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Abstract16

The time scale of usual hydrological applications can vary from a few minutes to17

a few days. An accurate description of the precipitation probability distributions at the18

appropriate time scale is needed to compute meaningful summaries like return levels and19

periods. However few statistical parametric models can handle the full rainfall distribu-20

tion at these different temporal scales. In this context, we propose and study a new meta-21

Gaussian model which leads to a parametric model with four parameters for the full dis-22

tribution of precipitation. The main advantage of our model is that it can be applied to23

a wide range of accumulation periods. In particular, it still performs well below the hourly24

scale. In addition, each parameter is linked to a different part of the distribution: one25

of them describes the probability of rainfall occurrence, two parameters are related re-26

spectively to the shape of lower and upper tails of the distribution, and the last one is27

a multiplicative scale parameter. The building block of our model is the use of a latent28

Gaussian process that offers flexibility and simple inference algorithms.29

The model is fitted to rain gauge data recorded in Guipavas (France). It is shown30

that the proposed distribution handles accumulation periods from 6 minutes to several31

days. The model outperforms other meta-Gaussian models which have been proposed32

in the literature.33

1 Introduction34

Precipitation intensities and frequencies represent key variables for many environ-35

mental studies, not only in hydrology but also agronomy, meteorology and impact stud-36

ies (see e.g. Bauer et al., 2015; Caseri et al., 2016). There is an abundant literature on37

the modeling of daily and monthly rainfall intensity distributions. The most popular dis-38

tribution for positive daily precipitation is probably the gamma distribution (see e.g. Katz,39

1999), which generally provides an adequate fit for precipitation as the monthly scale.40

Other distributions were used and studied, for example, the mixed exponential (see Wilks,41

1999), Weibull (Castellvı et al., 2004) and the log-normal (Shoji & Kitaura, 2006). Com-42

parisons were made for specific data sets. Woolhiser and Roldan (1982) put forward the43

mixed exponential first and the gamma second. Liu et al. (2011) ranked the log normal44

first, then mixed exponential, gamma and finally exponential. Selker and Haith (1990)45

compared single-parameter distributions. The performance strongly depends on location46

of interest as local climate strongly impacts rainfall distribution. In general, the occur-47

rence of precipitation (dry/wet measurement) is modelled separately from the intensity.48

Concerning rainfall accumulated on short time periods, most of the statistical lit-49

erature and probabilistic models are developed for rainfall accumulated over an hour.50

Still, a particular impetus for describing rainfall distributions and simulating random rain-51

fall draws at any finer time scaled comes from the need to test the sensitivity and ro-52

bustness of urban hydrological models (Schilling, 1991). At sub-hourly scales, most mea-53

surements are frequently null and discrete due rain gauge precision. Still, very few but54

with high intensities events strongly skew the density to the right. These issues, in par-55

ticular over-representation of zeros and the heavy tail behavior, cannot be ignored and56

need to be treated with care. These features create a large probability mass at zero and57

a heavily tail on the upper part of distribution.58

To treat the aforementioned issues with one model, one root of our approach will59

be the versatile Gaussian random variable. The idea of building from Gaussian variables60

has been used in the past. For example, taking its square of root was proposed by Panofsky61

et al. (1958). The Box-Cox transformation (Box & Cox, 1964) has also been widely ap-62

plied (see e.g. Cecinati et al., 2017; Hussain et al., 2010), like the g-and-h transforma-63

tion introduced by Tukey (1977). Tukey’s transforms have the advantage of producing64

heavy tailed features (see e.g. Goerg, 2015; Xu & Genton, 2017). A common justifica-65
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tion behind all these Gaussian based transformation techniques is that the normal dis-66

tribution represents a solid, simple and flexible building block to handle space-time pro-67

cess (see e.g. Hussain et al., 2010). The main drawback is that the Gaussian layer is al-68

ways hidden. Still, nowadays, different inference techniques can handle the estimation69

based on latent Gaussian variables, see the literature on rainfall disaggregation (see e.g.70

Guillot & Lebel, 1999; Allcroft & Glasbey, 2003; Allard & Bourotte, 2015), downscal-71

ing and model correction (see e.g. Maraun et al., 2010; Rebora et al., 2006; Zhao et al.,72

2017), short term or spatial prediction (see e.g. Sigrist et al., 2012; Benoit et al., 2018)),73

building stochastic weather generators (see e.g. Bardossy & Plate, 1992; Ailliot et al.,74

