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Abstract16

We introduce and evaluate an approach for the simultaneous retrieval of aerosol and sur-17

face properties from Airborne Visible/Infrared Imaging Spectrometer Classic (AVIRIS-18

C) data collected during wildfires. The joint National Aeronautics and Space Admin-19

istration/National Oceanic and Atmospheric Administration (NASA/NOAA) Fire In-20

fluence on Regional to Global Environments and Air Quality (FIREX-AQ) field cam-21

paign took place in August 2019, and involved two aircraft and coordinated ground-based22

observations. The AVIRIS-C instrument acquired data from onboard NASA’s high al-23

titude ER-2 research aircraft, coincident in space and time with aerosol observations ob-24

tained from the Aerosol Robotic Network (AERONET) DRAGON mobile platform in25

the smoke plume downwind of the Williams Flats Fire in northern Washington in Au-26

gust, 2019. Observations in this smoke plume were used to assess the capacity of optimal-27

estimation based retrievals to simultaneously estimate aerosol optical depth (AOD) and28

surface reflectance from Visible Shortwave Infrared (VSWIR) imaging spectroscopy. Ra-29

diative transfer modeling of the sensitivities in spectral information collected over smoke30

reveal the potential capacity of high spectral resolution retrievals to distinguish between31

sulfate and smoke aerosol models, as well as sensitivity to the aerosol size distribution.32

Comparison with ground-based AERONET observations demonstrates that AVIRIS-C33

retrievals of AOD compare favorably with direct sun AOD measurements. Our analy-34

ses suggest that spectral information collected from the full VSWIR spectral interval,35

not just the shortest wavelengths, enables accurate retrievals. We use this approach to36

continuously map both aerosols and surface reflectance at high spatial resolution across37

heterogeneous terrain, even under relatively high AOD conditions associated with wild-38

fire smoke.39

1 Introduction40

Atmospheric aerosols are fundamental to the physics and chemistry of the Earth’s41

atmosphere and play important roles in the planetary radiation balance, the hydrologic42

cycle, atmospheric circulation, and even human health. Besides being one of the largest43

uncertainties in estimates of the future global climate (Boucher et al., 2013), the effects44

of aerosols in the present atmosphere are complex and often poorly understood (e.g., Ku-45

niyal & Guleria, 2019). Climate change may also alter the relative concentrations and46

distributions of atmospheric aerosols through processes such as the desertification of po-47

tential dust sources (Green et al., 2020) and an increased incidence of wildfires (Barbero48

et al., 2015). New and improved measurements of aerosol quantity, size, shape, and chem-49

ical composition are necessary in order to monitor these sources and to better understand50

the processes of aerosol emission and transport. As aerosols vary widely in concentra-51

tion and composition over space and time, observations from passive optical instruments52

with synoptic coverage from satellites will play a critical role in this effort.53

A key challenge in measuring aerosols with passive remote sensing from a single-54

angle view is the separation of atmospheric effects from the surface-reflected radiance,55

especially over land. Spaceborne imaging sensors such as the Ozone Monitoring Instru-56

ment (OMI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have57

exploited spectral observations in different wavelengths in the ultraviolet (UV) and vis-58

ible (VIS) to shortwave infrared (SWIR), respectively, to retrieve aerosol optical depth59

(AOD), which is the total amount of aerosols in the atmospheric column, and some in-60

formation about aerosol type, especially absorption (e.g., Torres et al., 2007; Hsu et al.,61

2013; Levy et al., 2013; Sayer et al., 2014; Buchard et al., 2015). Due to the complex-62

ity of the underlying surface, these algorithms often limit aerosol retrievals to wavelengths63

where the surface signal is expected to be low and, further, assume a simple statistical64

relationship – typically linear – between key wavelengths. Spatial averaging and precon-65

ditioning are also necessary to reduce the noise in the observations. These approaches66

are necessary because a handful of spectral channels are numerically insufficient to de-67

–2–



manuscript submitted to Journal of Geophysical Research: Atmospheres

termine the surface/atmosphere separation. Unfortunately, the Earth’s surface does not68

always adhere to such strict relationships, nor is it always possible to find nearby dark69

pixels, which are among the challenges for these multi-band approaches.70

While the atmospheric science community is interested in aerosols for the reasons71

outlined above, the land surface community considers the presence of an overlying layer72

of aerosols a nuisance that must be removed in order to retrieve key information about73

surface ecology, biodiversity, mineralogy, vegetation health, and other geophysical pa-74

rameters (e.g., C. M. Lee et al., 2015; Rast & Painter, 2019). These “atmospheric cor-75

rection” approaches are traditionally applied to data from imaging spectrometers – also76

called hyperspectral imagers, due to their high spectral resolution and large number of77

spectral bands – to obtain accurate surface information with little attention paid to the78

details of the atmospheric aerosol (e.g., Gao et al., 2009; Rast & Painter, 2019; Thomp-79

son et al., 2019b). However, recent work has leveraged the substantial information con-80

tent of VIS to SWIR (VSWIR) imaging spectroscopy with high spectral resolution (≤81

10 nm) to simultaneously retrieve accurate surface and atmosphere states over hetero-82

geneous terrain (Thompson et al., 2018, 2019a). In this study, we extend this approach83

to wildfire smoke with realistic constraints on physically possible surface reflectances and84

demonstrate the ability to accurately retrieve AODs from 0 to above 2 in the mid-visible85

