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Abstract

It is now well-established that earthquakes change the seismic velocity of the near
surface. There is certainly some understanding of what mechanisms are responsible for
these changes, but there remain many questions. One of these open questions is how cracks
and other microstructures within the rock control these changing velocities. Here we look
at the nonlinear interaction of two waves, one of which (the PUMP) simulates the ef-
fect of an earthquake and the other (the probe) senses the changes in the travel time caused
by the passage of the PUMP wave. We use a sandstone sample that is established to have
a nonlinear response that depends on the orientation of the sample layering. We study
two samples with different orientations of this layering, which we infer to be different ori-
entations of the micro-structure. We show that the dependence of these changes on ap-
plied load are exponential, with a characteristic load of 11.4-12.5 MPa that is indepen-
dent of sample orientation and probe wavetype (P or S); this value agrees with results

from the literature.

Plain Language Summary: After a large earthquake, it takes the materials sur-
rounding the epicentre some time to return to their original form. This includes changes
in the speed at which waves travel through the surrounding material. We do not fully
understand why this happens or more specifically what happens to cause these changes
in speed. To improve our understanding, we do experiments on rocks in the laboratory
to try to isolate different characteristics of the material that may control these changes.
Here we look at how changes in the applied load (how much force we apply to squeeze
the rock) changes these signals. We find that there is a characteristic load that is inde-

pendent of the orientation of the layering in the sample and they types of waves we use.

1 Introduction

Understanding the nonlinearity in the Earth’s response to waves is becoming more
important as we try to understand why and how large earthquakes change the proper-
ties of the Earth and to understand reservoirs in more detail. For the former, many stud-
ies show that the Earth’s seismic velocity drops, and subsequently recovers, as a result
of the passage of large waves from an earthquake (see Wang et al. (2019) for a good in-

troduction and Aoki (2015) for a concise overview of recent observations and the the-



ory behind nonlinear elasticity). At a smaller scale, both induced and pre-existing frac-
tures represent pathways for fluids in reservoirs (e.g. COq, water, oil and gas). A non-
linear Hooke’s law is becoming a recognized driver of change in such reservoirs (Asaka

et al., 2018). Here, we attempt to simulate this response using a PUMP /probe exper-
iment (Renaud et al., 2008, 2011; Gallot et al., 2015) that tracks the response of a low-
amplitude probe wave as forced by a large-amplitude PUMP wave. (The terminology
"PUMP’ for the stronger wave and 'probe’ for the weaker sensing wave is well-established.
For clarity, we use uppercase 'PUMP’ to indicate the stronger wave.) We use a uniax-

ial load to change the properties of existing fractures to learn how these properties af-

fect the nonlinear signal.

The first reports of non-linear behaviors in rocks (Birch, 1960) and other materi-
als (Hughes & Kelly, 1953) are decades old. Many theoretical models address this non-
linearity, ranging from classical nonlinearity (involving higher-order expansions of Hooke’s
Law) to various phenomenological models to describe additional effects observed in rocks
that are not predicted by the classical theory. A detailed overview of this theory is be-
yond the scope of this experimental paper, but we summarize relevant literature here.
Norris and Johnson (1997) derive the equations of motion for classical nonlinearity. Sens-
Schonfelder et al. (2018) give a thorough overview of recent classical and non-classical
nonlinear theory; Ostrovsky and Johnson (2001) summarize earlier studies. Work relat-
ing to cracks is surveyed by Broda et al. (2014). Scalerandi et al. (2018) give an excel-
lent overview of non-destructive testing applications, especially the influence of cracks
and micro-structures on the nonlinear response. Guyer and Johnson (2009) give a more

detailed treatment of both classical and non-classical theories.

We use classical PUMP /probe experiments that in some sense go back to at least
Hughes and Kelly (1953) who study changes in a probe wave caused by static deforma-
tions (their PUMP). The most common variant in the current literature is Dynamic Acousto-
Elastic Testing method (DAET, Renaud et al. (2008, 2012)). In DAET, a resonant mode
is excited in the sample (the PUMP) and that mode is then analyzed with a high-frequency
probe wave. Riviere et al. (2013) give a careful overview of both the experimental setup
and data processing to help understand and analyze DAET data; Riviere et al. (2015)
give a detailed comparison of DAET to the more classical Nonlinear Resonance Ultra-
sound Spectroscopy (NRUS). Remillieux et al. (2017) provide a large NRUS dataset, which

stimulated model development to better understand the data (Lott, Payan, et al., 2016;



Lott, Remillieux, et al., 2016; Lott et al., 2017). Sens-Schonfelder and Eulenfeld (2019)
use Earth tides as a PUMP and noise as probe in a field experiment analogous to DAET.
Muir et al. (2020) use a hammer source in a similar setup to ours designed for much larger
samples. Gallot et al. (2015) develop a method that relies on transient waves, which we
use in this work. Modeling for this particular experiment is a challenge because the sam-
ple experiences two dynamic forces (PUMP, probe) and one static force (press). Gallot

et al. (2015); Rusmanugroho et al. (2020) describe a relatively simple model that is most

appropriate to our specific experiments.

