent relationship with AOD. Thus, higher solar radiation and aerosol content do not make553

shortwave RT fundamentally harder to predict; raw errors increase because the actual values (HRs554

and ŕuxes) increase. Third, for net-ŕux bias (panel g), when SZA < 20◦, both raw and relative555

error increase with decreasing SZA and increasing AOD. In other words, when SZA < 20◦, higher556

solar radiation and aerosol content make it fundamentally harder to predict net ŕux without bias.557

Supplemental Figure S27 ś with errors for individual ŕux variables rather than all-ŕux errors ś558

shows that this last relationship is driven primarily by biases in 𝐹sfc
down

, which are larger than biases559

in 𝐹TOA
up .560
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Figure 10: Regime-based case studies for the best shortwave model, speciőcally from the
low-SZA/high-AOD regime, deőned as SZA ≤ 20◦ and AOD ≥ 0.75. Formatting is explained in
the caption of Figure 8. For the case in panels [a-b], AOD = 0.85 and SZA = 10.7◦; for the case in

panels [c-d], AOD = 0.81 and SZA = 7.6◦; for the case in panels [e-f], AOD = 0.76 and SZA =
7.9◦; for the case in panels [g-h], AOD = 1.44 and SZA = 5.5◦.
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Figure 10 shows case studies from the low-SZA/high-AOD regime (deőned as SZA ≤ 20◦ and561

AOD ≥ 0.75), where raw errors are highest. The following observations aim to represent 200562

random proőles, a superset of the four shown in Figure 10. First, many low-SZA/high-AOD cases563

feature ice cloud near the tropopause, including the őrst three in Figure 10. This is a known564

climatological feature of the tropics (Jensen et al. 2013), where the vast majority of low-SZA/high-565

AOD cases occur. Second, low-SZA/high-AOD cases without liquid cloud (Figures 10e-h) feature566

large HRs in the bottom ∼1 km of the atmosphere, where the model sometimes overestimates567

(Figure 10e) but generally underestimates (Figure 10g) ś consistent with the bottom grid row in568

Figure 9d. Third, the model generally overestimates net ŕux for these cases (by a large amount569

in Figure 10e). This is due mainly to overestimating 𝐹sfc
down

in the low-SZA/high-AOD regime570

(Supplemental Figure S27).571
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d. Best longwave model572

Figure 11: Performance of best longwave model on testing data. Formatting is explained in the
caption of Figure 5. [a-c] Attributes diagram for each ŕux variable. [d-f] Proőles of bias, MAE,

and MAE skill score for HR. [g] Attributes diagram for HR, including all heights.

Figure 11 shows the overall performance of the best longwave model. For all ŕux variables573

(Figures 11a-c), the model is almost perfectly reliable and almost perfectly reproduces the observed574

distribution. The model has only one perceptible conditional bias, namely an underprediction of575
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∼10 W m-2 for the lowest 𝐹TOA
up predictions. In other words, when the model predicts an extremely576

low 𝐹TOA
up , the prediction is slightly too extreme. The model has an absolute bias ≪ 0.1 K day-1

577

for HR at every height (Figure 11d) but much larger MAEs (Figure 11e), reaching 0.55 and 0.24578

K day-1 at the bottom two grid levels (∼21 and ∼44 m AGL). As will be shown, longwave RT579

near the surface is sensitive to őne-scale details of the thermodynamic proőle, which the model580

struggles to capture. Because the climatological model also has its largest HR MAE at the surface,581

the NN model’s local maximum in MAE does not translate to a local minimum in MAE skill score582

(Figure 11f). Lastly, the attributes diagram for HR (Figure 11g) tells a similar story to those for the583

ŕux variables: the model is almost perfectly reliable and almost perfectly reproduces the observed584

distribution. Supplemental Figures S31-S32 are analogous to Figure 11 but only for extreme cases585

ś i.e., the 3% of testing proőles with the greatest height-maximum and height-averaged absolute586

HR, respectively. As for the shortwave model, we őnd that although errors are higher for the587

extreme cases, HRs and ŕuxes still have almost perfect reliability and absolute HR bias is well588

below 0.1 K day-1 throughout the proőle.589
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Figure 12: Performance of best longwave model on testing data, separated by liquid-only cloud
regime. Formatting is explained in the caption of Figure 6. [a-c] Attributes diagram for each ŕux
variable. [d-f] Proőles of bias, MAE, and MAE skill score for HR. [g] Attributes diagram for HR,
including all heights, only for cases with no cloud (90.84% of the testing data). [h] Same but for
single-layer cloud (8.74% of the testing data). [i] Same but for multi-layer cloud (0.42% of the

testing data). [j] Same but for fog (0.63% of the testing data).
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Figure 12 shows the model’s performance as a function of liquid-only cloud regime. Performance590

for other cloud phases (ice-only, mixed-phase, and any-phase) is shown in Supplemental Figures591

S28-S30. The attributes diagrams for ŕux variables (Figures 12a-c) tell a similar story to the cloud-592

agnostic versions (Figures 11a-c): a few slight conditional biases but no absolute bias exceeding593

20 W m-2. In the bottom few 100 m of the troposphere, HR errors (Figures 12d-f) are best for594

clear-sky proőles, followed by single- and multi-layer cloud, and worst for foggy proőles. In other595

words, the largest HR errors in the bottom few 100 m are caused by clouds, especially clouds that596

reach the surface. Meanwhile, in the troposphere above ∼1 km, HR errors (Figures 12d-f) are best597

for clear-sky proőles and worst for those with multi-layer cloud. Errors for foggy proőles above598