(550 nm) while showing sensitivity to aerosol optical properties at unprecedented spa-86

tial resolution.87

The wildfire cases are taken from the western phase of the joint National Aeronau-88

tics and Space Administration (NASA) and National Oceanic and Atmospheric Admin-89

istration (NOAA) Fire Influence on Regional to Global Environments and Air Quality90

(FIREX-AQ) field campaign that took place in August 2019. A diverse suite of in situ91

and remote sensing instruments were deployed during this campaign. Here we focus on92

data from NASA’s “Classic” Airborne Remote Visible Infrared Imaging Spectrometer93

(AVIRIS-C), which flew on the ER-2 high altitude research aircraft, and coincident ground-94

based sun photometer observations made by the Aerosol Robotic Network (AERONET).95

Simultaneous surface-atmosphere retrievals using AVIRIS-C data were performed using96

multiple aerosol models, demonstrating the ability to accurately retrieve AOD in com-97

parison with AERONET and distinguish broad aerosol types using imaging spectroscopy98

in the VSWIR. These retrievals were performed at high resolution (16.3 m) to generate99

spatially continuous aerosol and atmospherically corrected surface maps. We further eval-100

uate the information content of spectroscopic observations and show that aerosol related101

information is both dependent on the statistical constraints applied to the spectral sur-102

face reflectance, and distributed across the entire VSWIR spectral range. We close with103

a discussion of the implications of this work for imaging spectroscopy on NASA’s up-104

coming Plankton, Aerosol, Cloud and ocean Ecosystem (PACE), Earth surface Mineral105

dust source InvesTigation (EMIT), Aerosol and Cloud, Convection and Precipitation (ACCP),106

and Surface Biology and Geology (SBG) satellite missions.107

2 Methods108

The joint NASA/NOAA FIREX-AQ field campaign was designed to improve our109

understanding of the impacts of landscape fires (i.e., wildfires and controlled/agricultural110

burns) on climate, weather, and downwind air quality. During the western phase of the111

campaign in August 2019, the NASA high-altitude ER-2 research aircraft flew 11 flights112

over targets in Washington, Oregon, California, Utah, and Arizona from the NASA Arm-113

strong Flight Research Center (AFRC) located in Palmdale, CA. Additional NASA and114

NOAA aircraft participated in the campaign, along with dedicated deployments of ground-115

based stationary and mobile sensors. In this section, we describe the instruments and116

approaches used to retrieve and validate combined surface and atmospheric parameters117

from VSWIR imaging spectroscopy during FIREX-AQ.118
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2.1 Airborne measurements119

During FIREX-AQ, NASA’s “Classic” Airborne Visible Infrared Imaging Spectrom-120

eter (AVIRIS-C) flew in the Q-bay located in the belly of the ER-2 high-altitude research121

aircraft. AVIRIS-C measures radiance in 224 contiguous bands in the spectral range from122

380 to 2500 nm, with approximately 10 nm spectral sampling (Green et al., 1998). From123

the 20 km operational altitude of the ER-2, the approximately one milliradian instan-124

taneous field of view (IFOV) of AVIRIS-C translates to 16.3 m ground-level spatial sam-125

pling with a swath of about 11 km. The instrument is a whiskbroom imager with an os-126

cillating scan mirror that sweeps across the 30◦ cross-track field of view at 12 Hz, ac-127

quiring thousands of spectra per second. With this configuration, light from each cross-128

track element passes through the same optical system, providing uniformity across the129

image swath. Four optical fibers route the light from the foreoptics into four spectrom-130

eters with the following spectral ranges: (A) 380-700 nm, (B) 700-1300 nm, (C) 1300-131

1900 nm, and (D) 1900-2500 nm. This approach allows each detector to be individually132

optimized (Green et al., 1998).133

Prior to the campaign, AVIRIS-C was laboratory calibrated using measurements134

of International System of Units (SI) traceable sources. During the campaign, the lab-135

oratory calibration was updated and refined using vicarious calibration from overflights136

of the Railroad Valley Playa, a dry lake bed in Nevada (Bruegge et al., 2021). A ground137

team made measurements of the surface of the playa on 4 August 2019, about ten days138

prior to ER-2 overflights on 13 and 15 August 2019. The shape of the reflectance of the139

playa is known to be stable within a few percent over multiple years, and vicarious cal-140

ibration for Railroad Valley has an uncertainty of about 3% under ideal, clear sky con-141

ditions (Bruegge et al., 2019). Details of the vicarious calibration of AVIRIS-C for FIREX-142

AQ can be found in Bruegge et al. (2021). The resulting calibration coefficients were ap-143

plied to the AVIRIS-C data used in this investigation, rescaling the data to absolute ra-144

diance units. The resulting radiance cubes were geolocated using a camera model com-145

bined with on-board GPS telemetry and mapped to a square, rectilinear grid with 16.3146

m pixels. The same grid was used for aerosol retrievals and comparisons with ground-147

based measurements.148

2.2 Ground-based measurements149

The Aerosol Robotic Network (AERONET) is a distributed network of ground-based150

sun photometers that provide information about atmospheric aerosol loading (AOD) and151

aerosol properties by measuring direct solar intensity and directional sky radiances in152

a number of visible and near-infrared wavelengths (Holben et al., 1998; Dubovik & King,153

2000; Giles et al., 2019; Sinyuk et al., 2020). In addition to the static AERONET sites,154

during FIREX-AQ specially modified sun photometers were mounted on two vehicles and155

attempts were made to place these vehicles under wildfire smoke plumes to measure their156

aerosol properties and serve as validation for remote sensing retrievals (Holben et al., 2018).157