We focus on aligned cracks and their response to applied loads. Aligned cracks are
common in the Earth, wherein tectonic forces can guide crack formation, opening and
closing; in-situ rocks are also generally under load (Alkhalifah & Tsvankin, 1995). It re-
mains difficult to definitively separate the response of cracks from other signals, like het-
erogeneity and intrinsic anisotropy, at second-order (standard linear elasticity) and at
higher orders. TenCate et al. (2016) give a first attempt at characterizing the importance
of microstructure orientation relative to nonlinear wave interactions. A numerical model
of these results, given in Rusmanugroho et al. (2020), suggests that what TenCate et al.
(2016) interpret as a set of aligned cracks is likely more complicated, with evidence that
nonlinear response should vanish when crack normals are perpendicular to a P-wave probe

particle motion.

Here, we aim to separate these signals by running nonlinear elastic experiments re-
peatedly for a rock under different uniaxial loads. This follows from work by: Zinszner
et al. (1997) on classical nonlinear resonance under a variety of loads and saturations,
Riviere et al. (2016) who study DAET under a variety of pressures, and Simpson et al.
(2021) who monitor velocity changes over a range of confining pressures. These earlier
works suggest an exponential decrease in nonlinearity with increasing load, with a char-
acteristic pressure ~10 MPa (Riviere et al., 2016) for sandstones and 1 MPa (Simpson

et al., 2021) for rocks from an active fault zone.

2 Methods
2.1 Sample Descriptions

We examine two samples of Crab Orchard Sandstone (COS) from Cumberland, Ten-

nessee, which is beige, fine-grained, and cross-bedded with sub rounded grain shapes and



L, (mm) | L, (mm) | L, (mm) | p | Vpe | Vpy | Vs | Vsy vp Ys
Sample 1 126 155 52 241 3.2 |3.05|224|222]|51% | 0.85%
Sample 2 125 154 52 2.5 1327323225219 | 1.1% | 2.5%
Table 1. Physical parameters of our samples. The dimensions are measured with calipers and

the velocities using the probe transducers by measuring the travel time of the P- and S-waves
across the sample in all three dimensions, L; is the length along the 70 axis; Vi is the velocity

of wave mode M (P or S) propagating in direction j; yas is the M-mode anisotropy.

no preferred grain alignment. It is compositionally and texturally mature (composition:
80% quartz, 10% orthoclase, 9% cement (clays and micas), 1% mica). This composition
is similar to that of Benson et al. (2005) who conclude that the cement destroys much
of the porosity, leaving porosity in the form of cracks and pores. TenCate et al. (2016)
find that COS exhibits strong anisotropy in its nonlinear response. We report physical
parameters of our samples in Table 1. Density is sample mass divided by volume; veloc-
ities are the travel distance divided by the travel time of the wave (recorded with probe
transducers at the probe frequency). We compute anisotropy using

ymaz _ Vmin

’Y Va’ue

where V™4 is the maximum of the velocities in the two recorded orientations, V™" is
the minimum and V"¢ is the average velocity. Both samples exhibit P- and S-wave anisotropy,
although Sample 1 has much stronger P-wave anisotropy whereas Sample 2 has stronger

S-wave anisotropy. See Supplementary Text S1 for more velocity measurement details.

