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Abstract 

Mechanical wave transmission through a material is influenced by the mechanical discontinuity in 

the material. The propagation of embedded discontinuities can be monitored by analyzing the wave-

transmission measurements recorded by a multipoint sensor system placed on the surface of the material. 

In our study, robust monitoring of the propagation of a mechanical discontinuity is achieved by using 

supervised learning followed by data-driven causal discovery to process the multipoint waveform 

measurements resulting from a single impulse source. The new data-driven causal-discovery workflow 

jointly processes the nine 25-µs waveforms measured by the multipoint sensor system comprising 9 sensors. 

The proposed workflow can monitor the propagation of mechanical discontinuity through three stages, 

namely initial, intermediate, and final stages. The workflow considers the wave attenuation, dispersion and 

multiple wave-propagation modes. Among various feature reduction techniques ranging from 

decomposition methods to manifold approximation methods, the features derived based on statistical 

parameterizations of the measured waveforms lead to reliable monitoring that is robust to changes in 

precision, resolution, and signal-to-noise ratio of the multipoint sensor measurements. Causal signatures 

have been successfully identified in the multipoint waveform measurements. The numbers of zero-crossing, 

negative-turning, and positive in the waveforms are the strongest causal signatures of crack propagation. 

Higher order moments of the waveforms, such as variance, skewness and kurtosis, are also strong causal 

signatures of crack propagation. The newly discovered causal signatures confirm that the statistical 

correlations and conventional feature rankings are not always statistically significant indicators of causality.  

Keywords: Signal Processing, Mechanical Discontinuity, Monitoring, Causal Inference, Feature 

Engineering 



 

1. Introduction 

The word “discontinuity” is a collective term for any distinct break or interruption in the integrity 

of a material with zero or low tensile strength (ISRM, 1978). Mechanical discontinuity also signifies a 

sudden change in mechanical properties exhibiting high contrast along an interface. From a geophysical 

point of view, discontinuities refer to mechanical weakness, such as joints, fractures, and bedding planes, 

that occur at multiple scales (Osogba et al., 2020). Mechanical discontinuities are common geological 

phenomena with varying length, frequency and orientation. It plays an essential role as potential transport 

pathway and has dramatic effect on the bulk mechanical, physical, and chemical behavior of the material.  

Many measurement techniques are available for describing mechanical discontinuities at different 

scales. During reservoir development, borehole image logs, surface geological analysis, well tests, well 

logging, seismic surveys, and cross-well tomography are used to identify large-scale fracture zones in 

formation. In laboratory experiments, non-destructive testing (NDT) is the identification and 

characterization of damage or defects on the surface and within a material without cutting or altering the 

material (Dwivedi et al., 2018). To date, numerous NDT techniques can be broadly categorized into five 

groups: 1) visual inspection; 2) acoustic wave-based techniques (e.g. Acoustic Emission) and Ultrasonic 

testing; 3) optical techniques, 4) imaging-based techniques (e.g. X-ray radiography); and 5) electromagnetic 

field-based techniques (Wang et al., 2020). In particular, direct NDT techniques such as acoustic emission 

and ultrasonic-wave testing are widely used for the detection of microstructural damage mechanisms in 

material. Even though acoustic emission testing allows for real-time damage detection and localization, this 

NDT technique is still qualitative and does not provide quantitative characteristics such as the dimensions 

of discontinuities. (Duchene et al., 2018). On the other hand, ultrasonic-wave testing operates in reflection, 

transmission and backscattering of elastic waves in the material systems (Ibrahim, 2014). It keeps the 

transducer and receiver off the surface, which is particularly beneficial when complex geometries do not 

allow contact (Gholizadeh, 2016).  

With the development of machine learning, many studies have incorporated data-driven methods 

to locate mechanical discontinuities (e.g. Muratov et al., 2020; Chakravarty et al., 2021).  In an earlier study, 

we developed a classifier-based workflow to categorically characterize certain bulk properties of the 

embedded crack clusters, such as orientation, dispersion, and spatial distribution, by processing multipoint 

compressional- and shear-wave arrival/travel times (Misra & Li, 2019; Liu and Misra, 2020; Li et al., 2021). 

However, in the previous works, we did not account for the mode conversion, reflection, attenuation, and 

dispersion of the wave propagation and ignored a large amount of the signal behind the first arrival during 

the analysis.  



In the present study, multiple waveforms are simultaneously processed using a data-driven workflow 

to non-invasively visualize the propagation of mechanical discontinuity through three stages, namely initial, 

intermediate, and final. Supervised learning followed by causal discovery is used for a first-of-its-kind 

monitoring of the propagation of a mechanical discontinuity by jointly processing the multiple waveforms 

measured by the multipoint sensor system. Causal signatures have been successfully extracted from the 

measured waveforms that explain the causal relationship between the propagation of mechanical 

discontinuity and the measured multiple waveforms (i.e. multi-point signals). 

2. Workflow Description 

Our study has two interconnected purposes: 1) achieve robust monitoring of the propagation of 

mechanical discontinuity in a material by processing multiple waveforms resulting from wave transmission 

through the material due to a single, impulse source; and 2) discover causal signatures in the recorded 

multipoint waveforms due to the propagation of the mechanical discontinuity. Figure 1 elaborates the data-

driven workflow used in this study. The three main components of the workflow include: 1) wave-

transmission data generation using k-Wave; 2) supervised learning to estimate the location, orientation, and 

length of the discontinuity as it propagates in the material through the three stages; and 3) data-driven causal 

discovery.  

Section 3 describes the simulation of elastic wave propagation through a material with a propagating 

mechanical discontinuity. Physics-based open-source k-Wave toolbox is used to simulate wave propagation 

in a 2D material that undergoes three stages of propagation/growth of a mechanical discontinuity. The 

design of the transmitter-receiver configuration is presented in section 3.1. The transmitter-receiver (source-

sensor) configuration is inspired by real-world experiments (Misra et al., 2019; Chakravarty et al., 2021). 

In this study, we will refer to discontinuities as cracks. More information about the properties of designed 

material and crack stages are present in section 3.2. To better simulate the experimental data, the effects of 

sensor sampling rate and precision of the sensors will also be discussed later. Multipoint waveforms 

corresponding to each stage of crack growth are recorded by 9 receivers placed around the 2D rectangular 

material. Each waveform is recorded for 25 microseconds, discretized into 2500 time steps. Overall, we 

generated a large dataset for 20,000 materials, each undergoing three stages of crack growth of varying 

length, orientation, and location of cracks. To overcome the curse of dimensionality, the regression analysis 

will start with the selection of feature reduction techniques.  

