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Text S1. Calculation of the Likelihood for the Spectral Fit

To calculate the data dpred predicted by parameters in m, the first step is to transform the strati-
graphic depth in the data to an age vector t (which is zero at the top) using the sedimentation rate u
in m. (Symbols and acronyms used here are listed in Table S1.) To compute the predicted data, we
then construct a matrix G whose columns contain sine and cosine signals as a function of ages in t
with the frequencies of eccentricity, obliquity, and climatic precession listed in Table 1 of the main
text calculated for the values of gi, si, and k in m.

We then obtain by least squares the amplitudes of the sine and cosine terms in a vector y fitted
to the data as

y = (GTG)−1GTd, (S1)

where the data in d were linearly detrended and standardized to zero mean and unit variance. The
data predicted by the astronomical frequencies are

dpred = G y. (S2)

The sum of a sine and a cosine function of the same frequency and amplitudes in the corresponding
elements of y results in a fitted sinusoidal function with the same frequency and a phase determined
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by the data in d. This is a “spectral fit” in the sense that sinusoidal functions of arbitrary phase are
fitted to the data, but we stress that it is not based on an estimate of the power spectrum.

The calculation of the spectral likelihood is based on fitting an AR(2) process to the vector e of
residuals that are the difference between observed and predicted data as in

e = d − dpred. (S3)

Following an empirical Bayes strategy, we estimate the AR(2) coefficients φ1 and φ2 from e with
a method originally due to Burg (1967) that is based on minimizing the prediction error variance
computed both in the forward and backward direction (Andersen, 1974; Ulrych & Bishop, 1975).
Using the fitted AR(2) coefficients, we then compute the vector w of the driving noise from

wi = ei − φ1ei−1 − φ2ei−2. (S4)

If e can be successfully modeled as an AR(2) process, the vector w should be close to uncorrelated
white noise. This can be checked from the sample autocorrelation of w, shown in Figures S1b to
S3b for the data sets examined here.

If residuals e are modeled as an AR process, the spectral fit likelihood can be written as the
multivariate normal PDF of the noise w (Dettmer et al., 2012), which is

p(d | m) = p(w | m) =
1

(2π)N/2 σN
w

exp
[
−

wTw
2σ2

w

]
, (S5)

where N is the number of data points in d and w. Applying again empirical Bayes, we estimate the
variance σ2

w from w as

σ2
w =

wTw
N

. (S6)

Substituting this estimate of σ2
w in Equation S5 we obtain a final expression for the spectral fit

likelihood that is
p(d | m) = p(w | m) =

1
(2π)N/2 σN

w
exp

[
−

N
2

]
, (S7)

Text S2. Calculation of the Likelihood for the Envelope Fit

In the envelope fit, the observed data vector d is the amplitude envelope of the climatic precession
signal in the data and dpred is the envelope predicted by eccentricity signals with the frequencies
given by the values of gi in m. The precession envelope of the data is calculated by first extracting
the signal in the climatic precession frequency band applying a Taner bandpass filter with a roll-off

rate of 107 (Zeeden et al., 2018). The cutoff frequencies equal the minimum climatic precession
frequency minus 0.005 cycles/kyr and the maximum climatic precession frequency plus 0.005 cy-
cles/kyr. The envelope of the climatic precession signal is then computed from its Hilbert transform
and is standardized to have zero mean and unit variance.