This was accomplished successfully for the Williams Flats Fire that burned on the Colville158

Indian Reservation, about 80 km northwest of Spokane, WA (e.g., Junghenn Noyes et159

al., 2020).160

Table 1 lists the coincident measurements between AVIRIS-C and AERONET iden-161

tified during the FIREX-AQ campaign. We gathered all instance of data where acqui-162

sitions were less than 100 m apart (AVIRIS pixel center compared to AERONET loca-163

tion), and also less than 15 minutes apart. In all cases, the closest match to AVIRIS-C164

was within a single retrieval pixel (≤ 16.3 m), and the dates and times reported are the165

closest matching AERONET instance. AERONET AODs were linearly interpolated in166

log-log space to 550 nm using the two nearest AERONET wavelengths on either side of167

the desired wavelength (e.g., Sayer et al., 2013). Note that not all the matches were for168

conditions with wildfire smoke.169
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Table 1. AVIRIS-C Collocations with AERONET Sites during FIREX-AQ in 2019

AERONET AERONET AERONET AVIRIS

AERONET Min Time Closest Time Max Time Time Lat Lon

Site Date (UTC) (UTC) (UTC) (UTC) (◦N) (◦W)

Mobile 2 08/06 18:27:03 18:41:55 18:47:17 18:41:54 47.9110 118.3350

Mobile 2 08/06 20:24:34 20:38:55 20:54:18 20:39:22 48.1020 118.2060

Mobile 2 08/06 21:00:52 21:12:29 21:12:29 21:15:49 48.1020 118.2060

Mobile 1 08/07 18:14:50 18:27:52 18:29:50 18:28:43 47.9061 118.3337

CalTech 08/12 18:51:58 19:06:58 19:18:58 19:05:38 34.1367 118.1262

UFR 08/21 22:51:51 23:03:44 23:12:44 23:04:10 35.2148 111.6344

UFR 08/21 23:06:43 23:06:43 23:33:43 23:19:07 35.2148 111.6344

*UFR stands for USGS Flagstaff ROLO

2.3 Retrieval strategy170

Surface and atmospheric properties were simultaneously estimated using a Bayesian171

Maximum A Posteriori (MAP) inversion approach. In the satellite remote sensing and172

atmospheric science communities, this is known colloquially as Optimal Estimation (OE)173

(e.g., Rodgers, 2000; Nguyen et al., 2019; Maahn et al., 2020). Recently, the method was174

adapted for retrievals using imaging spectroscopy data from the AVIRIS-Next Gener-175

ation (AVIRIS-NG) instrument (Thompson et al., 2018, 2019a). In comparison to AVIRIS-176

C, AVIRIS-NG has nearly twice as many spectral samples (425 vs. 224) within the spec-177

tral range from 380 to 2510 nm (Chapman et al., 2019). One of the goals of the present178

work is to demonstrate the OE approach using the lower spectral resolution data from179

AVIRIS-C. In this section we summarize the salient points regarding the application of180

OE to AVIRIS-C aerosol retrievals for FIREX-AQ cases. More in-depth technical dis-181

cussions of OE retrievals for imaging spectroscopy can be found in Thompson et al. (2018,182

2019a).183

We begin with a state vector, x, that represents the set of surface, xs, and atmo-184

spheric, xa, parameters we wish to estimate using the AVIRIS-C observations. In the185

specific cases considered here, xs represents the Lambertian surface reflectances for all186

224 AVIRIS-C spectral bands. The atmospheric state, xa, includes AOD at 550 nm of187

one or more aerosol types and the column water vapor concentration. For convenience,188

we further represent the known solar and sensor geometry as an additional vector, g. A189

forward model, f , maps the state vector to an estimate of the radiance at the sensor, l̂o =190

f(x,g)+ε, where ε is a vector of measurement errors that are assumed Gaussian and191

independent of the state vector, x.192

Making the simplifying assumption of a locally-homogeneous, Lambertian surface193

(e.g., Tanré et al., 1979; T. Y. Lee & Kaufman, 1986; Pinty et al., 2005), the forward model194

can be written as:195

l̂o = latm(xa,g) + [ldn(g) · τ (xa,g) · r(xs)] ·
1

1− s(xa,g) · r(xs)
+ ε. (1)

The first term, latm, is the atmospheric path radiance, which represents light scattered196

by the atmosphere back into the sensor that never interacts with the surface, and car-197

ries most of the information about the aerosol and water vapor content of the atmospheric198

column. The term in brackets contains the total (direct + diffuse) downwelling irradi-199
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ance at the surface, ldn, that is attenuated by transmission through the atmosphere, τ ,200

and reflected by a single bounce from the surface, which has a hemispherical-directional201

reflectance factor (HDRF), given by r. The HDRF is the ratio of the reflected radiant202

flux from the surface due to the incoming light from the entire hemisphere to the reflected203

radiant flux from an ideal, diffusely reflecting (Lambertian) surface (Schaepman-Strub204

et al., 2006). If the surface was such a perfectly diffusely reflecting surface, then r ≡ 1.205

However, in practice, the HDRF of the surface is much less than one. For simplicity, we206

will henceforth refer to the HDRF as the surface reflectance or just reflectance. The set207

of surface reflectances for the AVIRIS-C wavelengths corresponds exactly to the surface208

state vector, xs. The fraction that appears after the brackets accounts for multiple scat-209

tering, which is light that interacts with the surface and the atmosphere multiple times.210