2009; Kleiber et al., 2012), data assimilation Lien et al. (2013) or merging different data75

sources (see e.g. Cecinati et al., 2017). This body of work leads us to investigate how76

the strategy of building of Gaussian variables can be adapted to sub-hourly rainfall time77

scales. In particular, the modeling of dry measurements within this framework can be78

simplified if one see Bernouili draws as occurrences of a Gaussian variable under a thresh-79

old (see e.g. Allard & Bourotte, 2015) and Figure 4.80

A remaining difficulty is the modeling of heavy tailed events at sub-hourly scales.81

Theoretically, the Generalized Pareto (GP) distribution is justified by the field of extreme82

value theory (see e.g. Papalexiou et al., 2013; Katz, 1999). The main drawback of ex-83

treme value theory is that only exceedances above a high threshold are modelled, but84

not the full distribution. In addition, finding the optimal high threshold that defines an85

extreme remains a delicate task for the practitioner. Different methods have been pro-86

posed to model the full rainfall distribution range and bypass the threshold selection step.87

For example, Naveau et al. (2016) developed a model for which extreme value theory was88

both applied to its lower tail and its upper tail, and mi-range rainfall were also taken89

into account. But, this approach was based on the uniform distribution, not the Gaus-90

sian one, and more importantly, it did not handle dry events, but only positive values.91

In terms of applications, it was only tested on hourly and daily time scales. In addition,92

the discrete nature of rain gauge measurements ware not fully taken into account.93

In this context, the paper focuses on developing a new meta-Gaussian model based94

on the desired properties for the upper and lower tails of the distribution. In particu-95

lar the model should be able to produce heavy tails in order to fit precipitation data at96

small time steps. It should also be flexible enough to fit rainfall accumulated on a wide97

range of time scales.98

The data set that will be used throughout the paper are introduced in Section 2.99

The proposed model is justified and presented in Section 3, along side with other mod-100

els that will be used for comparison. Finally results are shown in Section 4, including101

a comparisons between the different models and a test of the flexibility of the models by102

varying the time step.103

All the models and data that will be used in the paper can be fitted with the R pack-104

age available on Github at https://github.com/mbtgy/tcG.105

2 Data106

In this section the data set used throughout the paper is be presented and the prop-107

erties of the precipitation distribution raised in the introduction are illustrated. The data108

used is a 12 years series of precipitation measured at Guipavas, France (geographical co-109

ordinates 48.45°N, 4.38°W) provided by Météo France. Guipavas is located in the North-110

West part of France, close to the city of Brest (cf. Figure 1). Its climate is influenced111

by oceanic conditions, characterised by a low temperature amplitude and alternation of112

rainy frontal systems coming from the Atlantic and high pressure systems which bring113

dryer conditions, with a mean annual precipitation of 1200 mm and a wet day (≥ 1 mm)114

frequency of about 2 days out of 5.115
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Figure 1. Location of the weather station (Guipavas)

Precipitation is available at a 6 minutes time step1 from 2006 to 2017 and in or-116

der to remove the seasonal components, a focus is made on the three months of Autumn,117

i.e. October, November and December. Figure 2 shows as an example the time series for118

2006. Figure 3 shows the histogram of precipitation for the whole series, with the en-119

tire distribution on the left, the wet measurements only in the middle and a focus on low120

and moderate intensities (between 0.2 and 2 mm) on the right.121

The measurement device is a tipping bucket gauge with a 0.2 mm precision. Hence122

the data present a strong discretization, visible in Figure 3 on the right. In Figure 2 many123

0.2 mm measurements can be observed in what seem to be dry periods (especially in Oc-124

tober). They can be due to the dew that is sometimes sufficient for the gauge to toggle.125

A drizzle with an intensity lower than 0.2mm/6min can also make 0.2 measurement ap-126

pear more or less regularly in a "dry" period.127

The histogram on the left panel of Figure 3 shows a strong peak in zero, the rest128

of the histogram being almost invisible. It is expected at a small time step and a fully129

continuous distribution obviously can not handle the observed frequency of dry measure-130

ment (0.94). As for the positive rainfall (Fig. 3, left and middle), the distribution is strongly131

skewed as most measurements correspond to low intensity rainfall. The positive distri-132

bution has a 99.9% quantile of 3.2 mm. The observations above this quantile are high-133

lighted on the left histograms using stars and maximum of the series is 9.4 mm. Some134

on these heavy rainfall events are also visible in Figure 2.135

To sum up the goal is to model precipitation at a sub-hourly scale, hence to have136

a strongly skewed distribution with a discrete component in zero and the ability to pro-137

duce heavy tails. The next section discusses the choice of such model.138

3 Models139

3.1 Meta-Gaussian Models140

A classical approach for modelling rainfall, sometimes called meta-Gaussian model,
is to assume that rainfall amounts Y can be linked to a Gaussian variable according to

Y = 0× 1X<0 + ψ(X)× 1X≥0, with X ∼ N (µ, 1), (1)