∼1 km are intermediate, because many surface-based clouds are not thick enough to reach these599

heights. Lastly, the attributes diagram for HR (Figures 12g-j) is nearly perfect in all cloud regimes600

except fog. The model has a considerable negative bias (as large as 1 K day-1) when predicting HR601

above 20 K day-1 in foggy proőles, but as shown by the conődence interval ś which overlaps the602

1:1 line ś this apparent defect could be an artifact of small sample size.603
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Figure 13: Performance of best longwave model on testing data, binned by geographic location on
a 5◦-by-5◦ grid. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-ŕux MAE, averaged over the
three ŕux variables. [f] MAE for net ŕux only. [g] Bias for net ŕux only.
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Figure 13 shows the model’s performance as a function of location. The column-averaged MAE604

for HR (Figure 13a) is mostly between 0.10 and 0.15 K day-1; it exceeds 0.15 K day-1 at a few605

locations, notably Tibet, southern Peru, and the northwestern Rocky Mountains. The MAE for606

near-surface HR (Figure 13b) is much larger ś mostly between 0.35 and 0.94 K day-1, exceeding607

0.94 K day-1 at the same locations. The column-averaged bias for HR (Figure 13c) is mostly608

between -0.01 and +0.01 K day-1, with absolute bias not exceeding 0.02 K day-1 at any location.609

The bias for near-surface HR (Figure 13d) is larger ś mostly between -0.24 and +0.22 K day-1, with610

absolute value exceeding 0.24 K day-1 in Tibet, northern South America, and the northwestern611

Rockies. The all-ŕux MAE (Figure 13e) is mostly between 0.24 and 0.63 W m-2, exceeding 0.63612

W m-2 mainly in Tibet. The net-ŕux MAE (Figure 13f) follows a similar pattern to the all-ŕux613

MAE. The net-ŕux bias (Figure 13g) is mostly between -0.23 and +0.24 W m-2, with absolute bias614

not exceeding 0.72 K day-1 at any location. Maxima in raw error mostly correspond to maxima615

in relative error (Supplemental Figure S33), which indicates that longwave RT is fundamentally616

harder to predict in these regions. Lastly, Supplemental Figure S34 shows that, while 𝐹sfc
down

and617

𝐹TOA
up have similar MAE values over most of the globe, 𝐹sfc

down
bias is worse than 𝐹TOA

up bias at618

most locations. Thus, at most locations, net-ŕux bias (which equals 𝐹sfc
down

bias minus 𝐹TOA
up bias)619

primarily reŕects 𝐹sfc
down

bias, with a small contribution from 𝐹TOA
up .620
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Figure 14: Geography-based case studies for the best longwave model. [a-b] Case study from

Tibet, with Γ
sfc
𝑇

= 4.40 K km-1 and Γ
sfc
𝑞 = 5.9 g kg-1 km-1; [c-d] another case study from Tibet,

with Γ
sfc
𝑇

= 11.75 K km-1 and Γ
sfc
𝑞 = 0.7 g kg-1 km-1; [e-f] case study from northwestern Rockies,

with Γ
sfc
𝑇

= 4.62 K km-1 and Γ
sfc
𝑞 = 11.9 g kg-1 km-1; [g-h] case study from southern Peru, with

Γ
sfc
𝑇

= 10.91 K km-1 and Γ
sfc
𝑞 = 4.3 g kg-1 km-1. For each case study, the left panel shows actual

and predicted RT solutions, while the right panel shows four of the most important predictor
variables for longwave RT. In each left panel, the legend shows column-averaged MAE for HR

(labeled łHR MAEž) and errors for the three ŕux variables (predicted minus actual). Γsfc
𝑇

and Γ
sfc
𝑞

(Equation 5) are summaries of important predictor variables (the thermodynamic proőles). These
scalars are thus reported in the caption for each panel.
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Figure 14 shows case studies from regions with high model error: Tibet (panels a-d), the621

northwestern Rockies (panels e-f), and southern Peru (panels g-h). The following observations622

aim to represent 800 random proőles (200 per region), a superset of the four shown in Figure623

14. First, most of the 800 proőles feature liquid and/or ice cloud. Like the shortwave model, the624

longwave model matches the shape of the HR proőle well but often misses extreme HRs associated625

with cloud by > 1 K day-1. Sometimes the model overestimates longwave cooling above clouds626

(e.g., ∼2.5 and∼10 km in panel a, ∼8 km in panel c), and sometimes it underestimates cooling (e.g.,627

∼0.4 and ∼4 km in panel g). Second, as for shortwave RT, regions with high longwave error have628

very high surface elevations, which are globally rare. Third, sometimes longwave HR error near629

the surface is large even for proőles that appear uncomplicated near the surface (e.g., panels e-f),630

because near-surface longwave RT is sensitive to őne details of the near-surface thermodynamic631

proőle.632
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Figure 15: Performance of best longwave model on testing data, binned by near-surface

thermodynamic lapse rates, with Γ
sfc
𝑇

bins of width 10 K km-1 and Γ
sfc
𝑞 bins of width 2 g kg-1

km-1. The three labeled regimes (positive/positive, negative/negative, and common) are explained
in the main text. [a] Column-averaged MAE for HR. [b] MAE for near-surface HR. [c]

Column-averaged bias for HR. [d] Bias for near-surface HR. [e] All-ŕux MAE, averaged over the
three ŕux variables. [f] MAE for net ŕux only. [g] Bias for net ŕux only. [h] Number of testing

samples per bin, in logarithmic scale.
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Figure 15 shows the model’s performance as a function of near-surface thermodynamics, specif-633

ically the temperature lapse rate (Γsfc
𝑇

in Equation 5) and humidity lapse rate (Γsfc
𝑞 in Equation 5).634

First, we note that all error metrics (Figures 15a-g) are worst in two regimes, which we call the635

positive/positive and negative/negative regimes. The positive/positive regime has large positive636