Each interaction modifies the term in the brackets by a multiple of the spherical albedo211

of the atmosphere observed from the ground, s, and the light diffusely reflected upward212

from the surface, r. The sum of these interactions make up a geometric series that is rep-213

resented by the fraction in the limit of an infinite number of interactions. Finally, the214

measurement noise, ε, is assumed to be Gaussian with a zero mean and a covariance given215

by Σe. Note that additional terms could be included to account for surface emission, which216

may be important for very hot targets, like active fires. However, since direct measure-217

ments of the hot fire front were very sparse, these terms were not used.218

The OE retrieval approach uses Bayes’ theorem to estimate the state vector, in-219

cluding both surface and atmosphere terms, most likely to have yielded the true obser-220

vation lo, after taking into account both measurement noise and the strength of any prior221

information. Bayes’ theorem is given by the expression:222

p(x|y) =
p(y|x)p(x)

p(y)
. (2)

This equation should be read: the probability of a state, x, given by the observations,223

y, is equal to the probability of y given x times the probability of x divided by the prob-224

ability of y. In words, Bayes’ theorem states that the posterior probability, p(x|y), is equal225

to the likelihood, p(y|x), times the prior, p(x), divided by the evidence, p(y). The ev-226

idence, or the marginal likelihood, does not provide any information on the state vec-227

tor x, so for practical purposes Bayes’ theorem is simplified to:228

p(x|y) ∝ p(y|x)p(x). (3)

In general, we take the prior to be a multivariate Gaussian distribution given by:229

p(x) ∝ exp

[
−1

2
(x− xp)TΣ−1

p (x− xp)

]
, (4)

where xp is the mean of the assumed prior distribution of the state vector with a covari-230

ance Σp, and the superscript T designates the transpose of the vector. Note that the term231

in the brackets is the square of the Mahalanobis distance, which is a multidimensional232

generalization of the Euclidian distance (De Maesschalck et al., 2000). In a similar fash-233

ion, the difference between the modeled and sensor observations, sometimes called the234

“noise,” but which actually contains both the error in the forward model and the mea-235

surement noise, is expressed in Gaussian form as:236

p(y|x) ∝ exp

[
−1

2
(lo − l̂o)TΣ−1

e (lo − l̂o)

]
, (5)
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where lo is the true observation, l̂o is the modeled observation from the forward model,237

and Σe is the error covariance matrix.238

With these assumptions, the posterior probability becomes:239

p(x|y) ∝ exp

[
−1

2
(lo − l̂o)TΣ−1

e (lo − l̂o)

] [
−1

2
(x− xp)TΣ−1

p (x− xp)

]
. (6)

Taking the logarithm of both sides, we obtain:240

χ2(x) ≡ −2 ln p(x|y) =
[
(lo − l̂o)TΣ−1

e (lo − l̂o)
]

+
[
(x− xp)TΣ−1

p (x− xp)
]
, (7)

which is the OE cost function (Cressie, 2018). Minimizing this cost function leads to the241

MAP estimate, the most probable state that includes all the prior information and pos-242

terior probabilities (Thompson et al., 2019a).243

In our implementation, the solution to Eq. (7) is found using a trust-region method,244

a common nonlinear gradient-best optimization technique that guarantees local conver-245

gence for continuous problems (Branch et al., 1999; Conn et al., 2000). Starting points246

were initialized near the atmospheric state bounds for water vapor and AOD for each247

aerosol type and the corresponding heuristically-determined surface reflectance starting248

points, in order to help ensure a more global optimization. We found that the retrieval249

proved to be generally robust, with the multipoint initialization leading to spatially-smooth250

atmospheric state values, consistent with expectation.251

Returning to Eq. (7), careful consideration reveals that the second term in square252

brackets, which includes the prior distribution, acts as a regularization parameter for the253

solution of an ill-posed problem (Cressie, 2018; Nguyen et al., 2019). For our applica-254

tion, we exploit this characteristic of the prior in a two-step manner to improve the per-255

formance of the algorithm under conditions of high aerosol loading where the underly-256

ing surface is partially or completely obscured at shorter wavelengths by the atmosphere.257

Recall that the surface model prior is based on a collection of multivariate Gaussian dis-258

tributions, as shown in Eq. (4). It is common in operational settings to use “universal”259

models that provide only very weak, or “soft,” constraints (Thompson et al., 2020a). As260

illustrated in Fig. 1, we performed an initial atmospheric correction using soft constraints261

from what we consider “universal surface models.” These are represented by the basic262

surface priors shown at the top of the figure, which have smoothly varying reflectances263

as a function of wavelength, with a broad spread about the mean, and very small band-264

to-band covariances peaking around 3.5×10−4. We then selected large, rectangular ar-265

eas of heterogeneous terrain upwind of the smoke plumes, where the retrieval of the sur-266

face reflectance could be considered trustworthy. The surface reflectances were grouped267

using K-means clustering, and we obtained a set of within-group means and covariance268

matrices. These locally derived surface priors, associated spreads, and band-to-band co-269

variances are shown in the bottom portion of Fig. 1. Compared to the basic surface pri-270

ors, the local surface priors have more spectral variability with much tighter agreement271

about the mean, and larger covariances, which ranges up to 1.0×10−3 for the selected272

pixel shown. These stronger priors were then used in a second pass of the OE retrieval273

for the portion of the image obscured by the dense smoke plume in the shorter wavelengths.274