The predicted precession envelope is calculated by fitting the eccentricity frequencies given by
the gi values in m to the precession envelope of the data; the result is then standardized to zero mean
and unit variance. The procedure is the same as that described for the spectral likelihood, except
that the matrix G contains only sine and cosine terms for the eccentricity frequencies. The residual
vector e in the envelope fit is the difference between the precession envelope extracted from the data
by bandpass filtering and that predicted by the eccentricity frequencies defined by the values in m.
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The envelope likelihood calculation is based on an effective number of observations

Neff = N/τ < N, (S8)

where τ > 1 is the lag where the autocorrelation of the envelope residuals decays to zero (see
Section 2.2 in the main text). Consequently, if we were to subsample the vector of residuals e by
taking one every τ values, we would obtain a vector of uncorrelated residuals esub of length Neff.
The likelihood for these subsampled uncorrelated residuals would be a multivariate normal PDF as
in

p(d | m) = p(esub | m) =
1

(2π)Neff/2 σNeff
e

exp

−eT
subesub

2σ2
e

 . (S9)

As the vector esub consists of Neff elements, the sum of their squared values will be approximately
the same as the sum of squares of e times the ratio Neff/N as in

eT
subesub

σ2
e
≈

eTe
σ2

e

Neff

N
=

eTe
τσ2

e
, (S10)

which shows that correlations in the vector e result in an increase of the variance σ2
e by a factor τ.

If we follow an empirical Bayes strategy and estimate σ2
e from the sample variance of e as in

σ2
e =

eTe
N
, (S11)

the likelihood of the subsampled vector of residuals can be written as

p(d | m) = p(esub | m) =
1

(2π)Neff/2 σNeff
e

exp
[
−

Neff

2

]
. (S12)

(Note that the calculation of the envelope fit likelihood never requires the hypothetical vector esub.)
We estimate the lag τ from a simple model of the autocorrelation of envelope fit residuals that

contain periodic components with eccentricity frequencies. The autocorrelation will first cross zero
at a lag that is approximately a quarter of the wavelength λecc of the shortest eccentricity cycle in
the data, so that

τ ≈
λecc

4∆z
, (S13)

where ∆z is the data sampling interval and λecc will equal uTecc, where u is the sedimentation rate
and Tecc is the period of the shortest eccentricity cycle (e.g., 100 kyr), so that

τ =
uTecc

4∆z
. (S14)

However, making τ proportional to a variable sedimentation rate has the effect of inducing a sys-
tematic bias that makes the envelope likelihood in Equation S12 substantially larger at lower sedi-
mentation rates where τ is lower and Neff is larger. (The measured and predicted envelope data are
standardized to unit variance, so that the residual σe < 1; for a given value of σe, the likelihood
will be greater for a greater value of Neff.) Numerical experiments show that this sedimentation rate
bias overwhelms the effect of differences in σe, and the highest likelihood for the envelope fit is in-
variably at the lowest sedimentation rate considered. To avoid this bias, the value of τ is calculated
from Equation S14 at a reference value of u, set to the average sedimentation rate in the prior range
considered.
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Text S3. Lunar Distance and LOD from the Axial Precession Frequency

In this section, we describe our approach and provide easy-to-use expressions to obtain lunar dis-
tance and LOD from estimates of the axial precession frequency. To simplify the notation, hence-
forth we denote the ratios between past and present values of axial precession frequency k, lunar
distance a, and Earth spin rate ω as follows:

kr =
k(t)
k(0)

, ar =
a(t)
a(0)

, ωr =
ω(t)
ω(0)

, (S15)

where t is age and 0 denotes present day. With this notation, Equation 5 in the main text for the
K-curve is

ωr = kr
K + 1

K + a−3
r

(S16)

and Equation 6 for the AM-curve is

ωr = 1 + A − A
√

ar (S17)

The values of the constants K and A in Equation S16 and S17 were adjusted from the original values
in Walker & Zahnle (1986) to better fit the relationship between lunar distance, Earth spin rate, and
axial precession frequency in the tidal dissipation model results of Farhat et al. (2022), which take
into account the long-term increase in the obliquity ε of the Earth’s axis and the effect of solar ocean
tides in slowing down Earth’s rotation (see Section 7 in the the main text).