Γ
sfc
𝑇

and Γ
sfc
𝑞 ś i.e., both temperature and humidity decrease strongly with height. The nega-637

tive/negative regime has large negative lapse rates ś i.e., both temperature and humidity exhibit a638

strong inversion, increasing with height. Second, both the positive/positive and negative/negative639

regimes are quite rare in our dataset, as shown in Figure 15h. Most proőles have a small positive640

Γ
sfc
𝑇

and small positive Γ
sfc
𝑞 , the łcommonž regime labeled in Figure 15. Third, while all error641

metrics are worst in the positive/positive and negative/negative regimes, the most egregious errors642

are for near-surface HR, where both MAE (Figure 15b) and absolute bias (Figure 15d) can be ≫ 1643

K day-1. Fourth, relative error (Supplemental Figure S35) is also maximized in the positive/positive644

and negative/negative regimes, which indicates that extreme near-surface thermodynamics make645

longwave RT fundamentally harder to predict. Lastly, Supplemental Figure S36 that 𝐹sfc
down

errors646

are worse than 𝐹TOA
up errors in both regimes.647
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Figure 16: Regime-based case studies for the best longwave model. [a-b] Case study from the

negative/negative regime, deőned as Γsfc
𝑇
< -30 K km-1 and Γ

sfc
𝑞 < -13 g kg-1 km-1. Exact values

here are Γ
sfc
𝑇

= -94.56 K km-1 and Γ
sfc
𝑞 = -14.0 g kg-1 km-1. [c-d] Another case study from the

negative/negative regime, with Γ
sfc
𝑇

= -164.83 K km-1 and Γ
sfc
𝑞 = -16.2 g kg-1 km-1. [e-f] Case

study from the positive/positive regime, deőned as Γsfc
𝑇
> 40 K km-1 and Γ

sfc
𝑞 > 1 g kg-1 km-1.

Exact values here are Γ
sfc
𝑇

= 44.06 K km-1 and Γ
sfc
𝑞 = 8.1 g kg-1 km-1. [g-h] Another case study

from the positive/positive regime, with Γ
sfc
𝑇

= 40.25 K km-1 and Γ
sfc
𝑞 = 2.2 g kg-1 km-1.

Formatting is explained in the caption of Figure 14.49



Figure 16 shows case studies from the negative/negative regime (panels a-d) and positive/positive648

regime (panels e-h). The following observations aim to represent 400 random proőles (200 per649

regime), a superset of the four shown in Figure 16. First, we note that most of these proőles feature650

extreme near-surface heating or cooling. Second, like the geography-based case studies (Figure651

14), the model generally performs well for these regime-based case studies, except for near-surface652

HR and a few extremes associated with cloud (e.g., ∼1.5 km in Figure 16e). Third, the model’s653

fractional error for near-surface HR is generally quite low; cases like Figure 16a do not occur very654

often.655

6. Summary and future work656

We have developed neural networks (NN) to emulate the full RRTM, i.e., the shortwave and657

longwave RRTM with all predictor variables. Both the RRTM and NN-based emulators are driven658

by forecast proőles from the GFSv16 on the native vertical grid, which uses hybrid pressure-sigma659

coordinates. We experimented with novel deep-learning methods designed to produce realistic and660

accurate spatial structure in gridded predictions: the U-net++ architecture, U-net3+ architecture,661

and deep-supervision training method. We hypothesized that the best NNs would be those with662

the U-net3+ architecture and deep supervision. Contrary to our hypotheses, we found that deep663

supervision leads to worse performance and architecture has little impact. We also experimented664

with three other hyperparameters ś NN width, depth, and spectral complexity ś which strongly665

control the NN’s overall complexity, causing the number of trainable weights to vaey from O(10
5)666

to O(10
8.5). We found that the best NNs are at the more complex end of the spectrum; the selected667

shortwave and longwave NNs have 10
7.52 and 10

7.28 trainable weights, respectively. Overall, the668

better NNs are deep (have encoders and decoders at many spatial resolutions), narrow (have only669

one convolutional layer per block), and have large spectral complexity (many convolutional őlters670

and thus many feature maps). While NN type (U-net++ or U-net3+) has only a weak effect on671

performance, the best shortwave NN is a U-net++ model, while the best longwave NN is a U-net3+672

model. Our NNs are an example of knowledge-guided machine learning, identiőed as a major673

need in ML applications to the geosciences (Gil et al. 2019; Reichstein et al. 2019). Speciőcally,674

we enforce energy conservation in the NNs (Equation 2); use a custom loss function to emphasize675
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large heating rates (HR), which are rare but important for weather and climate (Equation 3); and676

include custom predictors to account for vertically non-local effects (Section 3c3 of L21).677

The best shortwave NN model performs extremely well in an aggregate sense, i.e., averaged over678

all the testing data. Highlights include reliable ŕuxes, with all conditional biases < 10 W m-2
679

in absolute value; reliable HRs, with all conditional biases ≪ 1 K day-1 in absolute value; and680

absolute HR bias < 0.1 K day-1 at all heights, suggesting that the NN could be stably integrated into681

the GFSv16 as a parameterization. The model also performs extremely well in all cloud regimes,682

at most geographic locations, and in most regimes deőned by solar zenith angle (SZA) and aerosol683

optical depth (AOD). The largest errors occur in Tibet and east Antarctica, which feature high684

surface elevation/albedo, and in the low-SZA/high-AOD regime, which features a lot of incoming685

solar radiation and interaction with aerosols. However, even these largest errors are quite small:686

mean absolute error (MAE) for HR does not exceed 0.6 K day-1, even near the surface; absolute687