2.4 Atmospheric radiative transfer275

The complete forward model f(x,g) includes models of the sensor, surface, and at-276

mosphere that transform state variables to a predicted radiance. The surface model is277
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Figure 1. Illustration of basic (top) and localized (bottom) priors for the surface component

of the state vector, xs. The priors shown in the top set are drawn from a moderately diverse

set of reference spectra, as per Thompson et al. (2018). These were used to estimate the surface

reflectance of a clear-sky area of land (middle panel) located upwind of the target area of interest

that contained the smoke plume. The resulting surface reflectances were then clustered into the

local surface priors shown in the bottom panel. Each panel of priors shows the prior means and

root mean square of the covariance on the left, and the full covariance matrix of a selected pixel

on the right. White regions in the plots indicate spectral ranges that are dominated by water

vapor and contain little information about the surface.

described in Section 2.3, and the instrument model contains a component-wise descrip-278

tion of the AVIRIS-C sensor with constant noise terms that account for electronic and279

detector thermal effects, as well as signal-dependent noise from photon counting statis-280

tics (Thompson et al., 2018). In this section, we describe the atmospheric models used.281

In order to determine the optical coefficients used in Equation 1, we ran a series282

of MODTRAN 6.0.2.2G radiative transfer model simulations for each scene (Berk & Hawes,283

2017). While in theory the formulation in Section 2.3 can estimate any combination of284

atmospheric state parameters, in this work we focus on two key atmospheric components:285

the total column water vapor and the aerosol optical depth for three different aerosol types.286

The three aerosol types used in this investigation were the sulfate and dust models pre-287

viously used for AVIRIS-NG aerosol retrievals over India (Thompson et al., 2019a) as288

well as a fine smoke aerosol model based on AERONET climatological observations (Omar289
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et al., 2005, 2009). The sulfate model is based on Chin et al. (2002) and Hess et al. (1998).290

The dust model is taken from a single size bin from 1 to 1.8 µm in the OPAC-Spheroids291

model described in Colarco et al. (2014). The dust spectral refractive indices are based292

on the OPAC data (Hess et al., 1998), and the shape information is drawn from the non-293

spherical single scattering aerosol database described by Meng et al. (2010).294

The smoke model has a log-normal size distribution given by:295

dn(r)

d ln r
=

N0√
2π · lnσ

· exp

[
−(ln r − ln rc)

2

2(lnσ)2

]
, (8)

where the left hand side of the equation describes the number of particles in equal steps296

in the logarithm of the radius, r, and N0 is a normalization term. The key parameters297

of the distribution are rc, the characteristic radius (sometimes called the modal radius),298

and σ, which is the characteristic width (sometimes call the geometric standard devi-299

ation). From Omar et al. (2005, 2009), rc = 0.0790 µm, and σ = 1.5624 µm. Note that300

the characteristic radius is derived from the volume-weighted characteristic radius, rv301

distribution given for the fine mode smoke in Omar et al. (2005, 2009), using the con-302

version: rc = rv exp[−3(lnσ)2] (Remer & Kaufman, 1998).303

Omar et al. (2009) provide the real and imaginary part of the index of refraction304

at two wavelengths, 532 nm and 1064 nm, since the model is derived for use with the305

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol306

products. These values nr(532) = 1.517, nr(1064) = 1.541, for the real part, and ni(532) =307

0.0234, ni(1064) = 0.0298 were interpolated in log-log space to the required MODTRAN308

wavelengths. The difference between a simple linear interpolation and the log-log inter-309

polation is small for the AVIRIS-C wavelengths used in the retrievals. Single scattering310

properties were calculated using a Mie code assuming spherical particles (Mishchenko311

et al., 1999).312

The extinction, absorption, and asymmetry parameters of each aerosol are shown313

as a function of wavelength in Fig. 2. These are the key parameters used in the atmo-314

spheric radiative transfer performed by MODTRAN (Berk & Hawes, 2017). This figure315

demonstrates that the sulfate and smoke scattering coefficients are very similar due to316

similar size distributions. Their absorption coefficients, however, differ significantly in317

the 0.4 to 2.5 µm range. By comparison, the dust spectral optical properties differ sig-318

nificantly from those of the other two aerosol models. Although the dust model is used319

in the simulation experiment described in the next section, detailed investigation of AVIRIS-320

C sensitivity to atmospheric dust is beyond the scope of this investigation, which is fo-321

cused on fire observations.322

Given the aerosol properties, MODTRAN 6.0 was then used to calculate the op-323

tical properties τ , s, and latm, that appear in Eq. 1 using the mean view and solar an-324

gle geometries for each scene. As in Thompson et al. (2018), the simulations were run325

using the correlated-k representation to handle atmospheric absorption with 17 coeffi-326

cients per 0.1 cm−1 spectral bin. Multiple scattering was performed using the DISORT327

(Stamnes et al., 1988) method internal to MODTRAN, with 8 streams (Berk & Hawes,328

2017). The resulting coefficients were placed in a lookup table (LUT) indexed by atmo-329

spheric state. AOD values in the LUT for each aerosol type ranged from 0-3 with six evenly330

spaced values. Interpolations within the LUT were used to determine the precise radi-331

ance for any given state vector during individual pixel inversions (Thompson et al., 2019a).332

–9–



manuscript submitted to Journal of Geophysical Research: Atmospheres

Figure 2. Aerosol model components for different aerosol types as a function of wavelength,

showing (a) the normalized extinction coefficients, (b) the absorption coefficients, and (c) the

asymmetry parameters for the three aerosol models. Dust is indicated in blue, sulfate in green,

and smoke in purple.