1 Data can be found for free online at https://donneespubliques.meteofrance.fr/, but only at 1 hour
time step.
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Figure 2. Time series of precipitation for Autumn 2006 in Guipavas.
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Figure 3. Histograms of precipitation at a 6 minutes time step (2006-2017, Guipavas). Whole
distribution on the left, positive part in the middle, low intensities (between 0.2 and 2 mm)
on the right. The stars represent the observations above the 99.9% quantile of the represented
distribution (i.e. 1.4 mm on the left, and 3.2 mm in the middle).
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where 1A is the indicator function equal to 1 if condition A is true, and equal to 0 oth-141

erwise. Y denotes the rainfall, X is a Gaussian random variable with mean µ and vari-142

ance 1 and ψ : [0,+∞[→]0,+∞[ is an increasing function which is generally refereed143

to as the anamorphosis in the literature. The operation of such model is schematised in144

Figure 4. The censorship in 0 produces dry conditions with a proportion linked to the145

mean of the Gaussian (step 1 in Figure 4), whereas the transformation ψ acts on the pos-146

itive part of the distribution which corresponds to wet conditions (step 2 in Figure 4).147

Figure 4. Schematic functioning of a meta-Gaussian model. The coloured areas in the his-
tograms represent the part of the distribution modified at each step.

The cumulative distribution function (cdf) of such model can be written as

FY (y) =

{
Φ(ψ−1(y)− µ) if y > 0
Φ(−µ) if y = 0

(2)

where Φ is the cdf of the standard normal distribution.148

Remark that this meta-Gaussian model is general since any positive random vari-
able Y which has a discrete component at the origin like precipitation can be written
as (1) using

ψ(x) = F−Y (Φ(x− µ)) (3)

where µ = −Φ−1 (P (Y = 0)) and F−Y denotes the quantile function of Y (generalized149

inverse function of the cdf FY of Y ). Plugging a non-parametric estimate of the quan-150

tile function of Y in (3) allows building non-parametric estimates of ψ, see e.g. Lien et151

al. (2013); Cecinati et al. (2017). The dots in Figure 5 show the estimate obtained on152

the particular data set introduced in Section 2. The shape of ψ near zero is linked to the153

small precipitations: a horizontal tangent at the origin means that they are more low154

rainfall than expected low values in the truncated Gaussian. The probability of low rain-155

fall increases if ψ is flatter at the origin. The growth speed is linked to the upper tail:156

a convex-exponential shape indicates that the tail is heavier than a Gaussian one.157

However, parametric approaches are generally favoured in the applications and many
models have been proposed in the literature. The most classical is the one of Bardossy
and Plate (1992); Sigrist et al. (2012)

ψ(x) = σx1/α, (4)

but other transformation have been proposed such as Allcroft and Glasbey (2003) which
uses a quadratic power function, Rebora et al. (2006) which uses a simple exponential
or finally in Allard and Bourotte (2015)

ψ(x) = σ2(exp(σ1x
1/α)− 1) (5)

is used. To force the resulting distribution to match a specific distribution the inverse158

of a cdf can also be used, as it is the case with the Gamma distribution in Kleiber et al.159

(2012).160
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Figure 5. Non-parametric estimate of the anamorphosis function based on (3) (dots). The
plain curve corresponds to the proposed parametric model fitted to the data (see Section 4.1),
and the dotted line is its 95% confidence interval computed on 500 non parametric bootstrap
replicates.

Transformation (4) being the most commonly used, it will be a point of compar-161

ison and will be referred to as the classical meta-Gaussian model.162

3.2 Low and Heavy Rainfall Modelling with Meta-Gaussian Models163

The choice of an appropriate anamorphosis function for a particular application164

is typically a trade-off between model complexity, versatility, tractability and interpretabil-165

ity. In this section, it is advocated that the properties of lower and upper tails of the pos-166

itive part of the rainfall distribution may also provide interesting insights.167

Different studies have shown that rainfall at daily or sub-daily scales are generally
heavy tailed (see e.g. Papalexiou et al., 2013, and references therein). In this situation,
ψ should be chosen such that the transformed Gaussian variable defined by (1) is tail
equivalent with a Pareto distribution with positive shape parameter ξ. According to Ap-
pendix Appendix B, this holds true if and only

lim
x→∞

xψ(x)

ψ′(x)
=

1

ξ
. (6)

The first function that comes to mind which satisfies (6) is x 7→ exp ξx2

2 . By re-
writting ψ as

ψ(x) = exp
ξx2

2
expu(x)

- which is always possible - condition (6) becomes168

lim
x→∞

u′(x)

x
= 0.