The value of k that can be predicted for given values of a and ω by rearranging Equation S16
and the original value of K = 0.465 in Walker & Zahnle (1986) results in a difference with the k
computed by Farhat et al. (2002) that increases with increasing age, reaching 3.3% at 3.3 Ga. This
misfit matches the predicted effect of the secular trend in obliquity: as the full expression for the
axial precession frequency contains a cos ε term (e.g., Berger & Loutre, 1994; Laskar, 2020), the
ratio k(t)/k(0) at age t will be multiplied by a factor cos ε(t)/cos ε(0), which equals 1.032 at 3.3 Ga
in the results of Farhat et al. (2022). By adjusting the value of K to 0.358, the difference between the
k predicted from Equation S16 and that computed by Farhat et al. (2022) remains within ±0.14%
between the present and 3 Ga, increasing to 0.28% at 3.3 Ga.

We also compared the LOD predicted by Equation S17 for a given lunar distance a to the values
computed by Farhat et al. (2022). The original value of A = 4.87 in Walker & Zahnle (1986)
results in a difference in LOD with the Farhat et al. (2022) values that increases with increasing age,
reaching 0.55% at 3.3 Ga. With an adjusted value of A = 4.81, this difference remains between
±0.03% from the present to 3 Ga, reaching −0.07% at 3.3 Ga.

At the intersection of the K-curve and of the AM-curve, the value of ωr in Equation S16 and S17
must be the same, and we obtain an expression for the ratio kr that conserves Earth-Moon angular
momentum and is a function of ar only:

kr =
(
1 + A − A

√
ar

) K + a−3
r

K + 1
. (S18)

This nonlinear equation cannot be solved directly for ar. However, an accurate value can be obtained
by computing the value of kr from Equation S18 for ar between 1 and 0.77 (the value at 3.3 Ga in
the results of Farhat et al. 2022) and fitting a polynomial to ar as a function of kr. The relationship
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between ar and the natural logarithm of kr is almost linear, and the third order polynomial in the
following equation fits the values of ar to within ±3 × 10−5:

ar = 1 − 0.217194 log(kr) − 0.00060922 [log(kr)]2 + 0.00621404 [log(kr)]3. (S19)

Once the ratio ar is obtained from kr using Equation S19, ωr can be computed from Equation S17.

Text S4. Uncertainty in Estimated Lunar Distance and LOD

The K-curve and AM-curve will intersect at a point of coordinates âr and ω̂r, which define the
lunar distance and Earth spin rate at a past time from an estimate of the axial precession frequency
(Figure 14a in the main text). This section describes how to obtain the uncertainty in âr and ω̂r from
the uncertainty in an estimated value of axial precession frequency ratio k̂r. There are three sources
of uncertainty to take into account in this problem:

– Uncertainty in the precession frequency ratio k̂r estimated from stratigraphic data, quantified
by a standard deviation σk̂r

;

– Uncertainty in the value of ωr predicted by the K-curve in Equation S16 for a given ar and
kr, quantified by a standard deviation σK;

– Uncertainty in the value of ωr predicted by the AM-curve in Equation S17 for a given ar,
quantified by a standard deviation σAM.

The standard deviation σk̂r
equals the posterior standard deviation of k divided by the present day

axial precession frequency k(0). A thorough determination of the standard deviations σK and σAM
requires quantifying and propagating uncertainties in the constants that define the K-curve and AM-
curve (in Equation S16 and S17), and is beyond the scope of the present study. We use here a
value of 0.005 for both σK and σAM, meaning that the K-curve and AM-curve predict the value
of the ratio ωr with a standard deviation of 0.5%. This value is well above the misfit in fitting
the values calculated by Farhat et al. (2022) with the adjusted values of K in Equation S16 and of
A in Equation S17 (see Text S3), thus we take it as providing a conservative measure of the the
uncertainty.