3 Results333

We first present a small series of simulation results to provide intuition about the334

effects of different aerosols on at-sensor radiance for AVIRIS-C, followed by retrievals of335

AODs over multiple locations from the FIREX-AQ campaign and comparisons with AERONET.336

Figure 3. Simulated at-sensor radiance for uniform targets for 50% (top) or 5% (bottom) uni-

form surface reflectance, for the three different aerosol types (columns) for four different AODs

ranging from 0.25 to 1.0 at 550 nm. Note that the rows use a constant scale for the y-axis, but

the scales are different from the top row to the bottom.
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3.1 Simulation comparisons337

We begin by showing the absolute at-sensor radiances, modeled using Eq. 1, for an338

arbitrary bright and dark target (uniform reflectances of either 50% or 5%). Keeping the339

amount of atmospheric water vapor fixed to 2 g cm−2, we varied AOD values for each340

aerosol independently from 0.25 to 1.0. The results are shown in Fig. 3. For the bright341

surface in the top row, the absorbing aerosols (dust and smoke) dramatically affect the342

at-sensor radiances, especially around 500 nm. Larger effects are seen with higher AOD.343

This sensitivity to absorbing aerosols over bright surfaces is the basis for the “critical344

reflectance” approach for retrieving aerosol single scattering albedo (SSA) (e.g., Zhu et345

al., 2011; Seidel & Popp, 2012; Wells et al., 2012). The situation is different for the dark346

surface, where the smoke aerosol has the largest at-sensor radiances around 500 nm. To347

first order, this is due to the smaller asymmetry parameter for the smoke aerosol model348

as shown in Fig. 2, which indicates less scattering in the forward direction and, conse-349

quently, more backscattered light from the aerosol. It is also worth noting that the dust350

model shows the effects of changing AOD throughout the VSWIR spectral range. This351

is because the extinction coefficient is relatively constant for dust as a function of wave-352

length (Fig. 2), due to the relatively large particle size of the dust model compared to353

the sulfate and smoke models.354

Figure 4. The mean change in at-sensor radiance in the 0.25-1.0 AOD range, per 0.1 unit

difference of AOD, relative to the simulated AVIRIS measurement noise. Simulations were per-

formed using a uniform reflectance target of either 50% (top) or 5% (bottom), for different

aerosol types. In all cases, an atmospheric water vapor value of 2.0 g cm−2 was used.

To further investigate the behavior of the at-sensor radiances for different aerosol355

types, we used the same set up to calculate the mean radiance deviation per 0.1 unit change356

in AOD within the 0.25 to 1.0 AOD range can compared this to the estimated AVIRIS-357

C noise (Fig. 4). The different panels in this figure are often referred to as radiative ker-358

nels. This comparison highlights that the available signal from a 0.1 change in AOD ex-359
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ceeds the sensor noise threshold - indicating that there is sufficient signal to make a de-360

tection. These results do not, however, determine whether or not a retrieval strategy will361

be able to distinguish between surface, AOD, and water vapor - for that analysis we ex-362

amine remote detections in the next section.363

3.2 Remote retrievals364

We implemented the OE retrieval strategy described in Section 2.3 on all AVIRIS-365

C acquisitions with spatially and temporally coincident AERONET mobile acquisitions.366

An example of these retrievals using the smoke model is shown in Figure 5. The top row367

shows the retrieved AODs for all four scenes, ranging from very low to very high amounts368

of aerosols. The second row shows the estimated AOD uncertainty (in units of AOD),369

which remains small relative to the aerosol levels present in these scenes. Careful inspect370

of the scenes indicates that the AOD uncertainties are lowest over more vegetated pix-371

els and highest over the pixels with more bare ground, consistent with previous findings372

(Thompson et al., 2019a). The third row shows “atmospherically corrected” RGB im-373

ages from the retrieved reflectances. For comparison, the last row provides RGB images374

of the measured at-sensor radiance. It is apparent that the retrieval does a good job re-375

moving the presence of smoke, indicating a robust AOD retrieval using this aerosol model.376

Some retrieval instabilities are noticeable over water pixels where the observed radiances377

tend to be extremely low.378
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Figure 5. Mapped retrieval results over the mobile AERONET locations from August 6 and

7, 2019. From top to bottom, figures show the aerosol AOD modeled by OE (using the CALIPSO

smoke model), the corresponding AOD uncertainty, an RGB image from the retrieved reflectance,

and the initial radiance. The same area is visible in several scenes, observed at different points

in time with different aerosol values. Each scene is a 200 × 400 pixel (3200 × 6400 m) area,

centered on the mobile AERONET site.

In addition to retrievals over the mobile AERONET platform, we also ran simi-379

lar retrievals over several fixed AERONET sites under clear-sky conditions (see Table380

1). Figure 6 shows a comparison of retrievals performed using MODTRAN radiative trans-381

fer simulations using both the sulfate and smoke aerosol models. The dust aerosol model382

unsurprisingly resulted in near-zero AOD estimates, and is consequently excluded from383

subsequent analyses. AODs retrieved using both the smoke and sulfate aerosol models384

compare favorably with the limited number of spatially and temporally coincident data385

acquisitions from AERONET and AVIRIS-C (Table 1). This is particularly true given386

the number of conflicting factors between measurements, which include viewing geom-387

etry differences as well as potential spatial and temporal misalignment. To help assess388

these, we display multiple metrics of uncertainty for each point. As each line was man-389
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ually assessed for orthorectification errors, we expect the spatial alignment to be strong390

relative to the 16 m ground level resolution data. As such, we take the spatial uncer-391

tainty range to be the 3 × 3 pixel grid overlaying the target location, and plot the min-392

imum and maximum values. While we expect the temporal accuracy of both instruments393

to be high, small timing offsets could result in relatively large changes in smoke plume394

location, and as such we show the 15 minute interval around the closest matching mo-395

bile AERONET measurement. The center point, however, is the closest temporal match396