This condition seems easier to work with as it allows understanding that loosely169

speaking, the anamorphosis should increase "like" the function x 7→ exp ξx2

2 when x→170

+∞ to get heavy tail distributions. In particular, one can verify that most of the anamor-171

phosis that can be found in the literature - including the classical meta-Gaussian model172

(4) introduced previously - do not satisfy condition (6) and hence are not suitable for173

modelling rainfall with heavy tail. An exception is the model (5) of Allard and Bourotte174

(2015) which is tail equivalent with a Pareto distribution if and only if α = 1
2 .175
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Naveau et al. (2016) advocated, using arguments of the extreme value theory ap-
plied to low rainfalls, that the lower part of the distribution of the positive amount should
approximately follow a power-law, i.e. satisfy

lim
y↓0

FY (y)− FY (0)

yα
= C

for some positive constant C and shape parameter α > 0 . Remark that this condition
holds true in particular for the Gamma distribution (with shape parameter α) which is
often used to model daily rainfalls. Using (2) to derive a first order expansion of FY close
to 0, it can be shown that this holds true if and only if

ψ(x) = x
1
αK(x) (7)

with K such that lim
x↓0

K(x) exists and is strictly positive. This condition is verified by176

most of the anamorphosis that can be found in the literature, including the classical meta-177

Gaussian model (4) obviously. Remark however that for model (5) the same parameter178

α controls the shape of the distribution for low and heavy rainfall, and that is not pos-179

sible to create an heavy tailed distribution with a power shape parameter different from180

α = 1
2 for low rainfalls.181

To conclude, for the distribution to have a Pareto upper tail and a lower tail that182

follows a power law, the anamorphosis ψ should be chosen such that conditions (6) and183

(7) are satisfied.184

3.3 Generalized Pareto Meta-Gaussian Model185

Based on conditions (6) and (7), this paper advocates the use of the simplest anamor-
phosis function that satisfies both conditions, i.e.

ψ(x) = σx
1
α exp

ξx2

2
(8)

with µ ∈ R, σ ∈ R+∗, α ∈ R+∗ and ξ ∈ R. The distribution of the random variable186

Y defined through (1) with X ∼ N (µ, 1) and ψ given by (8) will be referred to as the187

GP meta-Gaussian distribution with parameter (µ, σ, α, ξ).188

The expected roles of those four parameters result from the analytical study of a189

meta-Gaussian model (1) with anamorphosis (8). µ is directly related to the dry prob-190

ability through (2), σ is a scale parameter, α controls the shape of the lower tail and ξ191

the shape of the upper tail.192

If ξ > 0, the distribution is tail equivalent with a Pareto distribution with shape
parameter ξ. It implies in particular that E[Xp] = +∞ if p > 1

ξ . The case ξ = 0 cor-
responds to the classical meta-Gaussian model (4). A negative ξ can seem counter in-
tuitive for modelling rainfall as it creates an upper bound to the distribution, but when
considering rainfall accumulated on a long period (several days) the fitted model nat-
urally goes for negative ξ, as it will be shown in Section 4.3 (Fig. 10). When ξ < 0, ψ
is strictly monotonic increasing only on the interval (0, xsup) with

xsup =

√∣∣∣∣ −1

min(αξ, 0)

∣∣∣∣. (9)

For negative ξ, the GP meta-Gaussian distribution is thus defined by applying (1) with
ψ given by (8) to the Gaussian variable X ∼ N (µ, 1) truncated at xsup. Remind that
truncation means that values above xsup are not observed - unlike a censorship, which
is used to create the dry component, where the observations above the bound take the
value of the bound. The support of the distribution is [0, ysup] with

ysup = σ

(
e−1

max(−αξ, 0)

) 1
2α
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Figure 6. Examples of distributions obtained with different parametrizations of the GP meta-
Gaussian model.

the upper bound in the precipitation domain. Note that when ξ ≥ 0 the bounds be-193

come xsup = ysup = +∞, so those notations can be used for ξ ∈ R. When the Gaus-194

sian is truncated above xsup, the cdf (2) must be corrected by the probability of trun-195

cation (see Appendix A).196

Another advantage of the GP meta-Gaussian transformation is the possibility to
derive an analytical expression for the inverse of ψ