The uncertainty of the AM-curve in the region around the intersection at âr and ω̂r, where we
approximate the AM-curve by a straight line, can be represented by a bivariate normal PDF that is
centered on the intersection and has a covariance matrix

CAM = σ2
0

 1 bAM

bAM b2
AM +

σ2
AM
σ2

0

 , (S20)

where bAM is the slope of the AM-curve (Equation S17) at the intersection

bAM =
dωr

dar

∣∣∣∣∣
ar=âr

= −
A

2
√

âr
(S21)

and σ0 spans a range of ar that is large compared to the overlap between the uncertain AM-curve
and K-curve; see Figure 14b in the main text for an illustration. (As shown below, σ0 will be
eliminated from our final expressions.)
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The bivariate normal PDF that represents the uncertainty of the K-curve in the region around
the intersection is

CK = σ2
0


1 bK

bK b2
K +

σ2
K+σ2

k̂r
σ2

0

 , (S22)

where bK is the slope of the K-curve (Equation S16) at the intersection

bK =
dωr

dar

∣∣∣∣∣
ar=âr

= k̂r
3 (K + 1) â2

r

(Kâ3
r + 1)2

(S23)

and the sum σ2
K + σ2

k̂r
accounts for the uncertainty of both the K-curve and of the estimated kr.

(Equation S16 shows that the uncertainty in the value of ωr predicted by kr is the same as the
uncertainty of kr.)

The uncertainty of the intersection will be defined by the product of the two PDFs that quantify
the uncertainty of the AM-curve and of the K-curve. This product is another bivariate normal PDF
that is centered on the intersection point and that has a covariance matrix

C =
[
C−1

K + C−1
AM

]−1
, (S24)

and an expression for C can be obtained letting σ2
0 → ∞ as

C =
1

(bK − bAM)2

 σ2
AM + σ2

K + σ2
k̂r

bAM(σ2
K + σ2

k̂r
)2 + bKσ

2
AM

bAM(σ2
K + σ2

k̂r
) + bKσ

2
AM b2

AM(σ2
K + σ2

k̂r
) + b2

Kσ
2
AM

 . (S25)

The diagonal elements of C contain the variances of the values of âr (C11) and ω̂r (C22) at the
intersection of the AM-curve and K-curve.
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Table S1. List of symbols and acronyms.

a Semi-major axis of lunar orbit
ar Ratio a(t)/a(0) of a at age t over the present day value
A Constant in equation for conservation of angular momentum
C Covariance matrix
d Vector of observed data
dpred Vector of data predicted by a given value of m
e Vector of data residuals d − dpred

esub Subsampled vector of data residuals
G Matrix of sine and cosine terms with astronomical frequencies
gi Fundamental Solar system frequencies for the rotation of the planetary perihelia
k Precession frequency of the Earth’s spin axis
kr Ratio k(t)/k(0) of k at age t over the present day value
m Vector of parameters (gi, si, k, u)
N Number of data points in d
Neff Effective number of independent observations in d
p(x | y) Probability density function (PDF) of x given y
P Order of an AR(P) process
ri Autocorrelation of data residuals e at lag i
si Fundamental Solar system frequencies for the rotation of the ascending nodes

of the orbital planes
t Vector of ages in the stratigraphic data
Tecc Period of shortest eccentricity cycle in the data
u Sedimentation rate
w Vector of uncorrelated (white) noise driving an autoregressive (AR) process
λecc Wavelength of shortest eccentricity cycle in the data
φi i-th coefficient of an AR(P) process (1 ≤ i ≤ P)
σ2