In Section 4, we evaluate the performance of various feature reduction techniques and determine the 

best feature set to accurately monitor the location, orientation, and length of the crack as it evolves through 

the three stages of crack propagation. The selected feature sets are divided into training and test sets. The 

training dataset is used to build the data-driven models, while the test dataset is used to evaluate the 



generalization of the trained data-driven models. It is very important to ensure that there are no common 

samples between the training and test sets. Moreover, during the data preprocessing, involving feature 

extraction and dimensionality reduction, it is of utmost importance to ensure that there is no information 

leakage between the training and testing datasets. The performance of the regressors are evaluated by the 

root mean square error (RMSE) between the actual and predicted properties of the crack embedded in the 

material. This metric helps compare the capabilities of the traditional regression models against neural-

network based regressors. 

 
Figure 1.  Brief overview of the data-driven workflow implemented in this study, which includes 

simulation of wave propagation, supervised learning, and data-driven causal discovery. Data is simulated 

to train the regressors to monitor the crack propagation. Feature extraction and data-preprocessing 

performed on the simulated data prior to training the regressors to reliably monitor the crack propagation. 

Finally, data-driven causal discovery technique is applied on the dataset to discover the causal signatures 

in the waveforms that are caused by the propagation of crack.  

 

Until now, in several engineering applications of data-driven methods, there has been a large emphasis 

on quantifying the feature ranking based on the correlation/association of the feature with target. There has 

been extremely limited attention on causality. Causal discovery in section 5 sets out to investigate the 



usefulness of causality and explains the critical influences that lead to certain distinct causal signatures in 

the measured multipoint waveforms due to the crack propagation. We will also provide a detailed overview 

of the concepts and tools used for the data-driven causal discovery. Finally, we demonstrate new 

connections between the concepts of causality, correlation, and feature importance/ranking. The 

conclusions and discussions for future research are drawn in Section 6.  

3. Simulation of Elastic Wave Propagation through a Material Undergoing Crack Growth 

3.1. Experiment design  

K-Wave is an open-source MATLAB toolbox designed for time-domain acoustic and ultrasound 

simulations in complex materials (Treeby & Cox, 2010). This toolbox can handle the propagation of elastic 

waves based on two coupled first-order equations describing the stresses and particle velocities within the 

material. Moreover, the effects of wave propagation, such as attenuation, dispersion, and multiple modes 

of propagation have been considered in k-wave simulation. In this work, we use K-wave to create a 

computationally efficient model for elastic wave propagation in porous sandstone-like materials. The elastic 

simulation functions (pstdElastic2D and pstdElastic3D) are invoked to perform the desired simulation with 

four input structures: kgrid, medium, source and sensor location. First, all simulations assume a 2D 

homogeneous material of size 60mm by 60mm discretized using 300 by 300 grids. The material 

discretization is called with the utility function makeGrid, which takes the number and spacing of the grid 

points in each Cartesian direction and returns an object of the kWaveGrid class (Treeby et al., 2014).  

Following that, the material properties in the medium can be characterized by the elastic wave 

velocities and the mass density. Elastic waves can be divided into body waves and surface waves according 

to the way they propagate through a material. Compressional (P-wave) and shear (S-wave) waves as body 

waves are most often used for inspecting defects (He et al., 2019). Here, without considering spatial 

variations of water saturation and stress, the compressional wave velocity of the crack-bearing material is 

set to 3760 m/s and the shear wave velocity is set to 2300 m/s representing a water-filled porous sandstone 

(Hamada & Joseph, 2020).  

Next, the locations of source and sensors are defined on the surface of the material. The numerical 

models of material containing discontinuities are inspired by the laboratory experiments conducted at the 

Integrated Core Characterization Center (Bhoumick et al., 2018; Misra & Li, 2019). In those studies, they 

placed multiple sources and sensors/receivers around porous cylindrical rock to observe the distribution of 

fractures inside the samples. In this manuscript, we modeled a similar simulation in K-Wave, with nine 

sensors and a pressure impulse source surrounding the 2D homogeneous material shown in Figure 2. The 

black dot marks the sensor and the red triangle is the impulse pressure source. The source and sensor 

locations in K-Wave are defined as a series of Cartesian coordinates within the computational grids. If the 



Cartesian coordinates do not exactly match the coordinates of a grid point, the output values are calculated 

from the interpolation.  

Finally, simulation time step is defined by user with kgrid.t_array (0:dt:t_end) or within simulation 

function (makeTime). The time array must be evenly spaced and monotonically increasing (Treeby et al., 

2014). A good discussion is required on Courant-Friedrichs-Lewy (CFL) condition to balance the 

computational time and stability. It depends on both the maximum speed of sound in the medium and the 

speed of sound used inside the k-space operator (Mast et al., 2001). After the time loop is complete, model 

returns the field variables recorded at the sensor points. By default, the visualization of the propagating 

wave field and a status bar are displayed for both compressional and shear components during the 

simulation (Treeby et al., 2014). In total, we run simulations for 20,000 samples of 2D homogenous material 

undergoing three stages of crack propagation and store the 25-µs waveforms recorded by the 9 sensors for 

as each sample. The three stages of crack growth are described in detail in the following sections. 

3.2. Three stages of crack propagation 

There are no restrictions on the values for the material and crack properties. However, a large 

contrast between matrix and crack material properties may lead to unstable, non-convergent simulation. 

Air-filled cracks cause unstable simulations due to large contrast between the air velocity and matrix 

velocity. Cracks are assumed to be water filled and P-wave velocity of 1418m/s. Shear waves cannot 

propagate in liquids, the S-wave velocity through the water-filled crack is set to a very small value close to 

zero (1m/s). In our study, the crack propagation involves linear extension of a crack in the material. Figure 

2 shows two random samples with three stages of crack propagation. The first, second, and third column of 

the figure show the initial, intermediate, and final stage of the crack, respectively, and corresponding 

waveforms recorded by sensors are shown at the bottom row.  

The crack locations, orientations and lengths are generated randomly using the Latin hypercube 

sampling (LHS) method having a width of 0.6mm (3 grids). For the first stage, the crack length ranges from 

10mm to 20mm (50 to 100 grids). The orientation and location of the first stage can be anywhere inside the 

material. For the second stage of crack propagation, the crack can extend by a length of 6 to 12 mm. In 

addition, the direction of the propagation during the second stage will be a constant value limited to an 

angle smaller than 60-degree relative to the direction of the crack in the first stage. Similarly, the crack 

extension in the third stage is between 2mm to 8mm at an angle smaller than 60-degree relative to the 

direction of propagation during the second stage. The primary goal of our study is to monitor these 

propagations of these discontinuities over the three stages and also to identify causal signatures in the 

measured waveforms corresponding the crack propagation.  