ψ−1(y) =

√
1

αξ
W

(
αξ
( y
σ

)2α)
(10)

where W denotes the Lambert W function (see Goerg, 2015) defined as the inverse of197

the function x 7→ x log x, which is available in usual statistical software. Using (2) an198

analytical expression can be derived for the cdf and the probability density function (pdf)199

of the GP meta-Gaussian model. This allows in particular to compute easily the like-200

lihood function and fit the model to data (see Section 4.1). Analytical expressions for201

the finite moments can also be derived, which is not the case for many meta-Gaussian202

models that can be found in the literature. To our knowledge the classical transform (4)203

is the only other meta-Gaussian model with analytical moments.204

Expressions for the GP meta-Gaussian model pdf, cdf, quantile function and mo-205

ments can be found in Appendix A.206

3.4 Extended Generalized Pareto Model207

As mentioned in the introduction, the extended GP model of Naveau et al. (2016)
will be used as a benchmark in this paper. The specificity of the extended GP is that
extreme value theory is applied to the upper tail but also the lower tail, allowing to avoid
threshold selection. Note that here the lower tail does not include the dry component
of precipitation, and that the model is developed only for strictly positive rainfall amounts
Y+. The general model proposed in Naveau et al. (2016) is defined as

Y+ = σH−1ξ (U1/α) (11)

where U follows a standard uniform distribution and Hξ is the cdf of a GP distribution208

with shape parameter ξ. We use the same notation for the parameters than in the GP209
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meta-Gaussian model since they have the same interpretation with σ a scale parame-210

ter, α controlling the power shape of the lower tail, and ξ upper tail.211

More sophisticated transformation of the uniform distribution are proposed in Naveau212

et al. (2016) but they do not provide a better fit for the particular data set considered213

in the next section.214

The cdf of Y+ can be related to the cdf of U in the same way that the cdf of the
GP meta-Gaussian model can be related to the Gaussian cdf, hence one can write

FY+
(y) = {Hξ(y/σ)}α. (12)

4 Detailed Example of Inference215

The previous section introduced three models: first a classical meta-Gaussian model,216

i.e. (1) with anamorphosis (4), then the proposed GP meta-Gaussian model, i.e. (1) with217

anamorphosis (8) and finally the extended GP model, i.e. (11) for strictly positive rain-218

fall.219

Those three models will be tested and compared in this section using the data pre-220

sented in Section 2.221

4.1 Inference Method: Dealing with Discretization222

With the meta-Gaussian model (1) the dry measurements are supposed to be cre-
ated by the censorship in 0 and hence controlled by µ - the mean of the latent variable.
Remark that the anamorphosis (8) can produce values that are lower than 0.2, the min-
imal value that can be measured - that will be noted ym - and when discretizing those
values will become zeros. In other words zeros are produced by the censorship (controlled
by µ) and also by the anamorphosis (controlled by {σ, α, ξ}). Therefore in order to have
separable parameters ym needs to be introduced in ψ as follows.

ψ(x) = ym + σx
1
α exp

ξx2

2
(13)

Note the ψ−1 and ysup are consequently modified.223

A similar reasoning can be applied to the extended GP model: in (11) when U →224

0 we have Y+ → 0, while the minimal value that can be observed is 0.2. Hence ym is225

also introduced in Y+ = ym + σH−1ξ (U1/α).226

The introduction of ym in the models greatly improves the results obtained when227

fitting the three models to the particular data set considered in this study: a completely228

different solution is chosen for the parameters and the fit is better for the whole distri-229

bution.230

For the meta-Gaussian models, the likelihood is usually computed directly from the231

continuous density (see Appendix A), however it has been noticed that taking into ac-232

count discretization significantly improves the results. It is valid for the data considered233

in this study, i.e. rain gauge measurements with a bucket that tips every 0.2 mm (see234

Figure 11 and discussion in Conclusion).235

The discrete likelihood is based on the functioning of a tipping bucket rain gauge,
which means that P (G = g) = P (g ≤ Y < g + step), G being the discrete measure-
ment, Y being the continuous rainfall and step being the precision of G, i.e. 0.2 mm in
our case. Therefore the discrete log likelihood for both meta-Gaussian models is based
on the cdf (2):

logLMG
θ = n0 log(Φ(−µ)) +

∑
i: yi>0

log
{

Φ(ψ−1(yi + step)− µ)− Φ(ψ−1(yi)− µ)
}
,

–10–
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Figure 7. Fitting the three models to the whole series. 1st row: density of low intensities (≤ 4

mm), empirical in black, model in red. 2nd row: quantile-quantile plot of the full distribution,
empirical versus fitted quantile. The light area gives the 95% intervals computed with 500 non
parametric bootstrap replicates.

where n0 is the number of dry measurements. For the GP meta-Gaussian model, ψ is236

given in (13) and θ = {µ, σ, α, ξ} and the the classical meta-Gaussian corresponds to237

the particular case where ξ = 0.238

The discrete log likelihood of the extended GP model is based on its cdf (12) in the239

same way, with only three parameters θ = {σ, α, ξ} as there is no parameter for the dry240

measurement.241

The moments could also be used to infer the parameters of the GP meta-Gaussian242