(corresponding to Table 1). Comparing the performance, the smoke model appears to397

show less bias relative to AERONET than the sulfate model.398

Figure 6. Comparison between AOD at 550 nm estimated through OE from the AVIRIS-C

data, and AOD at 550 nm estimated from mobile AERONET units. The range of values in the

AVIRIS scene in the 3 × 3 pixel grid surrounding the target are shown as the spatial uncertain-

ties, all AERONET values within the nearest 15 minutes of the time of acquisition of the target

pixel are shown as AERONET-AVIRIS temporal uncertainties, and the uncertainty from the

optimal estimation AOD retrieval is shown as the OE instrument uncertainties. AERONET-

AVIRIS spatial and temporal uncertainties indicate potential uncertainty in the alignment be-

tween the two measurements. AERONET direct measurement uncertainty for the Version 3 Level

2.0 AOD measurements for mid-visible wavelengths is very low, typically less than 0.01 (Eck et

al., 1999; Giles et al., 2019), and so not shown directly.

We further assess the capacity to distinguish between aerosol types by evaluating399

the residuals between the observed and modeled at-sensor radiance, using both the smoke400

and sulfate aerosol models. Figure 7 shows this comparison for two different flight lines401

(one clear sky, and one wildfire example), using 2D histograms. Brighter points signify402

a higher density of data. In the clear sky case (left panel), the majority of points lie on403

or near the 1:1 line, indicating that both models provide similarly good fits. In the a wild-404

fire case (right panel), most points lie well above the 1:1 line, indicating that the smoke405

model significantly outperforms the sulfate model for these pixels. This provides statis-406

tical evidence for the ability of VSWIR imaging spectroscopy from AVIRIS-C to discrim-407

inate aerosol types over heterogeneous scenes.408
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Figure 7. Histogram density of radiance residuals for smoke and sulfate aerosol models, for

clear sky and wildfire flightlines. Bright locations have a high density of datapoints.

Figure 8 shows one example retrieval under thick smoke conditions. The left panel409

shows the reflectance of a mixed pixel from flightline f190807t01p00r14 along with the410

averaging kernels corresponding to the H2O and AOD550 state variables. The averag-411

ing kernel represents the sensitivity of the loss function to the true state by illustrating412

the impulse response of the final retrieval estimate to a unit perturbation of the rest of413

the state vector (Rodgers, 2000).414
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Figure 8. Left: Reflectance spectrum and aerosol averaging kernel for a vegetated pixel from

flightline f190807t01p00r14. Right: Reflectance spectrum and aerosol averaging kernel for a bare

soil pixel from the same flightline.

–15–



manuscript submitted to Journal of Geophysical Research: Atmospheres

This provides insight into where the inversion draws draws its information - values far-415

ther from zero (either positive or negative) indicate stronger influence.416

The red features, indicating sensitivity to H2O, follow the shape of atmospheric ab-417

sorption features at 940 and 1140 nm. Interestingly, the edge of the deep absorption fea-418

ture at 1480 nm also contributes strongly to the water vapor retrieval. The upslope in419

the black AOD550 averaging kernel at 500 nm indicates that higher radiances in these420

channels are interpreted as path radiance, and increase the estimated aerosol. Shortwave421

channels also contribute to the aerosol estimate, because the surface reflectance of green422

vegetation is strongly constrained in this region; additional radiance in the low-signal423

areas near the opaque water absorption features would be interpreted as an increase in424

the estimated aerosol load. Lacking a commensurate increase in the contrast of vegeta-425

tion features in the visible wavelengths, a higher AOD would be required to produce the426

measured radiance. In contrast, the near infrared portion of the spectrum from 800-1250427

nm can vary in brightness due to changes in vegetation reflectance itself, which is more428

variable in this region. Consequently, the averaging kernel in this area is nearly flat. The429

right panel of Figure 8 shows a spectrum that contains mostly soil and nonphotosynthetic430

vegetation. Here the long wavelengths are unconstrained and contribute little informa-431

tion to either atmospheric parameter. The aerosol retrieval thus relies on the shortest432

channels; an increase in signal at the shortest wavelengths is attributed to aerosols rather433

than reflectance.434

Finally, we demonstrate how this process can be used to characterize smoke plumes435

from fires. In Figure 9, we show this retrieval process over an actively burning portion436

of the Williams Flats Fire near Spokane, WA (Junghenn Noyes et al., 2020). This scene437

demonstrates how the combination of high spectral fidelity measurements and strong up-438

wind surface priors facilitate retrievals of and through thick smoke, with aerosol opti-439

cal depths reaching above 2. Notably, retrievals through smoke over water do not work440

as well (noticeable in the inconsistent values shown in the river in the upper right cor-441

ner of the scene). This is due to the weak reflectance of water across the majority of the442

spectrum, and subsequent low at-sensor radiance signal, which also amplify any sensor443

noise effects. However, Figure 9 shows smooth results over a range of surface terrain, with444

few false positives outside of the plume.445

Figure 9. Map of the primary plume near the fire front in flightline f190806t01p00r18. A

white line in the upper right denotes a river with a lower surface reflected signal, and subsequent

relatively poor retrievals.
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The high spatial resolution mapping of AOD enables a unique characterization of
plume dynamics. We fit the second order structure function S2(r), which reveals how
the concentration changes as a function of distance from the source. Specifically it de-
scribes the squared difference in the AOD field f(i), indexed by location i, as a function
of separation distance r between pairs of points.