 

Figure 2. The first two rows of figures show two randomly chosen material samples undergoing the three 

stages of random crack growth. The left plots represent initial crack stage, the middle plots represent the 

intermediate crack stage, and the right plots represents the final crack stage. Elastic wave transmission 

through the material shown in the top row results in the multipoint waveforms shown at the bottom. The 

waveforms change with crack propagation. The changes are minute and hard to detect using our eyes. The 

red triangle in the left boundary is the impulse source, while the black dots around the material are the 9 

sensors. Each sensor records a 25-𝜇s waveform due to the impulse generated by the source. Different 

colors of the waveform indicate waveforms recorded by different sensors. 

The whole dataset has 20,000 samples. Data generated for each sample comprises 25-𝜇s waveforms 

recorded at 9 sensor locations during three stages of crack growth. Each 25-𝜇s waveform is discretized into 

2500-time steps. In total, eighteen 25-𝜇s waveforms, comprising 2500 amplitudes corresponding to the 

2500 discrete time steps, are recorded for each sample. In the 25𝜇s window of recorded waveforms shown 

in the last row of Figure 2, the useful, relevant, and independent information are present only in certain 

regions of the waveform. Therefore, several feature extraction methods were applied to the dataset before 

training the regressors to dimensionally reduce the large dataset.  



3.3. Sensor sampling rate and precision  

The sample rate (or sampling rate) of a sensor is the number of samples measured per second. The 

units for sample rate are samples per second (SPS) or Hertz. The precision of the sensor represents the 

resolution of the sensor. Sensor sampling rate and precision are configurable to match the experimental 

objectives. Moreover, the physics of the sensor and the process under investigation limit the sampling rate 

and precision of the sensor. In our simulation, 2500 points are recorded in 25µs representing a receiver 

sampling rate of 10MHz to satisfy the simulation stability. We resample the simulated data to get closer to 

the real experimental data. In Figure 3, we compare the waveforms recorded for a material at the final stage 

of crack propagation for a sensor sampling rate of 10MHz, 2MHz and 1MHz. A sampling rate of 2MHz 

can be achieved by most sensors and that sampling rate guarantees preservation of the wave shape, as shown 

in Figure 3. It means that a 25-µs waveform comprises of 500 time steps instead of 2500 time steps. 

Precision represents the degree to which an instrument repeats the same value of measurement. Our pressure 

sensors are set up with the same precision as laboratory experiments that can detect pressure differences as 

small as 0.01 Pascal.  

 
Figure 3. Comparison of the waveforms recorded by the 9 sensors at the final stage of crack growth for 

various sensor sampling rates. The top, middle and bottom figures identify the sampling rate of 10MHz, 

2MHz and 1MHz, respectively. A sampling rate of 2 MHz and precision of 0.01 Pa are chosen for all 

waveform measurements used in this study. Sensors have limitations in the sampling rate and precision; 

consequently, the data used for training the regressors honor the physical limitations of sampling rate and 

precision. 



4. Regression Analysis  

4.1. Feature reduction techniques  

Feature selection/extraction is a critical step in data analysis and machine learning for reducing 

computational costs, reducing uncertainty due to noise, and improving the model generalization (Bolón-

Canedo et al., 2015; Misra and Yu, 2019). Designing the optimal dimensionality reduction workflow for 

specific predictive modeling requires extensive numerical testing. Principal component analysis (PCA) is 

a popular multivariate statistical technique, which maps data onto a linear subspace and reduces the 

dimensionality of the variable space by representing it with few orthogonal vectors (Abdi & Williams, 

2010). Similar to PCA, Truncated support vector decomposition (SVD) is a matrix factorization technique 

suited for linear dimensionality reduction. However, it operates on sample vectors directly instead of on a 

covariance matrix. Moreover, Isomap and locally linear embedding (LLE) are well-known manifold 

approxmation algorithms for nonlinear dimensionality reduction (Chakravarty and Misra, 2021). Isomap 

attempts to preserve local topology on all scales, mapping nearby points close and distant points far away 

from each other (De Silva & Tenenbaum, 2002). LLE does the same basic thing as Isomap, except that 

small neighborhoods are stitched together in a different way (Ventura, 2008). Random projection includes 

gaussian random projection (GRP) and sparse random projection (SRP) can also reduce the dimensionality 

by projecting the original input space on a randomly generated matrix. Finally, we also extract twenty 

optimal statistical features from each waveform per sensor per stage of crack growth. This led to 20×9×3 

equal to 540 features. The 20 statistical parameters extracted from each waveform includes measurements 

of shape (skewness, kurtosis), central tendency (mean, medium), position (percentile, zero crossing), 

impurity (entropy) and other statistical parameters. The detailed list of all 20 statistical parameterization-

based features and their definitions are elaborated in the Appendix A. Similar statistical parameterizations 

have been used by Foster et al. (2021) to assist machine learning methods.  

4.2. Comparison of the generalization performance of regression methods for various feature 

extraction techniques  

Regression analysis can discover relationships between features and continuous-valued multiple 

targets. Features need to be extracted from raw data and the dimensionally reduced prior to training the 

regression model. After feature extraction, the dataset corresponding to each stage of crack growth can be 

visualized as a table/matrix with 20,000 sample instances as rows, N features as columns, and T continuous-

valued targets as columns. The multiple continuous-valued targets are the x and y coordinates that define 

each stage of the crack, i.e., eight target values (four x coordinates and four y coordinates that define the 

crack propagation from the initial to intermediate to final stage). In this study, we use random forest (RF), 

k-nearest neighbor (KNN), gradient boosting (GB) and neural network (NN) to perform the desired 

regression to relate the features extracted from the waveforms measured during the three stages of crack 



propagation to the location, orientation, and length of crack during each stage of propagation. The 20000 

samples are split into 14000 training samples and 6000 testing samples. It is of utmost importance to ensure 

there is no leakage of information from the testing data into the training data during the feature extraction 

and other data-preprocessing steps.   

RF is an ensemble learning method for both classification and regression. It is a bagging technique 

that constructs several decision trees and aggregates the predictions of all the trees to generate the final 

prediction. KNN is a non-parametric machine learning method that approximates the association between 

features and targets by averaging the targets of the K nearest neighbors in the feature space. It is a lazy 

algorithm that needs all the training data during the testing and deployment phases (Song et al., 2017). KNN 

delivers simple, flexible and adequate model for nonlinear problems, but is computationally expensive and 

requires feature scaling. GB is another ensemble learning method, wherein each subsequent learner fixes 

the shortcomings of the previous weak learners by using gradient descent optimization of a loss function 

(Misra et al., 2019). Random forest trains and deploys the trees in parallel, whereas the gradient boosting  

trains and deploys the trees in series. Gradient boosting is susceptible to overfitting. Neural networks (NN) 

are complex node systems with strong adaptive learning capabilities. Single layer NN has three components: 

input layer, hidden layer, and output layer. Data is fed to the input layer, and predictions are made on the 

output layer, also called the visible layer. There can be one or more non-linear layers, referred to hidden 

layers, between the input and the output layer. Each layer of the neural network has multiple nodes as 

computational units (Misra and He, 2019). A node on one layer can be fully or partially connected to the 

nodes on the next layer. A single-layer network can be extended to a multiple-layer network by adding 

hidden layers. A multilayer perceptron (MLP) is a specific neural network with multiple hidden layers. It 

is often applied to supervised learning problems that train feature-target pairs and learn to map the statistical 

correlation between those features and targets. Neural networks are susceptible to overfitting and hard to 

optimally design. 