HR bias does not exceed 0.3 K day-1, even near the surface; MAE for ŕux variables does not exceed688

10 W m-2; and net-ŕux bias does not exceed 5 W m-2. For regimes that make RT fundamentally689

harder to predict ś e.g., high elevation/albedo, which increase both raw and relative errors ś results690

could potentially be improved by adding training data from these regimes. Table 8 compares our691

model to NN-based emulators of shortwave RT from three other studies: Krasnopolsky et al. 2012692

(K12), Song and Roh 2021 (SR21), and Kim and Song 2022 (KS22). Although our model appears693

to perform best, this comparison is not apples-to-apples, due to different vertical resolutions (127694

levels here, 64 in K12, 39 in the other two studies), testing cases (time period and spatial domain),695

and predictor variables. The three comparison studies omit aerosols, all trace gases other than O3,696

LWC and IWC (they use cloud fraction instead, with no distinction between liquid and ice), and697

the particle-size distribution (for which we use liquid and ice effective radii). Lastly, our shortwave698

NN runs 7510 times faster than the shortwave RRTM.699

The best longwave NN model also performs extremely well in an aggregate sense; highlights700

include near-perfect reliability for both ŕuxes and HRs and absolute HR bias ≪ 0.1 K day-1 at701

every height. The model’s main deőciency is a large error in near-surface HR, e.g., an MAE of702

0.55 K day-1 at the lowest grid level. However, longwave RT near the surface is complicated, and703

errors here are often quite large. For example, in Veerman et al. (2020), who emulated only the704

gas-optics part of the RRTMGP, near-surface HR bias is on the order of 1 K day-1 (their Figure 2c).705
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Table 8: Comparison of NN-based emulators for shortwave RT. For our model, we use the testing
data only. For the comparison studies, we take results from Table 2 of K12, page 7 of SR21 for
HR errors, Table 3 (the łWRF15ž column) of SR21 for ŕux errors, and Figure 1 of KS22 (these
values are estimated visually). łProőle RMSEž is deőned in Equation A1 of K12; łnear-surfacež

means for the lowest model level; and łN/Až means that the statistic is not reported. Although
KS22 reports ŕux errors, the statistic is all-ŕux RMSE, computed by averaging over three

variables: 𝐹sfc
down

, 𝐹TOA
up , and 𝐹sfc

up . We predict a different set of ŕux variables ś 𝐹net instead of 𝐹sfc
up

ś and thus do not compare our ŕux errors with KS22.

Model Ours K12 SR21 KS22

Statistic

Column-averaged HR RMSE (K day-1) 0.14 0.26 0.17 ∼0.2

Column-averaged HR bias (K day-1) -0.002 -0.007 N/A N/A

HR proőle RMSE (K day-1) 0.12 0.18 N/A N/A

Near-surface HR RMSE (K day-1) 0.20 0.20 N/A N/A

Near-surface HR bias (K day-1) +0.0001 -0.03 N/A N/A

𝐹sfc
down

RMSE (W m-2) 5.85 N/A 43.75 N/A

𝐹TOA
up RMSE (W m-2) 3.94 N/A 36.20 N/A

The model performs well in all cloud regimes, at most geographic locations, and in most regimes706

deőned by near-surface thermodynamics. The largest errors occur with liquid-only fog, where707

the bias and MAE for near-surface HR reach -0.12 and 1.3 K day-1 respectively; in Tibet, where708

near-surface bias and MAE reach almost 1 and 2 K day-1 respectively; and under extreme near-709

surface thermodynamics, where near-surface absolute bias and MAE are ≫ 1 K day-1. However,710

the extreme thermodynamic regimes are quite rare, so this last number is affected by small sample711

size. Also, even in the aforementioned regimes with large error in near-surface HR, column-712

averaged bias for HR does not exceed 0.15 K day-1 in absolute value; column-averaged MAE for713

HR does not exceed 0.6 K day-1; MAE for ŕux variables does not exceed 10 W m-2; and net-ŕux714

bias does not exceed 7 W m-2. Table 9 shows that our longwave NN compares very favourably to715

other studies. Lastly, our longwave NN runs 90 times faster than the longwave RRTM.716

Future work will include three items. First, we will develop grid-agnostic NNs that work on717

proőles with any vertical resolution. This work may beneőt from Fourier neural operators (FNO;718

Lu et al. 2019; Li et al. 2020), which naturally learn physics in a grid-agnostic manner. Second,719

we will implement the NNs in online mode, i.e., as a parameterization in the GFSv16. To this720
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Table 9: Comparison of NN-based emulators for longwave RT. For technical notes, see the
caption of Table 8.