2.2 Experimental Setup

We use the setup described in Gallot et al. (2015); TenCate et al. (2016) and place
it inside a hydraulic press, (Figure 1). This design is similar to DAET, with the excep-
tion that our PUMP wave is a propagating S-wave, not a resonance mode. We monitor
perturbations induced by a strong PUMP wave by using a weaker probe wave as a sen-
sor. To ensure that the probe is indeed weak, we use a signal that is two orders-of-magnitude
weaker in strain for the probe (order of magnitude of the strain is 10~%) than for the PUMP

(107%). Details of this strain measurement are given in Supplementary Text S3.
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Figure 1. (a) The experimental setup, including the coordinate system to be used later. In all

experiments the PUMP source is connected to the function generator and amplifier. Solid lines

denote connections for P-probe experiments; dashed lines correspond to S-probe experiments;

dotted lines correspond to PUMP recording only. The polarization directions are noted on each

receiver (b) Summary of experimental protocols. The line style on the boxes (solid, dashed, or

dotted) indicates the receiver setup, as described for (a).



wave transducer | driving | cycles | polar. | prop. | amp | approx A
resonance freq. dir. dir. strain
PUMP 100 kHz | 90 kHz 4 Y x 10V 1076 24 mm
P-probe 1 MHz 1 MHz 1 Y Y 0.1V 1078 3.6 mm
S-probe 1 MHz 1 MHz 1 z Y 0.1V 1078 2.2 mm
Table 2. Summary of experimental parameters: prop. dir. = propagation direction, polar. dir.

= polarization direction, A = wavelength, and amp = amplitude (peak-to-peak voltage) of the

input signal before going through the (50x) amplifier.

Figure 1 shows our experimental setup and Table 2 summarizes the experimental
parameters. For all experiments, we use a 90 kHz S-wave PUMP signal propagating along
the z-direction with polarization in the y-direction. We explore two different kinds of
probes: a P-wave propagating and polarized along the y direction, and an S-wave probe
propagating along the y direction with polarization in the z-direction. We note that past
experiments by Gallot et al. (2015) find the largest signal when the particle motion of
the PUMP and probe are aligned. Further experimental details, including rationales for
frequency choices and travel time delay details, are discussed in Supplementary Text S1,

and detailed parameter settings are given in Supplementary Text S2.

We sense the change in the probe travel time as the PUMP wave passes. To do this,
we must measure the travel time delay in the probe as it interferes with different phases
of the PUMP wave. We do this by controlling the transmission delay, which is the time
between the emission of the PUMP and probe signals. In our experiments, this delay is
controlled by the function generator, by syncing the triggering of the channel emitting
the probe signal to the channel emitting the PUMP signal, adding a variable delay to
the probe signal. This transmission delay will be the independent variable (x-axis) on

the plots of our experimental results.

To measure the changing travel time, we record three signals on the positive y-face
using transducers identical to those used to excite the probe (i.e. P-wave transducers for
the P-wave probe and S-wave transducers for the S-wave probe). The three signals that

we record (illustrated in Figure 2(b)) are:

1. S the probe alone,
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Figure 2. (a) PUMP signal recorded on the z-face of the sample opposite the PUMP gener-
ating S-wave transducer. (This signal uses the recording setup with the dashed lines in Figure 1.)
(b) Signals recorded to estimate travel time delays on the P-transducer on the y-face opposite the
P-probe source transducer. (These signals use the recording setup shown with the solid lines in
Figure 1.) The three signals shown are with the PUMP only (S2), the probe only (S1) and both
together, (S3). These signals have been filtered to remove as much of the PUMP signal as possi-
ble. Note the different scales in both time and amplitude. (¢) Cartoon to illustrate the format of

the data plots (shown in Figure 6).



2. Sy the PUMP alone,

3. S3 the PUMP and probe together.

As it is our goal to compare the probe signal present in S3 to the unperturbed probe in
S1, we need to remove the PUMP from S3. We do this in two parts. The first is the high-
pass physical filter shown in Figure 1. This significantly reduces the amplitude of the
PUMP signal, allowing us to record the probe signal with sufficiently high precision, but
does not completely eliminate it. Because the filter is imperfect, we then form Sy = S35—
Ss to remove the remaining PUMP signal and obtain an estimate of the perturbed probe
signal. The travel time delay is the difference in the arrival time between the original
probe (in S7) and perturbed probe (in S;). We measure this delay using cross-correlations,
as explained by Catheline et al. (1999); we give further details on this in Supplementary
Text S4. Having measured one travel time delay, we then change the transmission de-

lay time between the PUMP and probe and measure the same three signals to obtain

the next data point. This is summarized in Figure 1(b), and a cartoon of the resulting
experimental data to illustrate the transmission delay is shown in Figure 2(c). The data
collection takes approximately one hour for a single applied stress and PUMP /probe com-
bination. For each sample and applied load we collect two datasets, one with a P-wave
probe and the other with an S-wave probe. All data use an S-wave PUMP. Hayes and
Malcolm (2017) find that the relative polarizations of the two S-waves have a small im-

pact on the resulting time-delay measurements when using an S-wave probe.