 
Figure 4. Generalization performances of the four regression methods for the seven different feature 

extraction techniques. Neural network and gradient boosting enable the best monitoring of crack 

propagation. Statistical parameterization and principal component analysis-based features enable the best 

monitoring of crack propagation. 

Eventually, 14000 samples undergoing three stages of crack growth are used as training data to 

build the regressors. Hyperparameter tuning is applied with grid search to optimize the trained regressors 

for the best performance on the test data. Additional 6000 samples undergoing three stages of crack growth 

were kept separate to test the trained regressors. Figure 4 compares the testing performances of RF, KNN, 

GB and NN for the seven different feature extraction methods discussed in the previous subsection. The 

numbers labeled in the figure are provided to assess the performance of the regressors, in terms of R-squared, 

which provides a measure of how well the predictions replicate the crack properties in the testing samples 

as a proportion of the total variations in crack properties.  

The performances presented in Figure 4 indicate that neural networks and gradient boosting are 

more accurate than KNN and random forest for the prediction problem under investigation. Regarding the 

feature extraction techniques, features obtained through the statistical parameterization and those obtained 

using principal component analysis lead to more accurate regression performance as compared to the 

remaining five techniques. For most of the feature extraction techniques, KNN has the lowest performance. 

Topology based feature extraction lead to lower regression performance, where Isomap has the lowest 

performance and LLE has slightly higher performance than Isomap.  

 

4.3. Generalization performance of the Neural-Network based regression model  

Neural network trained on the 540 statistical-parametrization-based features exhibited the best 

generalization performance. 20 statistical parameters were extracted from each of the 9 waveforms recorded 

by the 9 sensors for the 3 stages of crack growth, i.e. 20×9×3 = 540 features. The neural network learns to 



relate the 540 features with the 8 targets, i.e. 4 x-coordinates and 4 y-coordinates. The optimal neural 

network model with best generalization performance has two hidden layers with 200 and 100 nodes, 

respectively. The training of neural network was on 14000 samples for 800 epochs with early stopping to 

reduce computational cost and overfitting. The batch size is set as 100 samples. Dropout layer is added to 

avoid overfitting by turning off a certain user-defined percentage of neuron units in each layer for every 

training batch. Twenty percent of training dataset, 2800 samples, is used as validation set to allow an 

unbiased estimate of the performance of the model during the training to identify early stopping that 

prevents overfitting. Unlike the validation dataset, the test dataset helps evaluate the generalization 

performance of the fully trained and optimized model prior to the deployment on new dataset.  

The performance of the neural network model on testing data is summarized in Figure 5. Notably, 

the proposed model can precisely estimate the location, orientation, and length of the three cracks as the 

crack grows. In Figure 5(a), the red line segments represent the known crack path as the crack propagated 

from stage 1 to stage 3, while the blue line segments are the neural network model estimations based on the 

data-driven processing of the multipoint waveform data. The known and the predicted crack paths show a 

striking similarity. The performance of the neural network model is evaluated using root mean squared 

error (RMSE), which is the standard deviation of the residuals (prediction errors). Compared to mean 

absolute error, RMSE is preferred when large errors are particularly undesirable. Figure 5(b) is boxplot 

displaying the distribution of RMSE of the predictions obtained using the neural-network regressor. The 

boxplot includes five important vertical lines: minimum, first quartile (Q1), median, third quartile (Q3), 

and maximum. In the boxplot, the outliers are shown as individual points. It is apparent from boxplots that 

75% of errors in the neural-network predictions are lower than 2.5mm. The other three prediction models 

also perform well with the maximum error of less than 10mm. In the end, the RMSE distribution of the 

neural-network predictions is shown in Figure 5(c). All in all, the neural-network regressor performs the 

best both in terms of accuracy and computational cost.  



  

Figure 5. (a) Data-driven monitoring of crack propagation from initial to final stages using the neural-

network based regressor to process the multipoint waveforms recorded by the 9 sensors. (b) Box plot of 

root mean squared errors for various regression methods for the task of monitoring the crack propagation. 

(c) Distribution of RMSE of the neural-network based predictions of crack path when monitoring the 

crack propagation for the 4000 testing samples.  

 

4.4. Sensitivity to Noise  

In signal processing, white noise is random noise with the same spectral density in all frequency 

bands. Gaussian white noise means the noise signal follows a normal distribution with mean 𝜇 and variance 

𝜎, N (𝜇, 𝜎). In this work, the elastic waveform recorded by each sensor is corrupted with Gaussian white 

noise of different variances and zero mean. The noise is not directly added to the feature set, but to the raw 

waveforms (include train, validation, and test sets). The resulting waveform (e.g. stage 3) with Gaussian 

noise N(0,10), N(0,50) and N(0,100) are depicted in Figure 6(a). Furthermore, to evaluate the effects of 

noise on regression model performance, the accuracy of RF, KNN, GB and NN (trained on noise-bearing 

training and validation data) are quantified using R2 metric when applied to the noise-bearing testing data, 

https://www.sciencedirect.com/topics/computer-science/sparse-representation


as shown in Figure 6(b). Neural Network and KNN regressors are relatively robust to Gaussian noise, 

whereas Gradient boosting method is the most susceptible to noise. An increase in the variance of Gaussian 

noise beyond 50 adversely affects the performances of all regressors. Overall, the four regressors exhibit 

accuracies higher than 0.82 under high noise conditions.  

 

Figure 6. Sensitivity of the data-driven workflow to the noise when monitoring the crack growth. (a) 

Waveforms recorded by the 9 sensors at the final stage of crack growth containing Gaussian white noise 

of various variances: N(0,10), N(0,50), and N(0,100), respectively. (b) Change in the accuracy of the 

regression model for various variances of Gaussian white noise in the recorded waveforms.   



 

5. Data-Driven Causal Discovery  

The following section focusses on the use of various data-driven causal discovery techniques on the 

multipoint waveform data to identify and quantify the causal relationships between the propagation of crack 

(the cause) and the resulting changes in the multipoint waveforms recorded by the 9 sensors (the effect). 