Model Ours K12 SR21 KS22

Statistic

Column-averaged HR RMSE (K day-1) 0.22 0.52 0.46 ∼0.375

Column-averaged HR bias (K day-1) -0.0006 +0.008 N/A N/A

HR proőle RMSE (K day-1) 0.20 0.38 N/A N/A

Near-surface HR RMSE (K day-1) 0.83 0.55 N/A N/A

Near-surface HR bias (K day-1) -0.002 +0.02 N/A N/A

𝐹sfc
down

RMSE (W m-2) 0.64 N/A 5.71 N/A

𝐹TOA
up RMSE (W m-2) 0.81 N/A 7.11 N/A

end we have converted the NNs to a Fortran-friendly format, using the Infero library (ECMWF721

2022), and ensured that the NNs yield the same predictions in Fortran as in Python. Note that the722

NNs alone cannot handle subgrid-scale fractional cloudiness, as cloud fraction is a predictor in723

neither the RRTM nor the NNs. To handle fractional cloudiness in online mode, we will couple724

the NNs with the Monte Carlo independent-column approximation (Pincus et al. 2003). Third, we725

will perform thorough testing of the NNs in online mode. Speciőcally, we will conduct month-726

long retrospective simulations in both the summer and winter, using a control model (original727

parameterization) and experimental model (NN parameterization). We will compare the two728

models against each other and against observations, using methods as in Turner et al. (2012) and729

Turner et al. (2020). Given the accuracy and efficiency of modern deep NNs, we expect them to730

replace many existing parameterizations in weather and climate models. However, operational use731

should proceed only after thorough NN evaluation and with the caution that NNs may generalize732

poorly outside the distribution of their training data, e.g., to future climates10. Safeguards against733

this problem should be built into NN parameterizations, such as continued online learning or734

out-of-distribution detection.735

10In our case, motivated by the strong inŕuence of clouds on radiation ś including their phase and number of layers ś we paid particular

attention to the NNs’ ability to emulate the RRTM for all cloud types.
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Estimating full longwave and shortwave radiative transfer with neural1

networks of varying complexity2

3

Supplemental material4

1. Creating synthetic aerosol variables5

We use the following procedure for each profile. Recall that the three aerosol-based predictors6

are single-scattering albedo (SSA), asymmetry parameter, and extinction coefficient – and that the7

first two are scalars. All other variables created in this procedure are intermediate.8

Figure S1: Aerosol regions. Five of the eight regions (urban #1, urban #2, desert dust #1, desert
dust #2, and biomass-burning) are outlined in coloured polygons. Outside the coloured polygons,

the region defaults to “land” or “ocean” if latitude ∈
[

−60,60
]

◦N and “polar” otherwise.

1. Determine region. Assign the profile to one of eight regions (Figure S1): polar, land, ocean,9

urban #1, urban #2, desert dust #1, desert dust #2, and biomass-burning.10

2. Determine SSA. Draw the SSA from a normal distribution with region-dependent parameters11

(Table S1), then bound values to the range
[

0,1
]

. Values outside this range are non-physical.12

3. Determine asymmetry parameter. Draw the asymmetry parameter from a normal distribution13

with region-dependent parameters (Table S1), then bound values to the range
[

0,1
]

. Values14

outside this range are non-physical.15

4. Determine scale height. Draw the scale height – i.e., the e-folding height for extinction16

coefficient – from a normal distribution with region-dependent parameters (Table S1), then17

bound values to the range
[

0.1,∞
)

km.18
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5. Compute baseline AOD.19

(a) Compute the baseline extinction coefficient at each grid level:20

ϵz = e−
z

H ·1 km−1, (1)

where z is the grid-point height and H is the scale height computed in step 4, both in21

km above ground. See Figure S2a.22

(b) Compute the baseline AOD:23

AODbaseline =
ztop
zbottom

ϵzdz, (2)

ztop and zbottom are the top and bottom heights in the grid (km above ground) and ϵz24

comes from Equation 1.25

6. Determine actual AOD.26

(a) Create narrow AOD distribution, using region-dependent parameters listed in Table S2.27

See Figure S2b.28

(b) Create wide AOD distribution, using region-dependent parameters listed in Table S2.29

See Figure S2c.30

(c) Shift wide AOD distribution, giving it the same mean as the narrow distribution. Specif-31

ically, subtract AODwide − AODnarrow from every value in the wide AOD distribution,32

where AODwide and AODnarrow are the means of the two distributions.33

(d) Censor wide AOD distribution, bounding values to the range
[

0,1.5
]

. Negative values34

are non-physical, and values > 1.5 are very rare. See Figure S2d.35

7. Compute the actual extinction coefficient at each grid level:36

ϵz =

AODactual

AODbaseline

e−
z

H ·1 km−1. (3)

Note that, while each level has a different height z, all other variables on the right-hand side37

are constant throughout the profile. See Figure S2e.38
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Table S1: Region-dependent distribution parameters for aerosol variables other than AOD. Each
cell contains the mean, followed by the standard deviation, of a normal distribution. SSA =

single-scattering albedo.

Variable SSA Asymmetry parameter Scale height

(unitless) (unitless) (m)

Region

Polar 0.95, 0.02 0.72, 0.03 500, 100

Land 0.95, 0.02 0.70, 0.03 1500, 300

Ocean 0.96, 0.02 0.75, 0.03 1000, 100

Urban #1 0.94, 0.02 0.70, 0.03 1500, 300

Urban #2 0.91, 0.04 0.70, 0.03 1500, 100

Desert dust #1 0.95, 0.02 0.78, 0.05 1500, 200

Desert dust #2 0.95, 0.02 0.78, 0.03 1500, 200

Biomass-burning 0.91, 0.05 0.72, 0.03 2000, 300

In step 6, the narrow distribution is based on observations of the real atmosphere, while the wide39

observation is designed to increase the frequency of large AOD values. In previous work we found40

that NNs trained with AODs from the narrow distribution failed on large AOD values, which were41

underrepresented in the training data. The distributional parameters in Tables S1 and S2 were42

selected by co-author Turner, based on numerous presentations and journal papers; our values for43

SSA, AOD, and asymmetry parameter largely agree with Kinne (2019).44
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Table S2: Region-dependent distribution parameters for AOD. Each cell contains the shape
parameter, followed by the scale parameter, of a gamma distribution. After applying the gamma

distribution, all outputs (sampled AOD values) are divided by 10.

