AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Elena Spagnuolo
Public Documents
3
Fault friction during simulated seismic slip pulses
Christopher Harbord
and 3 more
July 28, 2021
Theoretical studies predict that during earthquake rupture faults slide at non-constant slip velocity, however it is not clear which source time functions are compatible with the high velocity rheology of earthquake faults. Here we present results from high velocity friction experiments with non-constant velocity history, employing a well-known seismic source solution compatible with earthquake source kinematics. The evolution of friction in experiments shows a strong dependence on the applied slip history, and parameters relevant to the energetics of faulting scale with the impulsiveness of the applied slip function. When comparing constitutive models of strength against our experimental results we demonstrate that the evolution of fault strength is directly controlled by the temperature evolution on and off the fault. Flash heating predicts weakening behaviour at short timescales, but at larger timescales strength is better predicted by a viscous creep rheology. We use a steady-state slip pulse to test the compatibility of our strength measurements at imposed slip rate history with the stress predicted from elastodynamic equilibrium. Whilst some compatibility is observed, the strength evolution indicates that slip acceleration and deceleration might be more rapid than that imposed in our experiments.
Thermal weakening friction during seismic slip: experiments and models with heat sour...
Stefan Nielsen
and 3 more
December 28, 2020
Recent experiments systematically explore rock friction under crustal earthquake conditions revealing that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surface have been invoked to explain pronounced velocity weakening. Both contact asperity temperature $T_a$ and background temperature $T$ of the slip zone evolve significantly during high velocity slip due to heat sources (frictional work), heat sinks (e.g. latent heat of decomposition processes) and diffusion. Using carefully calibrated High Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on $T$ in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for evolution of both $V$ and $T$; (3) same but including heat sinks in the thermal balance; (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and models (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in (3) significantly affects $T$ and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem we compare the efficiency of three different numerical solutions (Finite differences, wavenumber summation, and discrete integral).
Fast and localized temperature measurements during simulated earthquakes in carbonate...
Stefano Aretusini
and 5 more
December 13, 2020
The understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (~1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution. Here we conduct high velocity friction experiments on Carrara marble rock samples sheared at 20 MPa normal stress, velocity of 0.3 and 6 m/s, and 20 m of total displacement. We measure the temperature evolution of the fault surface at the acquisition rate of 1 kHz and over a spatial resolution of ~40 µm with optical fibers conveying the infrared radiation to a two-color pyrometer. Temperatures up to 1250 {degree sign}C and low coseismic fault shear strength are compatible with the activation of grain size dependent viscous creep.