The data contains the information about the crack propagation from stage 1 to stage 3 and the nine 25-𝜇s 

waveforms captured by the 9 sensors due to an impulse source for the 20000 2D material samples. The 

primary objective is to identify causal signatures in the multipoint waveform measurements that arise due 

to the crack propagation. Intrinsically, causality facilitates robust predictions and data-driven modeling. 

Causal relationships are crucial for building explainable machine learning models. Causality reveals the 

underlying mechanisms of a process or a system. However, the current evaluation of data-driven models 

and machine learning algorithms are primarily focused on the statistical correlation between the features 

and targets rather than potential causality and causal signatures.  

5.1. Cause and effect  

In the eighteenth century, philosopher David Hume pointed out the conceptions of causality in 

terms of repeated “conjunctions” of events (Hume, 1751). Hume claimed that the labeling of causality relies 

on the empirical regularities involving previous phenomena (Eagleman & Holcombe, 2002). In other words, 

we cannot confirm the inevitability between cause and effect, instead we can only understand the repeated 

connection between cause and effect through observations. Judea Pearl (Pearl, 1998; Pearl, 2009) provided 

a comprehensive causation study with significant applications in the fields of statistics, artificial intelligence, 

economics, cognitive science and health science. In fact, there are several well-established and operational 

causal models in many fields that accurately reflect our intuitive understanding of cause and effect and can 

be described in precise mathematical terms. 

In the simplest terms, a cause and effect relationship (or causality) is between two events, where 

an occurrence of an event (e.g. change in a property) causes an occurrence of another event, such that the 

cause precedes the effect. It is important to note that the effect may have multiple causes in the past, the 

cause can create multiple effects in future, and an effect may be the cause for multiple effects in the future. 

The essence of cause-effect relationship is the generation or determination of one event by another event. 

Donald Rubin proposed a potential outcome framework, also called Rubin causal model to understand 

causal mechanisms (Robin, 2005). The inability to simultaneously know the potential outcome/effect and 

observed outcome/effect is the fundamental problem of causal discovery. To overcome this problem, we 

need to design a treatment group and a control group to compare the differences in outcomes with and 

without the cause. In general, treatments are applied to the samples in the treatment group, while no 



treatments are applied to the samples in the control group. The treatment serves as the cause. The presence 

and absence of treatment causes varying effects/outcomes.  

In our study, there are 20000 2D material samples. Each sample undergoes crack propagation from 

stage 1 to stage 3. Samples undergoing a total change in length greater than 8 mm during the crack 

propagation from stage 1 to 3 are used in our study on data-driven causal discovery. The state of these 

samples at stage 1 along with the multipoint waveform measurements constitute the control group. The 

state of the sample at stage 3 along with the multipoint waveform measurements constitute the treatment 

group. The treatment is the extension/propagation of crack to a length greater than 8mm. The treatment 

causes changes in the multipoint waveform measurements. We quantify the causality between crack 

propagation and the changes in the multipoint waveforms using the average treatment effect (ATE), which 

measures the average difference between the outcomes for treatment group and the outcomes for the control 

group. The outcomes of the control group and the treatment group are the multipoint waveforms measured 

for each sample at stage 1 or stage 3 of the crack propagation, respectively. ATE enables the quantification 

of causal relationships when performing the data-driven causal discovery. It is expressed as:  

ATE =  
∑ (Y1(𝑖) − 𝑌0(𝑖))𝑛

𝑖=1

𝑛
 

where n is the number of samples in the treatment or control group, i is an individual sample, 𝑌0 is the 

outcome for a sample from the control group (before the treatment), and 𝑌1 is the outcome for a sample 

from the treatment group (after the treatment). The outcomes of the control group and the treatment group 

are the multipoint waveforms measured for each sample at stage 1 or stage 3 of the crack propagation, 

respectively. In our study, we use ATE to quantify the causality. Another metric, average treatment effect 

on the treated, ATT, quantifies the causal effect of the treatment for individuals in the treatment group. For 

example, ATT tells us what is the effect with different drug treatment, while ATE tells us what the effects 

of people taking or not taking the drugs are. Medical studies typically use ATT because they often only 

care about the causal effect of administering a drug for various patients. In reality, we do not always have 

both the control and treatment groups. For example, when a person takes the medication, then the result of 

that person not taking the medication does not exist. Therefore, in non-experimental studies, causal 

discovery is fraught with uncertainties. 

5.2. Methods for Data-Driven Causal Discovery   

In recent years, there has been several studies to learn the connection between machine learning and 

causality (Scholkopf, 2019; Guo et al., 2020; Moraffah et al., 2020). Although many toolboxes have 

provided diverse frameworks or methods in the field of causal inference, most of them lack stable validation 

and implementations. Table 1 presents an overview of well-documented computational tools for causal 



inference in Python. Each library has its advantages and disadvantages as well as the scope of application. 

Causal discovery, CausalNex and DoWhy are able to provide graphs through analysis to describe and 

visualize causality of the dataset.  

Table 1: Python toolbox for causal analysis with pros and cons 

Library Description Advantages Disadvantages License 

Causal 

Discovery 

Causal Discovery Toolbox (CDT) 

is an end-to-end package aimed at 

learning causal graphs from 

observations. 

• Unify pairwise and score-

based multi-variate 

approaches within a single 
package. 

• Hard to validate causal 

graph. 

• Does not take 

advantages of machine 

learning.  

MIT License 

CausalNex 

CausalNex uses Bayesian Networks 

to uncover structural relationships 
in data by combining machine 

learning and domain expertise. 

• Able to visualize the 

causality. 

• Able to adjust structural 

model easily. 

• Hard to validate the 

structure graph. 
QuantumBlack 

EconML 

EconML applies the beauty of 

machine learning algorithms to 

measure the causal effects in 

observational or experimental data. 

• Algorithms improve the 

computational cost of causal 

analysis. 

• No causal graph.  Microsoft 

DoWhy 
DoWhy is a causal inference library 

that focuses on modeling causal 

assumptions and validating them. 

• Effective even with 

unobservable confounders. 

• Combine features from 

EconML. 

• Focus causal inference on 

identification and frees up 
estimation using any 

available statistical estimator. 

• Automated robust check on 

the obtained estimate. 

• Reliable assumption 

needed. 

 

Microsoft 

Causal ML 

Causal ML provides tree-based and 

meta-based algorithms to estimate 
causal impact of intervention on 

outcome. 

• Stable and allow to estimate 

CATE and ITE. 

• Fewer functions.  

• No causal graph.  