Region Narrow distribution Wide distribution

Polar 0.675, 1.333 2.7, 4.0

Land 7.5, 0.4 30.0, 1.2

Ocean 14.7, 0.143 58.8, 0.429

Urban #1 16.875, 0.267 67.5, 0.8

Urban #2 13.333, 0.45 53.333, 1.35

Desert dust #1 13.333, 0.45 53.333, 1.35

Desert dust #2 7.5, 0.6 30.0, 1.8

Biomass-burning 13.333, 0.45 53.333, 1.35

Figure S2: Procedure for creating synthetic profile of aerosol-extinction coefficients. In the case
shown, the randomly drawn scale height is 1.318 km; the resulting baseline AOD is 1.297; and

the randomly drawn actual AOD, from the distribution in panel d, is 0.409.
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2. Distribution of synthetic trace gases45

Figure S3 shows the distribution of concentrations for each synthetic trace gas, i.e., those produced46

from fictitious data as described in Section 2b of the main text. In the canonical profiles taken from47

Anderson et al. (1986), the maximum values (over all standard atmospheres and heights) are 33048

ppmv for CO2, 1.7 ppmv for CH4, and 0.32 ppmv for N2O. The noise included in our procedure49

yields many values above these maxima, which could be representative of future climates.50

Figure S3: Distribution of trace-gas concentrations in the training data. [a-b] CO2 concentrations
in training data for the shortwave and longwave models; [c-d] same but for CH4; [e-f] same but

for N2O.

3. Hyperparameter experiment51

Table S3 documents constant hyperparameters – i.e., those not varied during the experiment –52

that are not shown in the architecture schematics (Figures 3-4 in the main text). Subsections a and53

b discuss results of the experiment.54
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Table S3: Constant NN hyperparameters, i.e., not varied during the experiment.

Hyperparameter Value chosen Justification

Activation function for

flux-output layer

Rectified linear unit

(ReLU; Nair and Hinton

2010)

ReLU sets negative values to 0 and leaves positive values alone. This

is appropriate for the two free flux variables – F
sfc
down and F

TOA
up –

which cannot be negative. The other flux variable is Fnet, which

can be negative, but this is computed as F
sfc
down minus F

TOA
up after

applying ReLU.

Activation function for

HR-output layer

ReLU ReLU is appropriate for HR, which cannot be negative.

Activation function for

internal layers

Leaky ReLU (Maas

et al. 2013) with slope

of 0.2

The “internal layers” are all non-terminal convolutional and fully

connected layers – i.e., all convolutional layers except the HR output

and all fully connected layers except the flux output. Leaky ReLU

reduces the magnitude of negative values (with the chosen slope,

replaces negative values x with 0.2x) and leaves positive values

alone. Strict ReLU solves the problem of vanishing gradients, and

leaky ReLU solves the problem of dead neurons that arises from

strict ReLU, as discussed in Chapter 4 of Lagerquist (2020).

Batch normalization Used for internal layers,

not output layers

Batch normalization (Ioffe and Szegedy 2015) produces negative

values, so it is inappropriate for the output layers. In general, batch

normalization alleviates the vanishing-gradient problem (Chapter 4

of Lagerquist 2020).

Number of epochs 1000 In one epoch, each training example is presented to the NN once.

Early stopping (below) occurs for all NNs in the experiment, so

training never continues for 1000 epochs.

Batch size 724 examples Each update of the NN’s trainable weights is based on 724 profiles.

In early experiments (not shown), we found that smaller batches

make training susceptible to noise and therefore unstable, while

larger batches require too much memory. Both issues are discussed

in Li et al. (2014).

Early stopping Patience of 100 epochs If the loss on validation data has not reached a new minimum in

the last 100 epochs, we stop training and restore NN weights to

the epoch with minimum validation loss. In early experiments (not

shown) we found that a longer patience merely prolongs training,

without helping the NN achieve a lower validation loss.

Optimizer Adam Adam (Kingma and Ba 2014) is a sophisticated version of stochastic

gradient descent (Section 8.3.1 of Goodfellow et al. 2016). Adam

uses a different learning rate for each NN weight and adjusts the

learning rates during training, which generally leads to a better

model.

Learning rate Start with 0.001, reduce

by 40% upon 10-epoch

plateau

A start value of 0.001 is the default in the Keras library. “Reduce

by 40% upon 10-epoch plateau” means that, if validation loss has

not reached a new minimum in the last 10 epochs and we have not

performed a reduction step in the last 10 epochs, we multiply every

learning rate by 0.6. The patience (10 epochs) and reduction factor

(0.6) are hyperparameters, which we tuned in early experiments (not

shown).
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a. Results for shortwave RT55

Figures S4-S9 show validation error as a function of hyperparameters for a few of the metrics56

listed in Table 6 of the main text. 12 of the 288 NNs could not be trained, due to memory issues;57

these NNs are marked by grey squares in Figures S4-S9. NN type has little effect on model58

performance – note that each figure has one panel per NN type and errors do not vary much59

across the panels. For unsigned errors (all other than bias; Figures S4-S5 and S8-S9), the most60

important hyperparameter is spectral complexity, while NN depth and width are of secondary61

importance. Unsigned errors decrease as spectral complexity increases up to 64, then show little62

variation as spectral complexity increases beyond 64, which suggests that the optimal value is ≳63

64. Also, unsigned errors decreases as NN depth increases and NN width decreases; this suggests64

that the optimal NN is deep and narrow, with encoders/decoders at many spatial resolutions but65

only convolutional layer per block.66

For HR biases (Figures S6-S7), the most important hyperparameter is again spectral complexity.67