(see Appendix A). Remark however that the usual method of moment is tricky to im-243

plement when working with heavy tail distributions since some moments are infinite. Fur-244

thermore it may also be sensitive to the discretization of the data.245

4.2 Results246

Figure 7 shows the results obtained with of the three models adjusted to 6 min-247

utes rain gauge data with discrete likelihood. First of all a focus is made on the proposed248

GP meta-Gaussian model, hence the second column. The global fit of the model, observ-249

able in the quantile-quantile (QQ) plot on the bottom, is very satisfying. The density250

(top) shows a quasi perfect fit for low intensities. For medium intensities (4-6 mm) a slight251

deviation can be observed on the QQ plot, the model producing more of these values that252

–11–
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Figure 8. Correlation between parameters, computed with 500 non parametric bootstrap
replicates. GP meta-Gaussian on the left, extended GP on the right. Histograms of the parame-
ters are shown in the diagonal.

what is present in the data. Remark that the GP meta-Gaussian model was tested on253

many data sets and it was observed that it is not a recurrent issue. Finally the tail of254

the distribution is very well reproduced by the model, and is quite heavy as the tail pa-255

rameter is 0.45. It means that moments of order greater than 2.2 are infinite. Hence even256

when simply computing the variance of some precipitation series at a fine scale (minutes),257

one must remember that the variance of the estimator is likely to be infinite.258

Those results can also be found in Figure 5, where the plain curve represents the259

estimated transformation function ψ, and the dots are the empirical one. ψ is almost per-260

fectly estimated for low intensities and the good reproduction of extremes is satisfying.261

Figure 8 (left) shows the correlation between the parameters of the GP meta-Gaussian262

model. µ, that controls the dry component of the distribution, is completely uncorre-263

lated with the parameters of the transformation, which is satisfying. However there is264

a quite strong correlation between the other parameters. It will be an important point265

to keep that in mind when trying to interpret the parameters.266

As expected the classical meta-Gaussian model is unable to reproduce the tail of267

the distribution (Fig. 7, first column). The lower tail is also affected, and even though268

it is not too bad the other models do better even for low intensities. The parameters are269

uncorrelated for this model, but the poor fit explains why the classical meta-Gaussian270

model will not be further discussed in the following section.271

Finally the extended GP and the GP meta-Gaussian models give very similar re-272

sults in terms of goodness of fit (Fig. 7, second and third column). The parameters of273

the extended GP model seem to be slightly more correlated than the ones obtained for274

the proposed model (Fig. 8, right). It was also noted that the parameters were quite close275

in terms of values, which will be investigated in the next section.276

Note that meta-Gaussian model with transform (5) was also tested: it gave a sat-277

isfying fit, as it only unhooked in the very end of the tail, but the quality of fit was not278

the main problem with this model. In Section 3.1 it was already mentioned that the low279

and strong intensities are controlled by the same parameter, and the correlation between280

parameters showed a quasi deterministic link between the three parameters of the trans-281

form.282
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Figure 9. Fitting the GP meta-Gaussian distribution at various time lags (6 minutes, 1 hour,
1 day and 3 days). The light area gives the 95% intervals computed with 500 non parametric
bootstrap replicates.

4.3 Time Lag283

Accumulating precipitation data over various periods of time allows exploring the284

interpretability of the parameters and checking the flexibility of the model. As it was285

said through the paper, the GP meta-Gaussian distribution aims at modelling precip-286

itation at a wide range of time scales, from sub-hourly to daily rainfall. The extended287

GP model will also be used in this section, and as it was already mentioned the classi-288

cal meta-Gaussian model will not be further discussed.289

The GP meta-Gaussian model is fitted to data ranging from 6 minutes up to daily290

scale gave very satisfying results (see the QQ plots in Figure 9), which demonstrates that291

the model is flexible enough to reproduce the distribution of rainfall at a wide range of292

time lags. Remark that the extended GP model is not shown in Figure 9 but the QQ293

plots obtained were so similar that they were almost indistinguishable.294

Figure 10 shows the evolution of the model parameters with time aggregation (note295

that the time axis is non linear). The first thing to notice is the fact that the evolution296

of the parameters is smooth and monotone. Note that with other meta-Gaussian mod-297

els such smoothness and monotony was not observed.298

µ is increasing with aggregation, which is expected as there are less and less dry299

measurements. σ is the global scale parameter, hence it is expected to increase as well.300

The tail parameter ξ is decreasing which is coherent with the intuition that averaging301

random variable will tend to "gaussianize" them and produce distributions with lighter302

tails. Plus practical knowledge of precipitation in the considered region tells us that with303

a larger time steps there are less extreme values.304

As α decreases the distribution becomes more "peaky" at the origin. The reason305

why α decreases is not straightforward, but the rainfall accumulated over a given time306

period is the sum of a random number (because of the dry measurements) of correlated307