Uber 

Technologies 

Our study aims to identify specific signatures in the recorded multipoint waveforms that have 

strong causal relationships with crack propagation. Here, we use DoWhy toolkit to evaluate the causal 

relationship between the crack propagation and the signatures in the multipoint waveforms. For our dataset, 

all samples undergoing a crack propagation greater than 8mm in length are considered for the data-driven 

causal discovery. The multipoint waveforms measured for samples in the first stage and final stage of crack 

propagation constitute the control group and the treatment group, respectively. We extract several 

statistical-parameterization based features from the multipoint waveforms (listed in Appendix A) and scale 

them to constitute the effects for a sample in the control or treatment group. The differences in these scaled 

statistical-parameterization based features between the control group and the treatment group are a result 

of the crack propagation. Pre-processing of the data is required to ensure that all the features in the control 

and treatment groups have the same range. This ensures that the ATE values, which quantify the causality 

corresponding to various effects, are comparable between the 20 highest-causality features (elaborated in 

the Appendix A).  



In this study, the treatment effect quantifies the effect of crack propagation from Stage 1 to Stage 

3 on the multipoint waveforms measured by the 9 samples. Treatment effect can be measured in four steps: 

(1) model, (2) identify, (3) estimate, and (4) refute. In step one, DoWhy creates an underlying causal 

graphical model for a given problem including confounders and instrumental variables with assumptions. 

Confounding variables (or confounders) are often defined as extraneous/irrelevant variables whose 

presence affect the variables under study, leading to an erroneous obscuring or emphasizing of their 

relationship (MacKinnon, et al., 2000). For instance, temperature confounds (blurs or confuses) the positive 

correlation between ice cream consumption and the number of sunburns. You may find a cause-and-effect 

relationship that does not actually exist between ice cream sales and sunburns because the effect is caused 

by the confounding variable: high temperature. As a result, any observed correlation between treatment 

(cause) and outcome (effect) may be only due to the existence of confounding variables and not due to a 

cause-and-effect relationship. Since confounders obscure the real effect of a treatment on the outcome, the 

confounders need to be eliminated as much as possible (Jager et al., 2008). There are various ways to 

exclude or limit the influence of confounders, which include randomization, restriction and matching 

(Pourhoseinghoil et al., 2012).  Besides confounder, instrumental is another group of special variables that 

may mislead the discovery of cause and effect. They are factors that influence the cause but do not directly 

affect the outcome. Instrumental variables affect the cause, which subsequently leads to variations in 

outcome. 

  

Figure 7. Simplified causal graph analysis of our dataset reveals certain confounders that influence the 

effects of crack propagation on the statistical-parameterization-based features extracted from the 

multipoint waveforms.  



As we discussed, model inference problem using assumptions is the first step with toolbox DoWhy. 

Figure 7 lays out the causal graph in our case, where the cause is the crack propagation and effects are 

statistical parameters change derived from the multipoint waveform measurements. Other variables such as 

initial crack location, initial crack orientation, sample dimension, material boundaries, and material 

properties are known confounders that influence both the cause and the effects. Once a user defines possible 

causes and effects, DoWhy tests the rest of variables in the dataset as potential confounders. Next, in the 

second step, supported identification criteria (back-door criterion, front-door criterion, instrumental 

variables, and mediation) is used to recognize the cause and effects based on the given model. Identification 

can be achieved with graph-based criteria and do-calculus without access to the data. Then, in the third step, 

the target estimand (ATE/ATT) identified in previous step is computed using statistical estimators. To 

model non-linear data, the DoWhy tool box also provides machine learning-based methods like gradient 

boosting tree to learn the relationships between the outcome and confounders, and the treatment and 

confounders, and then finally compares the residual variation between the outcome and treatment (Sharma 

& Kiciman, 2019). Finally, in the fourth step, DoWhy offers multiple refutation methods to check the 

robustness of the causal estimate. The common refutation methods checks the sensitivity of the causal 

estimate when the true treatment variables are replaced with a simulated random dataset similar to the 

treatment variables. The effect of the treatment should go to zero when a true treatment is replaced by an 

independent random variable.  

5.3. Causal Signatures due to Crack Propagation   

The most important part of this work is illustrating whether the changes in our statistical features 

derived from the multipoint waveform measurements stems from the crack propagation. Each statistical 

feature has 9 corresponding ATE calculated for the 9 waveforms recorded by the 9 sensors placed on the 

surface of the material. The detail ATEs are displayed as bar plots in Appendix B. Any feature that fails the 

refutation test is assigned a value of zero, which means no causation found. The causal effect can be positive 

or negative.  Positive causation means the change in the effect variable is in the same direction as the change 

in the cause. By calculating the average of the absolute ATEs for statistical features, it is possible to compare 

their causal intensity and to determine the causal signatures of crack propagation.  

The data-driven causal discovery reveals that the number of zero-crossing, negative-turning, and 

positive turning are the top three causal signatures of crack propagation. Relevance of these causal 

signatures are quantified in the Appendix B. A zero-crossing occurs when the sign of the signal changes as 

the signal oscillates in time. Positive/negative turning is the number of positive/negative turning points for 

the entire 25-µs waveform. Here, we report the impact of crack propagation on the elastic waveform, which 



does not significantly affect the wave shape or crest, but triggers unstable fluctuations near the zero point. 

That abnormal fluctuations in the waveform sign the presence of the crack growth in materials.  

In addition, significant changes in higher order moments of the waveforms, such as variance, 

skewness and kurtosis, are also caused by crack propagation in the material. This is evident from the bar 

plots in Appendix B. It was originally thought that the times of arrival of the highest peak and maximum 

dip in the waveform, as well as their amplitude, would change dramatically due to the effects of crack 

growth. The amplitude versus time (0 to 25 µs) information in the waveform has been expressed as 

amplitude versus index (0 to 2500). So, the time of arrival has been quantified in terms of the index. The 

causality of the index of maximum amplitude (peak) and the index of the minimum amplitude (dip) were 

negligible. In terms of sensors, the signal from sensor 8, located on the opposite side of the source, has the 

highest causality with the crack propagation. One unanticipated finding was that the sensor 2 and sensor 1, 

located very close to the source, have higher causality as compared to sensor 7 and sensor 9 placed next to 

sensor 8. The sensors 7 and 9 exhibited higher correlation but lower causality as compared to the sensors 1 

and 2. This emphasizes the need for data-driven causal discovery.    

Table 2: Overview of differences between correlation and causation  

Correlation Causation 

Statistical and mathematical formulation Mechanistic relationship 

 

 

x and y can be interchanged Cause and effect cannot be interchanged 

• Linear Correlation 

• Non-linear correlation 

• A causes B (direct causation) 

• B causes A (reverse causation) 

• A and B are both caused by C 

• A causes B and B causes A 

• No connection between A and B 

• Correlation does not imply causation 

• Causation requires proof that no confounder variable is contributing to false causality 

 

5.4. Causality versus correlation  

Correlation and causality can be deceptively similar and can simultaneously exist. However, correlation is 

not the same as causation (Duesberg, 1989; Conn, 2017). It is easier to find correlations compared to 

proving causality. Correlations can be easily quantified in terms of statistical or mathematical formulations 

that is applied on the data. As compared to correlation, a quantification of causality allows us to make better 

predictions about the future, explain the past, and intervene to change the outcomes. The differences 



between causation and correlation are summarized in Table 2. A correlation between x and y measures 

association and can be interchanged between the two. When x is correlated to y, y is automatically 

correlated to x. On the contrary, when “A causes B”, we cannot say that “B causes A”.  