The relationship between spectral complexity and near-surface HR bias for multi-layer liquid-only68

cloud (Figure S7) is similar to the above-mentioned relationship between spectral complexity and69

unsigned errors. Specifically, absolute bias decreases as spectral complexity increases up to 64,70

suggesting that the optimal value is ≳ 64. However, the relationship between spectral complexity71

and column-averaged HR bias (Figures S6) is quite different, suggesting that the optimal spectral72

complexity is ∼8. In other words, making unbiased predictions of HR in general requires much73

less spectral complexity than making unbiased predictions of near-surface HR under multi-layer74

cloud, which is a more difficult problem.75

Based on all 14 shortwave error metrics (Table 6 of the main text), we select as “best” the76

U-net++ trained without deep supervision, with a depth of 3, width of 1, and spectral complexity77

of 128. The best model achieves the following ranks (1st being the best and 276th being the worst)78

on metrics for all profiles, in the order that they appear in Table 6: 1st, 120th, 9th, 24th, 1st, 1st, and79

85th. The model achieves the following ranks on metrics for profiles with multi-layer cloud, in the80

order that they appear in Table 6: 7th, 93rd, 12th, 53rd, 1st, 1st, 100th. The model contains 33 24081

174 (10
7.52) learned weights, making it one of the more complex models attempted (Figure S10).82
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Figure S4: Column-averaged DWMSE for HR on all profiles (K3 day-3), computed on validation
data for each set of hyperparameters. Each panel shows one NN type; within each panel the other
three hyperparameters vary. Grey squares correspond to NNs that could not be trained. The white

circle marks the selected model, and the white star (hidden behind the white circle) marks the
model with the lowest value for this error metric.
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Figure S5: DWMSE for near-surface HR on profiles with multi-layer liquid-only cloud (K3

day-3), computed on validation data for each set of hyperparameters. The white circle marks the
selected model, and the white star marks the model with the lowest value for this error metric.

Other formatting is explained in the caption of Figure S4.
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Figure S6: Column-averaged HR bias for all profiles (K day-1), computed on validation data for
each set of hyperparameters. Formatting is explained in the caption of Figure S4.
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Figure S7: Near-surface HR bias for profiles with multi-layer liquid-only cloud (K day-1),
computed on validation data for each set of hyperparameters. Formatting is explained in the

caption of Figure S4.
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Figure S8: Net-flux RMSE for all profiles (W m-2), computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S4.

12



Figure S9: Net-flux RMSE for profiles with multi-layer liquid-only cloud (W m-2), computed on
validation data for each set of hyperparameters. Formatting is explained in the caption of Figure

S4.
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Figure S10: Number of trainable model weights for each set of hyperparameters, in log10 scale.
The white circle marks the selected model. Other formatting is explained in the caption of Figure

S4.
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b. Results for longwave RT83

Figures S11-S17 show validation error vs. hyperparameters for a few metrics listed in Table 684

of the main text. As for the shortwave hyperparameter experiment, 12 of 288 NNs could not be85

trained, due to memory issues – see grey squares in Figures S11-S17. Our broad conclusions for86

the shortwave experiment (Section 3a) hold for the longwave experiment as well. Specifically, the87

most important hyperparameter is spectral complexity, with an optimal value of ≳64; NN width88

and depth are of secondary importance, with narrow and deep networks performing best; and NN89

type appears to be unimportant.90

Based on all 19 longwave error metrics, we select as “best” the U-net3+ trained without deep91

supervision, with a depth of 5, width of 1, and spectral complexity of 64. This model achieves92

the following ranks (1st being the best and 276th being the worst) on metrics for all profiles, in the93

order that they appear in Table 6: 1st, 14th, 1st, 16th, 2nd, 2nd, and 83rd. The model achieves the94

following ranks on metrics for profiles with multi-layer liquid-only cloud, in the order that they95

appear in Table 6: 1st, 52nd, 1st, 24th, 2nd, 3rd, 86th. Finally, the model achieves the following ranks96

on metrics for profiles with liquid-only fog, in the order that they appear in Table 6: 1st, 17th, 3rd,97

4th, 102th. The model contains 19 189 566 (10
7.28) learned weights, making it one of the more98

complex models attempted (Figure S18).99
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Figure S11: Column-averaged DWMSE for HR on all profiles (K3 day-3), computed on validation
data for each set of hyperparameters. Each panel shows one NN type; within each panel the other
three hyperparameters vary. Grey squares correspond to NNs that could not be trained. The white

circle marks the selected model, and the white star (hidden behind the white circle) marks the
model with the lowest value for this error metric.
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Figure S12: DWMSE for near-surface HR on profiles with multi-layer liquid-only cloud (K3

day-3), computed on validation data for each set of hyperparameters. Formatting is explained in
the caption of Figure S11.
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Figure S13: DWMSE for near-surface HR on profiles with liquid-only fog (K3 day-3), computed
on validation data for each set of hyperparameters. Formatting is explained in the caption of

Figure S11.
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Figure S14: Column-averaged HR bias for all profiles (K day-1), computed on validation data for
each set of hyperparameters. The black circle marks the selected model, and the black star marks
the model with the lowest value for this error metric. Other formatting is explained in the caption

of Figure S11.
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Figure S15: Near-surface HR bias for profiles with liquid-only fog (K day-1), computed on
validation data for each set of hyperparameters. Formatting is explained in the caption of Figure

S11.
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Figure S16: Net-flux RMSE for all profiles (W m-2), computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S17: Net-flux RMSE for profiles with liquid-only fog (W m-2), computed on validation
data for each set of hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S18: Number of trainable model weights for each set of hyperparameters, in log10 scale.
The white circle marks the selected model. Other formatting is explained in the caption of Figure