(because of the temporal dependence) random variables and hence it may have a com-308

plicated behaviour. Furthermore α controls not only the lower tail but has also a strong309

impact on the medium intensities. Another lead is that it might be due to the strong310

correlation between the parameters (Fig. 8). This reminds us that caution is needed and311

one should not over interpret the parameters.312

As the GP meta-Gaussian model and the extended GP one are closely related, it313

is also interesting to check if the parameters have the same role in both models, and hence314

the same evolution with time aggregation. The parameters estimation of the models are315

represented in Figure 10, showing that from 6 minutes to 1 day the parameters of both316

models exhibit similar variations. After 1 day they diverge to different solutions, and it317
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Figure 10. Parameter estimation at various time lags, boxplots computed on 500 non para-
metric bootstrap replicates. The empty boxes are parameters obtained with the GP meta-
Gaussian distribution and the fulled ones with the extended GP.

could be explained by the fact that after one day a non-zero mode starts to emerge on318

the histogram of the data. However both models still have the same quality of fit.319

5 Conclusion320

The goal of the GP meta-Gaussian distribution is to extend the class of meta-Gaussian321

models to small time steps - several minutes. Properties of the lower and upper tails mo-322

tivate the choice of the transformation, using extreme value theory to derive two con-323

ditions for the anamorphosis. The proposed GP meta-Gaussian model is tractable and324

analytical expressions exist for the pdf, cdf, quantile function and for the moments.325

Results are very satisfying for a wide range of time steps - from 6 minutes to sev-326

eral days, demonstrating the flexibility of the model. Even though the data presented327

in this article did not allow to further aggregate (only 12 years of data), the model was328

also tested up to monthly scale using another data set of daily data and gave similarly329

satisfying results.330

Comparison with a classical meta-Gaussian model shows what the proposed trans-331

form brings to this class of models: a better fit at small time scale due to its capacity332

to produce heavy tails. The GP meta-Gaussian model is quite similar to the extended333

GP model Naveau et al. (2016) in terms of construction but also in terms of performance.334

The advantage of the meta-Gaussian model is its link with the latent Gaussian that al-335

lows using methods developed for Gaussian data (multivariate, spatiotemporal models,336

Kalman-like algorithm, etc.).337

The evolution of parameters with aggregation is very interesting for several rea-338

sons. First it demonstrates the similarities between the GP meta-Gaussian and the ex-339

tended GP model. Second the smooth and monotonic evolution makes it possible to in-340

terpret the roles of the parameters, even though α is a bit harder to interpret than the341

other parameters. Finally when seeing such smoothness in the variation one can won-342
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Figure 11. Quantile 0.95 of parameters error between the truth and both likelihood estimates
(the size and colour of the dots are on a log scale).

der if a unique model with parameters varying with time aggregation could be developed.343

Having such model would be very interesting as it would mean that hourly or daily rain-344

fall could say something about the parameters values at a few minutes time scale.345

A final point that was not central in the paper but that is very important for prac-346

tical applications is the role of discretization. To demonstrate the performance of the dis-347

crete likelihood against the continuous one (see Section 4.1), Figure 11 shows the results348

of the optimisation on simulated data with various discretization precisions and various349

"time scales", i.e. various parameter sets that were the ones found in Section 4.3. What350

is shown is the 0.95 quantile of the absolute error between the true parameters and the351

ones estimated by the two likelihoods. Both likelihoods could be used for data with 0.01352

precision but for higher discretization steps the discrete likelihood performs way better353

than the continuous one, even with hourly data. Note that most of the parameter er-354

ror is due to α and ξ. For the models that were tested in this paper, the discrete like-355

lihood was a efficient and easy way to deal with the discretization issues.356

Appendix A Some Theoretical Properties of the GP Meta-Gaussian357

Distribution358

The density, cdf and quantile function of a meta-Gaussian model as defined in (1)
are

fY (y) = c×
{
φµ
(
ψ−1(y)

)
/ψ′

(
ψ−1(y)

)
if y > 0

Φµ(0) if y = 0
,

FY (y) = c×
{

Φµ(ψ−1(y)) if y > 0
Φµ(0) if y = 0

,

F−Y (u) =

{
ψ(Φ−1µ (u/c)) if u > Φµ(0)
0 if u = Φµ(0)

,

with φµ and Φµ denoting respectively the pdf and cdf of a normal distribution with mean359

µ. c is the normalisation constant that deals with the probability of truncation when ξ <360

0 with the GP meta-Gaussian transform. Hence c = 1 for the classical transform (4),361

and for the GP meta-Gaussian transform (8) c = 1/Φµ(xsup), with xsup the upper bound362

in the Gaussian domain as defined in (9).363
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An explicit writing of the moments was found for the GP meta-Gaussian distribu-
tion when ξ ≥ 0. Let us write Y+ the wet measurements.