e Variance of data residuals e
σ2

w Variance of uncorrelated noise w
τ Minimum lag where the autocorrelation function crosses zero
ω Earth spin rate
ωr Ratio ω(t)/ω(0) of ω at age t over the present day value
AR Autoregressive process
LOD Length of day
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
PDF Probability density function
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AR(2) process fitted to ETP data ( 1=0.84, 2=-0.07)
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Figure S1. Fit of an AR(2) process to the residuals for the synthetic ETP test data set. (a) Com-
parison of data periodogram with the spectrum of an AR(2) process with the coefficients φ1 and φ2
fitted for the MAP value of the parameters. The vertical dotted line marks the maximum climatic
precession frequency in the data. (b) Sample autocorrelation of the driving noise w of the residuals
obtained for the MAP values of the parameters.
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AR(2) process fitted to Xiamaling data ( 1=0.24, 2=-0.01)
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Figure S2. Fit of an AR(2) process to the residuals for the Xiamaling formation Cu/Al data set.
(a) Comparison of data periodogram with the spectrum of an AR(2) process with the coefficients
φ1 and φ2 fitted for the MAP value of the parameters. The vertical dotted line marks the maximum
climatic precession frequency in the data. (b) Sample autocorrelation of the driving noise w of the
residuals obtained for the MAP values of the parameters.
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AR(2) process fitted to Walvis data ( 1=1.14, 2=-0.33)
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Figure S3. Fit of an AR(2) process to the residuals for the Walvis Ridge a* data set. (a) Comparison
of data periodogram with the spectrum of an AR(2) process with the coefficients φ1 and φ2 fitted for
the MAP value of the parameters. The vertical dotted line marks the maximum climatic precession
frequency in the data. (b) Sample autocorrelation of the driving noise w of the residuals obtained
for the MAP values of the parameters.
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Figure S4. Posterior correlation of parameters sampled by TimeOptBMCMC for the Xiamaling
formation Cu/Al data set. The color background for each pair of parameters is proportional to the
correlation coefficient (as shown by the color bar at the bottom of the figure). Posterior correlations
are near zero, with the exception of a strong positive correlation between u and k.
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MCMC MAP data fit for Xiamaling (N iter=50000)
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Figure S5. Fit to the Xiamaling formation Cu/Al data obtained by TimeOptBMCMC for the MAP
value of sedimentation rate u and astronomical frequencies gi, si, and k. (a) Fit between measured
and predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed cli-
matic precession signal and the envelope predicted by the eccentricity frequencies (envelope fit).
(c) Data periodogram (black continuous line) and frequencies of the reconstructed astronomical cy-
cles in the data (dotted vertical lines). The gray shaded area shows the frequency response of the
filter used to compute the bandpassed climatic precession signal in the data (gray curve in (b)).
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MCMC sampling progress for Walvis
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Figure S6. Progress of TimeOptBMCMC sampling for the Walvis Ridge a* data set over 50,000
iterations. (a) Value of the log-posterior PDF for the sampled model parameter vectors. The black
cross is the starting value and the red cross the MAP. (b, c, d) Standard deviation of the proposal
PDF (as a ratio over the starting value) for each model parameter. (e, f, g) Frequency of acceptance
of the proposed steps in the MCMC random walk. The adaptive Metropolis algorithm used in
TimeOptBMCMC adjusts the standard deviations of the proposal PDF to keep the frequency of
acceptance around the optimal value of 0.44 for all model parameters (white horizontal dotted line).
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Figure S7. Posterior correlation of parameters sampled by TimeOptBMCMC for the Walvis Ridge
a* data set. The color background for each pair of parameters is proportional to the correlation
coefficient (as shown by the color bar at the bottom of the figure). Posterior correlations are near
zero, with the exception of a strong positive correlation between u and k.
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MCMC MAP data fit for Walvis (N iter=50000)
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Figure S8. Fit to the Walvis Ridge a* data obtained by TimeOptBMCMC for the MAP value
of sedimentation rate u and astronomical frequencies gi, si, and k. (a) Fit between measured and
predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed climatic
precession signal and the envelope predicted by the eccentricity frequencies (envelope fit). (c) Data
periodogram (black continuous line) and frequencies of the reconstructed astronomical cycles in the
data (dotted vertical lines). The gray shaded area shows the frequency response of the filter used to
compute the bandpassed climatic precession signal in the data (gray curve in (b)).

15