S11.
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4. Extended analysis of best models100

This section contains figures referenced in the main text, used for extended analysis of the101

best shortwave and longwave models. For ice-only cloud regimes, a cloud layer is defined as a102

contiguous set of model heights with ice-water content (IWC) > 0 g m-3, ice-water path (IWP) ≥103

25 g m-2, and liquid-water path (LWP) = 0 g m-2. For mixed-phase cloud regimes, a cloud layer104

is defined as a contiguous set of heights with total water content (LWC + IWC) > 0 g m-3, total105

water path (LWP + IWP) ≥ 25 g m-2, LWP > 0 g m-2, and IWP > 0 g m-2. To put the last two106

criteria in plain language, the cloud must contain a non-zero amount of both liquid and ice, but107

the relative contributions do not matter. For any-phase cloud regimes, a cloud layer is defined as a108

contiguous set of heights with total water content > 0 g m-3 and total water path ≥ 25 g m-2. The109

last two criteria have vanished, meaning that the cloud can be liquid-only, ice-only, or mixed-phase110

– hence “any-phase”.111
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Figure S19: Performance of best shortwave model on testing data, separated by ice-only cloud
regime. This is analogous to Figure 6 in the main text but concerns ice-only, rather than

liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud} account for
{89.28%, 10.66%, 0.05%} of the testing data respectively.
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Figure S20: Performance of best shortwave model on testing data, separated by mixed-phase
cloud regime. This is analogous to Figure 6 in the main text but concerns mixed-phase, rather

than liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud} account for
{84.50%, 15.44%, 0.07%} of the testing data respectively.
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Figure S21: Performance of best shortwave model on testing data, separated by any-phase cloud
regime. This is analogous to Figure 6 in the main text but concerns any-phase, rather than

liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud} account for
{66.20%, 30.93%, 2.86%} of the testing data respectively.
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Figure S22: Performance of best shortwave model on single-height extremes, i.e., on the 3% of
testing cases with the greatest height-maximum HR. This is analogous to Figure 5 in the main text.
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Figure S23: Performance of best shortwave model on full-profile extremes, i.e., on the 3% of
testing cases with the greatest height-averaged HR. This is analogous to Figure 5 in the main text.
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Figure S24: Fractional errors for best shortwave model on testing data, binned by geographic
location. This is analogous to Figure 7 in the main text but shows fractional errors instead of raw

errors.
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Figure S25: Detailed errors for best shortwave model on testing data, binned by geographic
location. This is analogous to Figure 7 in the main text but shows errors for individual flux

variables – F sfc
down in panels e-f, F TOA

up in panels g-h, and Fnet in panels i-j – rather than averaging

to produce all-flux MAE.
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Figure S26: Fractional errors for best shortwave model on testing data, binned by aerosol optical
depth (AOD) and solar zenith angle (SZA). This is analogous to Figure 9 in the main text but

shows fractional errors instead of raw errors.
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Figure S27: Detailed fractional errors for best shortwave model on testing data, binned by AOD

and SZA. This is analogous to Figure S26 but shows errors for individual flux variables – F sfc
down

in panels e-f, F TOA
up in panels g-h, and Fnet in panels i-j – rather than averaging to produce all-flux

MAE.
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Figure S28: Performance of best longwave model on testing data, separated by ice-only cloud
regime. This is analogous to Figure 12 in the main text but concerns ice-only, rather than

liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud, fog} account for
{87.62%, 12.32%, 0.06%, 3.93%} of the testing data respectively.34



Figure S29: Performance of best longwave model on testing data, separated by mixed-phase
cloud regime. This is analogous to Figure 12 in the main text but concerns mixed-phase, rather

than liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud, fog}
account for {82.25%, 17.60%, 0.15%, 4.93%} of the testing data respectively.35



Figure S30: Performance of best longwave model on testing data, separated by any-phase cloud
regime. This is analogous to Figure 12 in the main text but concerns any-phase, rather than

liquid-only, clouds. Cases with {no cloud, single-layer cloud, multi-layer cloud, fog} account for
{63.73%, 32.98%, 3.29%, 9.48%} of the testing data respectively.36



Figure S31: Performance of best longwave model on single-height extremes, i.e., on the 3% of
testing cases with the greatest height-maximum absolute HR. This is analogous to Figure 11 in

the main text.
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Figure S32: Performance of best longwave model on full-profile extremes, i.e., on the 3% of
testing cases with the greatest height-averaged absolute HR. This is analogous to Figure 11 in the

main text.
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Figure S33: Fractional errors for best longwave model on testing data, binned by geographic
location. This is analogous to Figure 13 in the main text but shows fractional errors instead of raw

errors.
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Figure S34: Detailed errors for best longwave model on testing data, binned by geographic
location. This is analogous to Figure 13 in the main text but shows errors for individual flux

variables – F sfc
down in panels e-f, F TOA

up in panels g-h, and Fnet in panels i-j – rather than averaging

to produce all-flux MAE.
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Figure S35: Fractional errors for best longwave model on testing data, binned by near-surface
thermodynamic lapse rates. This is analogous to Figure 15 in the main text but shows fractional

errors instead of raw errors.
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Figure S36: Detailed errors for best longwave model on testing data, binned by near-surface
thermodynamic lapse rates. This is analogous to Figure 15 in the main text but shows errors for

individual flux variables – F sfc
down in panels e-f, F TOA

up in panels g-h, and Fnet in panels i-j – rather

than averaging to produce all-flux MAE.
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