E(Y p+) =
1√

2π(1− Φ(−µ))

∫ +∞

0

ψ(x)p exp

{
−1

2
(x− µ)2

}
dx

=
σp√

2π(1− Φ(−µ))
exp

(
−µ

2

2

)∫ +∞

0

xp/α exp

{
−1− ξp

2
x2 + µx

}
dx

By identification in Gradshteyn and Ryzhik (2007) (eq. 3.462.1, page 365), with
γ = −µ, ν − 1 = p/α and β = (1− ξp)/2,

E(Y p+) =
σp(1− ξp)− 1

2 (
p
α+1)

√
2π(1− Φ(−µ))

exp

{
µ2

2

(
1

2(1− ξp)
− 1

)}
Γ
( p
α

+ 1
)
D−( pα+1)

(
− µ√

1− ξp

)
Γ is the Gamma function and Dν can be expressed with Kummer’s confluent hyperge-364

ometric function of first kind (see Gradshteyn & Ryzhik, 2007, eq. 9.240, page 1028).365

The expression of E(Y p+) is valid if −α < p < 1/ξ. Note that for ξ > 0 first es-366

timation of ξ is needed to determine to moments that can be computed, which is due367

to the fact that some moments are infinite.368

Appendix B Pareto Tail for Meta-Gaussian Models369

Proposition 1 Let Z be any positive absolutely continuous random variable with pdf
fZ and with a Pareto survival function FZ . Let X be any standardized normal distributed
random variable, and let us define the positive random variable

Y
d
= ψ(X),

where d
= means equality in distribution and ψ(.) represents a continuous and increasing

function from the real line to [0,∞). The two random variables Z and Y are tail-equivalent
if and only if

lim
x→∞

xψ(x)

ψ′(x)
=

1

ξ
, (B1)

where ξ corresponds the common positive GP shape parameter of Z.370

Proof of Proposition 1: Let φ and Φ denote respectively the pdf and survival func-371

tion of a standard normal distribution X.372

Recall that Z and Y are tail-equivalent, if and only

lim
y→∞

FZ(y)

P[Y > y]
= c ∈ (0,∞),

This condition is satisfied if they have the same tail index. Assuming a Pareto tail with
positive shape parameter ξ for Z implies that Z is regularly varying with index 1/ξ. Propo-
sition A.3.8(b) from Embrechts et al. (2013) recalled that this regular variation type is
equivalent to

lim
z→∞

z × fZ(z)

FZ(z)
=

1

ξ
.

Hence, to show that Y and Z are tail equivalent, one needs to determine under which
condition it can be written that

lim
z→∞

z × fY (z)

FY (z)
=

1

ξ
.

where fY and FY denote the pdf and survival function of Y , respectively.373
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By construction, the survival function of Y equals to

FY (z) = P[X > ψ−1(z)] = Φ
[
ψ−1(z)

]
,

The density of Y is
fY (z) =

(
ψ−1(z)

)′
φ
[
ψ−1(z)

]
.

Then one can write

z × fY (z)

FY (z)
=
(
z × ψ−1(z)×

(
ψ−1(z)

)′)×( φ
[
ψ−1(z)

]
ψ−1(z)Φ [ψ−1(z)]

)
.

Mill’s ratio (see Embrechts et al., 2013) tells us that the ratio in the last bracket goes
to one as ψ−1(z) goes to ∞ (i.e. as z grows). Hence, the condition

lim
z→∞

(
z × ψ−1(z)×

(
ψ−1(z)

)′)
=

1

ξ
, (B2)

is equivalent to

lim
z→∞

z × fY (z)

FY (z)
=

1

ξ
.

This is equivalent to have tail equivalence between Z and Y .374

Changing variables with z = ψ(x), x = ψ−1(z) and
(
ψ−1(z)

)′
= dx/dz, condi-375

tion (B2) is equivalent to condition (B1).376

This is the necessary and sufficient condition on ψ(.) to build a Pareto random vari-377

able of tail index ξ from a standardized normal random variable X.378
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Figure7.2.
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Figure9.1.
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Figure9.2.
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Figure9.3.
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Figure9.4.
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Figure10.1.



−
1.

5
−

0.
5

0.
5

1.
5
µ

6' 12' 30' 1h 3h 6h 12h 1d 2d 3d

power−Tukey h



Figure10.2.
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Figure10.3.
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Figure10.4.
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Figure11.2.
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Figure11.1.
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