Most commonly used correlation coefficients measure the linear (Pearson) or monotonic 

(Spearman) relationships. Mutual Information (MI) between random variables is considered more general 

than correlation coefficients and handles nonlinear dependencies. The concept of mutual information is 

directly linked to the entropy of random variables. Specifically, it measures the average amount of 

information in a random variable about another random variable (Paninski, 2003). In practice, MI is zero 

when and only when the two random variables are strictly independent (Kraskov et al., 2004). A higher MI 

represents a high dependency. Average MI between each feature and eight targets can be computed with 

sklearn in python. The eight targets represent the crack location, orientation, and length as the crack 

propagates from stage 1 to stage 3. The average MI values for each feature with the 8 targets are summarized 

in Figure 8, where we zoom into the top and bottom ten features based on the mutual information ranking. 

A feature having higher MI value has stronger association with the 8 targets to be predicted for the robust 

monitoring. The features have been labeled to represent the statistical parameter and the sensor number. 

Bar plot ranking reveals that variance, standard deviation and energy from sensor 7, 8, 9 are highly 

correlated with the targets. Median of waveforms are least correlated with the crack propagation.  

 

Figure 8. Mutual information ranking for all the statistical-parameterization based features 

derived from the multipoint waveforms measurements. Feature label indicates the sensor number and 

statistical parameter (e.g. s7_var refers to the variance of sensor 7 signal).  



Following that, we compare the correlation quantified using mutual information with the causality. 

Table 3 subdivides the features with high/low mutual information (correlation with crack propagation) into 

high/low causality. Notably, the feature S5_var is highly correlated with the crack propagation but does not 

have high causality due to crack propagation. 9 of the 10 features that were highly nonlinearly correlated 

with the crack propagation have high causality due to crack propagation. Further, all features that are poorly 

correlated with the crack propagation exhibit low or negligible causality. In this study, correlation may 

indicate an underlying potential causation, but further research is needed to establish it.  

Table 3: Comparison of correlation against causality of top 10 and the bottom 10 features in terms of the 

correlation of the feature with crack propagation quantified using mutual information 
 

High Causation (>0.2) Low Causation (<0.2) 

High Mutual Information 

(Non-linear) 

S7_var, S9_var, S7_std, S7_energy, 

S9_std, S8_std, S8_var, S8_energy, 

S9_energy 

S5_var 

Low Mutual Information 

(Non-linear) 
None 

S3_median, S4_median, S5_median, 

S6_median, S7_median, S8_median, 

S9_median, S1_max_index, 

S7_variation_co, S9_variation_co 

 

 

5.5. Causality versus feature importance 

Feature ranking is the process of sorting the importance of features for a supervised learning task. 

In our case, the feature importance reflects the significance of a feature for the task of robust monitoring of 

crack propagation. We could use the permutation-importance testing or the SHAP (Shapley Additive 

explanations) impact for computing the feature importance/ranking. This ranking informs which feature 

has the highest importance for the desired monitoring of the crack propagation pathway. Permutation-based 

feature ranking is defined as the reduction in model’s prediction performance on the testing dataset when a 

specific feature is randomly shuffled (Breiman, 2001) while preserving the originality of all other features. 

When the permutation is repeated, the permutation importances tend to exhibit slight variations. SHAP or 

Shapley value is computed using a method from coalitional game theory (Shapely, 1971; Shapely, 1988). 

While the Shapley value was originally used to quantify the contribution of each player to a game, and later 

developed to quantify the contribution of each feature to the prediction of the model. SHAP values 

determine the importance of feature by comparing the results of different combinations of the feature. For 

example, for three features (A, B, C) in a dataset, 23 (∅; 𝐴; 𝐵; 𝐶; 𝐴𝐵; 𝐴𝐶; 𝐵𝐶; 𝐴𝐵𝐶) possible combinations 

exist for predicting the target. Each different combination trains a unique prediction model. Thus, we will 



have 23 models and corresponding predictions. Shapely value is the average marginal contribution of an 

instance of feature among all possible coalitions. To evaluate the contribution of feature A, the marginal 

contribution for subsets with/without feature A are calculated as weighted average:  

𝑆ℎ𝑎𝑝 (𝐴) = 𝑤1 ∗ 𝑀𝐶𝐴,{𝐴} + 𝑤2 ∗ 𝑀𝐶𝐵,{𝐴,𝐵} + 𝑤3 ∗ 𝑀𝐶𝐶,{𝐴,𝐶}+ 𝑤4 ∗ 𝑀𝐶{𝐵,𝐶},{𝐴,𝐵,𝐶} 

where MC is the marginal contribution measured by the difference of two outcomes with two subsets. 

𝑤1, 𝑤2, 𝑤3, 𝑤4 are weights (𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1).  

SHAP Explainer can provide an explanation for many different ML algorithms such as tree-based 

models with TreeExplainer, linear models with LinearExplainer, and neural network models with 

KernalExplainer. The superiority of SHAP value over permutation feature importance is that tree-based 

SHAP is fast implementation with positive and negative impact. The idea behind SHAP feature ranking is 

simple that features with large absolute SHAP value are important. Figure 9 shows the results obtained 

from the global or local importance of statistical features in testing dataset.  

    

 

Figure 9. Feature importance with SHAP: (a) The summary plot combines feature importance with 

feature effects to show the global feature importance. (b) Waterfall plot with SHAP values for a random 

sample in testing dataset shows the local feature importance. (c) Diagram of locations for sensors 1 to 9.  

Figure 9(a) sorts the global importance by the sum of SHAP value per feature across all samples in 

the testing set with the neural network-based explainer. The summary plot in Figure 9a combines feature 



importance from the most important at the top to the least important at the bottom with feature effects. The 

top features in feature ranking contain significant useful information for prediction. It consists of a number 

of sample points with vertical positions showing the feature name, horizontal positions showing the impact 

on the model output, and color indicating the feature values from low (blue) to high (pink). Many 

overlapping points are jittered in y-axis direction hints at the distribution of SHAP value for each feature. 

In contrast to the mutual information based quantification of non-linear correlation, the top three features 

importance to the target became index of wave peak, sum of signal amplitudes, and standard deviation. 