2.3 Loading Protocols

We repeat our experiments at five or six uniaxial loads for each sample and probe-
type. A hydraulic press provided the load (Figure 1). The sample, along with spacers,
is placed in the cell between two stainless steel plates to promote uniform load distri-
bution. The press pistons apply a constant force with a sequence of hydraulics, with the
applied load being this force divided by the sample area. We apply the load in steps: raise
the force to have a 1 MPa load on the sample and collect data for both the P and S probes,
then release the force, then raise the force to 2 MPa and record the next dataset, con-
tinue up to 15 MPa for Sample 1 and 18 MPa for Sample 2. The additional load for Sam-
ple 2 was necessary because of the reversal between 10 and 15 MPa. Although the steel

plates help to distribute the strain uniformly throughout the sample, we do not expect
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the strain to be uniform throughout. However, we do expect it to be distributed sim-

ilarly at different loads and among different samples.

3 Theory and Modeling
3.1 Intuition

Figure 3 gives a schematic illustration of the expected sample responses to each type
of applied force. Three forces act on the sample simultaneously: the static load, the PUMP
wave, and the probe wave. Under a static load, we expect the layers in Sample 1 (with
vertical layers) to bow out, while those in Sample 2 (with horizontal layers) will squeeze
together. For the PUMP, we expect this perturbation to distort layers within the hor-
izontal plane; several layers will distort together because the transducer diameter cov-
ers approximately 25 layers. For Sample 1, the layers are vertical, so the distortion is across
the layers and would change their separation. For Sample 2, the distortion will remain
largely within the horizontal layer itself. The P-probe will move Sample 1 layers closer
and further together, but will compress/dilate within the Sample 2 layers. The S-probe
will slide the layers against each other in Sample 1, but will vertically distort layers in

Sample 2 (the transducer covers approximately ten layers).
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3.2 Modeling the PUMP strain

We are interested in traveling waves because, in the field, transient signals are eas-
ier to excite than resonance modes. To achieve this in our experiments, we send only four
cycles of the PUMP, and at a frequency such that this PUMP does not excite the en-
tire sample simultaneously. As a result, our probes sense a much more complicated strain
than what occurs in resonance-based DAET (Renaud et al. (2008)). To explore this fur-
ther, we present a simple numerical model of the experiment, based on a finite-difference
implementation of the elastic wave equation (Virieux, 1986; Graves, 1996) to determine
what the probe senses as it travels across the sample. More details on the numerical re-

sults are given in Supplementary Text S5.

Our model estimates the cumulative strain, caused by the PUMP, that is sensed
by the probe wave during our experiments. We simulate PUMP propagation and esti-
mate the resulting strain distribution as a function of position in the sample and prop-

agation time. Examples of strain field snapshots are shown in Figure 4.

We use calculated strains to compute the cumulative strain experienced by the probe
as it travels across the sample, perpendicular to the PUMP propagation direction. In
our experiments, we analyze only the arrival time of the probe, so we expect that the
strain experienced by the first part of the probe waveform is most important. As a re-
sult, it is not necessary to model the probe propagation (see further discussion in Sup-
plementary Text S5). Instead, we compute (analytically) where the probe wave will be
within the PUMP strain field; these calculated locations are shown by white ellipses in
Figure 4(b,c). To estimate the cumulative strain, we integrate the strain encountered by
the probe over both space (within the white ellipse) and time (the white ellipse moves
as the probe moves), and then divide by the path length. This follows a procedure iden-
tical to that used by Gallot et al. (2015) (more detail in Supplementary Text S5). The
results of this calculation are shown in Figure 4(d), and demonstrate that the cumula-
tive strain is at the frequency of the pump, and that it varies in magnitude (but not in

frequency) as a function of the probe transmission delay.

3.3 Linking modulus to applied pressure

Riviere et al. (2016) introduce a simple model to fit the change in modulus to an

exponential function of applied pressure. The change in modulus (M = pv?), induced

—11-
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by the PUMP, can be recovered easily from the change in the traveltime of the probe

wave via

AM_vaAv_QAv_2AT
M M v T

where T is the travel time, v is the velocity and A indicates a change. Riviére et al. (2016)

suggest simply fitting this change in modulus to an exponential model,

%4 — Ae 7o (1)

As mentioned above, we measure a change in traveltime (and thus modulus) for many
different transmission delays. To reduce these data to a single number as a function of
applied load, we extract the maximum traveltime delay (and thus change in modulus)
for each applied load, and fit the resulting datasets to this simple model. This model is
also used by Simpson et al. (2021) to fit velocity change data as a function of confining

pressure.