S2(r) = E
[
|f(i+ r)− f(i)|2

]
(9)

Sn(r) is estimated using the mean of observed AOD values at different spatial offsets.
It is typically described locally by a power law:

S2(r) ∝ rζ2 (10)

where ζ2 is the second order scaling exponent. Following Kolmogorov theory, a passive446

tracer in turbulence has a theoretical second-order scaling exponent ζ2 of 2/3 (Pope, 2000).447

We fit a structure function to image f190806t01p00r18, using an AOD threshold of 0.2448

to effectively segment the plume from the background (Figure 10). The second order scal-449

ing exponent, identified by the best fitting line in logarithmic space, has a value of 0.8450

which is quite close to the theoretical result of 0.66 for a passive turbulent flow. In other451

words, the small scale structure of the plume observed over scales of 50 m to over 1000452

m is broadly consistent with expectation for a turbulent atmosphere. The ideal slope of453

2/3 is plotted in red for reference.454

102 103

Distance r (m)

10 1S 2
(r)

2/3

2=0.80

Figure 10. Second order structure function calculated from the particle concentration of the

smoke plume in Figure 9. The empirically determined slope of 0.8 is close to the theoretical value

of 0.66 that would occur for a passive tracer in turbulent flow.

4 Discussion455

Understanding the intensity, distribution, and composition of aerosols is of criti-456

cal importance to Earth system science and public health. We present a method for us-457

ing imaging spectroscopy to quantify both aerosol category and optical depth from imag-458

ing spectroscopy. Our approach leverages a combined solution of the surface and atmo-459

spheric state, facilitating aerosol optical depth retrievals over dense smoke plumes as well460

as the characterization of the surface reflectance near active fires - paving the way for461

science at the interface of the surface and atmosphere. We demonstrate the efficacy of462
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this method by comparison to ground-based estimates of aerosol optical depth, and ap-463

ply the method to the Williams Flat Fire near Spokane, WA in order to generate a high464

spatial resolution map of smoke aerosols.465

Our procedure uses Optimal Estimation to independently solve for the complete466

atmospheric and surface state at each pixel, leveraging radiative transfer modeling, cal-467

ibrated at-sensor radiance measurements, and an estimate of the surface prior. Due to468

the reduced surface signal under dense plumes, stronger local priors than commonly uti-469

lized (e.g., Thompson et al., 2018, 2019a, 2020a; Carmon et al., 2020), help inform an470

accurate retrieval. Deriving these stronger local priors is straightforward, given the in-471

creasing quantities of imaging spectroscopy data available. With future orbital imaging472

spectroscopy missions, generalized sets of strong local priors are likely, particularly given473

that they may also aid in model uncertainty propagation. Evidence that the algorithm474

utilizes the full VSWIR spectral range to estimate aerosol optical depth (Figure 8), in-475

cluding higher wavelengths where aerosols do not have a dominant absorption signature,476

highlights that these strong priors play a substantial role in the retrieval.477

While we were able to demonstrate strong agreement between AOD measured from478

the ground (AERONET) and remotely (AVIRIS-C), some discrepancies remained even479

with our best aerosol model. Several factors could contribute to this. First, while mea-480

surements were aligned in time and space to the maximum possible extent, misalignment481

- particularly in measured optical path - may still be a factor. Additionally, our anal-482

yses indicated that accurate AOD retrievals are quite sensitive to absolute radiometric483

calibration. While we used a vicarious calibration to reduce radiometric calibration er-484

rors in AVIRIS-C data, some calibration errors inevitably remain, and could contribute485

to observed differences. And finally, and perhaps most significantly, any and all radia-486

tive transfer models contain a host of modeling and input data assumptions, and despite487

our best efforts it is quite possible that these differing assumptions contribute to the ob-488

served discrepancies.489

Our approach demonstrates the capacity to distinguish between aerosol types, us-490

ing residuals between modeled and observed radiances. This capacity is critical for global491

acquisitions, where manual distinctions based on local context will not be feasible due492

to high data volume rates. Future work will be needed to explore additional aerosol types,493

and the effects that aerosol mixtures may have. Investigations into the influence of dif-494

ferent vertical distributions of aerosols, as well as the interaction of aerosols with other495

trace gases, also remains to be explored.496

5 Conclusion497

With increased global and repeat acquisitions of imaging spectroscopy pending through498

missions like the Earth Surface Mineral Dust Source Investigation (EMIT), the Surface499

Biology and Geology (SBG) mission, and the Aerosol and Cloud, Convection and Pre-500

cipitation (ACCP), imaging spectroscopy will provide a promising avenue to provide global501

estimates of aerosol quantity and composition. We do note that our technique performs502

relatively poorly over aquatic regions, due to strong absorption of light at wavelengths503

exceeding one micron, but appears to work well over different terrestrial substrates. Fu-504

ture extensions of this work could consider utilizing vertical profile distributions to ap-505

proximate air quality at the surface, extending the diversity of aerosol types considered,506

and investigating the relationship between surface characteristics and point source emis-507

sions.508
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