From the sensor perspective, it is notable that S7, S8, S9 contain more information for monitoring the crack 

propagation in terms of both mutual information correlation and feature ranking. As the sensor locations 

are labeled in Figure 9(c), sensors 7 to 9 are the sensors located at the opposite boundary from the pressure 

source. Waterfall plot presented in Figure 9(b) gives the importance of feature based on a randomly selected 

sample. This ranking varies sample to sample as a local feature importance. Combination of local 

importances, e.g. shown in Figure 9b, generates the Figure 9a, which represents the global feature 

importance. Table 4 shows that the features with high feature importance do not always exhibit high 

causality. In other words, several features critical for the regression-based monitoring of crack pathway do 

not exhibit high causality due to the crack propagation.  

Table 4: Comparison of feature importance against causality of top 20 features based on global feature 

ranking on testing dataset 

 

Recently, there have been several studies about developing feature selection algorithms based on 

causality, since causal relationship suggests the underlying intrinsic nature of a problem. There is a growing 

body of literature from 2018 to 2021 that recognizes the importance of causality and discuss the need for 

causality-based feature selection (Ling et al., 2019; Wu et al., 2020; Wang et al., 2020). In our work, we 

observe that the features needed to accurately predict the crack propagation are not always causally related 

with the crack propagation. Not all highly correlated features exhibit high causality. Also, several high 

importance features for a prediction task exhibit low causality. Consequently, feature selection is a complex 

and time-consuming task that should involve consideration of different relationships between features and 

 
High Causality (>0.2) Low Causality (<0.2) 

High Feature Ranking 

(ranking top 20) 

S9_std, S8_auto_correlation, 

S4_negative_turning, S7_var, 

S5_kurtosis, S7_std, S8_skewness, 

S7_energy, S6_auto_correlation, 

S1_std 

S9_max_index, S7_max_index, S6_sum, 

S5_var, S5_sum, S9_sum, S4_mean, 

S5_mean, S6_mean, S9_percentile90 



objectives, rather than a single consideration. This study reminds that we cannot ignore the causal signatures 

and over-rely on correlation or importance based features when investigating the underlying mechanisms 

of a process or a system. 

 

6. Conclusions 

Supervised learning successfully monitored the propagation of mechanical discontinuity by 

processing multipoint sensor measurements of waveforms resulting from the interaction of a wave 

transmission with the mechanical discontinuity. The data-driven workflow can successfully monitor the 

location, orientation, and length of a mechanical discontinuity as it propagates through three stages. The 

monitoring of three stages of evolution of the mechanical discontinuity has a median RMSE lower than 

2.5mm in material with dimension 60mm by 60mm. Neural network and gradient boosting based regression 

model outperforms all other regression techniques in the absence of noise. The presence of white noise with 

a standard deviation of 100Pa in the measured waveforms degrades the monitoring performance that still 

stays higher than 0.82, in terms of R-squared. Neural network model is relatively robust to the presence of 

Gaussian white noise, such that the monitoring performance is higher than 0.90 at noise variance of 10Pa 

and 50Pa. Regarding the feature extraction techniques, features obtained through the statistical 

parameterization and those obtained using principal component analysis lead to more robust monitoring. 

Topology based feature extraction, such as Isomap and Locally Linear Embedding, lead to low monitoring 

performance.  

Causal discovery successfully identified signatures that exhibit strong causal relationship with the 

propagation of mechanical discontinuity. The newly developed causal discovery workflow provides a 

promising approach to evaluate true causal impacts with robustness check. The numbers of zero-crossing, 

negative-turning, and positive-turning in the waveforms are the strongest causal signatures of crack 

propagation. Higher order moments of the waveforms, such as variance, skewness and kurtosis, are also 

strong causal signatures of crack propagation. We observe that the features needed to accurately monitor 

the crack propagation are not always causally related with the crack propagation. Not all highly correlated 

features exhibit high causality. Also, several high importance features for monitoring task exhibit low 

causality. This study reminds that we cannot ignore the causal signatures and over-rely on correlation or 

importance based features when investigating the underlying mechanisms of a process or a system. 
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Appendix A: Feature Set Based on Statistical Parametrizations 

1) Mean: the average pressure amplitude of the waveform.  

2) Median: the median pressure amplitude of the waveform. 

3) Variance: measures variability of pressure amplitude from the average or mean.  

4) Standard deviation: measures the dispersion of dataset relative to its mean, the square root of 

variance. 

5) Skewness parameter: calculate with the adjusted Fisher-Pearson standardized moment coefficient 

G1. 

6) Kurtosis: calculated with the adjusted Fisher-Pearson standardized moment coefficient G2. 

7) Energy: absolute energy of the time series which is the sum over the squared values.  

8) Maximum-amplitude index of the signal: index of signal maximum point.  

9) Minimum-amplitude index of the signal: index of signal minimum point. 

10) 10th Percentiles: measures to indicate the pressure amplitude value below which lies 10% of 

observations. 

11) 90th Percentiles: measures to indicate the pressure amplitude value below which lies 90% of 

observations. 

12) Zero crossing: number of crossings of x on zero.   

13) Number of peaks: number of peaks of at least support n in the time series x. 

14) Longest period above mean: returns the length of the longest consecutive subsequence in x that is 

bigger than the mean of x.   

15) Variance coefficient: returns the variation coefficient (standard error / mean, give relative value of 

variation around mean) of x.  

16) Sum Value: the sum value over the time series values.  

17) Autocorrelation: the autocorrelation of the specified lag.  

18) Mean value of second derivation: returns the mean value of a central approximation of the second 

derivative.  

19) Positive turning: number of positive turning points of the signal. 

20) Negative turning: number of negative turning points of the signal. 

 

 

 

 

 



Appendix B: Average Causal Estimates using the Average Treatment Effect 

  
Figure B1: ATE bar plot for the 20 statistical-parameterization based features computed from the 9 

waveforms captured by 9 sensors placed around the surface of the material. All zeros mean that no causal 

relationship was found between the feature and the target and the feature failed the refutation test. A positive 

ATE means the crack propagation has a positive impact on the feature. The group of high/low causality in 

Table 3 and Table 4 in the main text are drawn based on the ATE values presented in this plot. The numbers 

of zero-crossing, negative-turning, and positive in the waveforms are the strongest causal signatures of 

crack propagation. Higher order moments of the waveforms, such as variance, skewness and kurtosis, are 

also strong causal signatures of crack propagation. The causality of the time of arrival or the index of 

maximum amplitude (peak) and that of the minimum amplitude (dip) is negligible. In terms of sensors, the 

signal from sensor 8, located on the opposite side of the source, has the highest causality with the crack 

propagation. Sensors 1 and 2, located very close to the source, have higher causality as compared to sensors 

7 and 9 placed next to sensor 8. The sensors 7 and 9 exhibited higher correlation but lower causality as 

compared to the sensors 1 and 2. This emphasizes the need for data-driven causal discovery.    