4 Experimental Results
4.1 Velocities and Amplitudes

As a precursor to the nonlinear wave mixing data, we first assess changes in veloc-

ity, anisotropy, and PUMP amplitude with applied load (Figure 5).

We measure the travel times of four waves from which we obtain four velocities:
Uyy (P-probe), vy, (S-probe), vy, (S-PUMP), and v,, (P-wave generated by S-PUMP
transducer). Yurikov et al. (2019) describe a similar methodology to that used here for
measuring velocities, which is summarized in Supplementary Text S1. In Figure 5a, all
measured velocities increase as a function of applied load, except for a slight decrease

for Sample 1 velocities at low loads.

Anisotropies are calculated using the velocities shown in Figure 5a: the P-wave anisotropy
is between the x— and y—directions, whereas the S-wave anisotropy is between the yz
and zy directions. Figure 5b shows that anisotropy is largest for P-waves in Sample 1.
In that sample, the P-wave probe (v,,) travels across the layering (the slow direction),
whereas the S-wave excited by the PUMP transducer travels along the layers (the fast
direction). This is expected based on prior reports by Gallot et al. (2015). All measures
of anisotropy increase slightly and then plateau or decrease at higher applied loads. We

note that different waves are measured with different transducers and frequencies in the

—13—



different directions, so conclusions about the absolute anisotropy of the samples should
not be made with these data. However, we do not expect these errors to change with ap-
plied load. In addition, all changes are within the errors of our estimated velocities, so
we cautiously conclude that anisotropy changes only by a few percent during our exper-

iments.

Figure 5c shows the maximum value of the recorded PUMP signal, obtained us-
ing the dotted line setup in Figure 1. The maximum change in this amplitude is 20%
for the P-wave probe in Sample 2. Note also that PUMP amplitude increases initially
with applied load in Sample 2, whereas it decreases initially for Sample 1. Neither sam-

ple shows a consistent trend in PUMP amplitude with applied load.

To summarize, with the exception of the PUMP amplitude for the first step in load
(from 1 to 2 MPa), the applied load changes velocity, anisotropy and PUMP amplitude

by only a few percent.

4.2 Nonlinear Responses

For each sample and applied load, we performed two kinds of nonlinear wave-mixing
experiments: P-wave probe, and S-wave probe. Figure 6 shows measured travel time de-
lays (in ns) as a function of the transmission delay time (in us) between when the PUMP
and probe waves were initiated. (Recall from Section 3.3 that the travel time delay can
be related directly to changes in moduli.) We note that some of these data were part of

the conference presentation of (Hayes et al., 2018).

In Figure 6 — and as illustrated in the cartoon in Figure 2(c) — we see two clear fre-
quency components in the time delay vs transmission delay data (as reported in simi-
lar experiment designs (Gallot et al., 2015; TenCate et al., 2016)). The first component
follows the total envelope of the PUMP wave pulse, while the second higher-frequency

component matches the period of the PUMP wave (90 kHz).

It is the component due to the PUMP envelope that explains why there is a net
rise in time delay with transmission delay for some PUMP /probe combinations, while
others show a decrease (compare Figure 6(a) and (b)). Whether the probe senses the in-
creasing or decreasing part of the PUMP envelope depends largely on sample geometry

and the relative locations of the PUMP and probe transducers. Thus, (a) shows the on-

—14—
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set of the PUMP /probe interaction, whereas (b) shows the tail-end of the interaction as
the PUMP pulse passes out of the interaction region in the center of the sample. We note
that it is this envelope part of the time delay vs transmission delay data that TenCate

et al. (2016) found to change with sample orientation.

For the second, higher-frequency component, we compute the maximum of this 90 kHz
component by filtering the travel time delay data with a butterworth bandpass filter (cor-
ner frequencies 50 and 150 kHz), and then record the maximum of the filtered signal.

Our results show that there is no consistent trend in this 90 kHz component; previous
work has also shown this component to be independent of sample orientation (TenCate

et al., 2016). What controls the signal at 90 kHz remains an open question.

In summary, the envelope of the travel time delays decrease as a function of ap-

plied load for all experiments, except for the S-probe in Sample 2.

4.3 Fitting to the model

To conclude this section, we fit the data in Figure 6(e) to the model given in the
Theory section in equation 1. The results of this fitting are shown in Figure 7. For Sam-
ple 2 with the S-probe, we note that there is no modulus change before 10 MP; thus, we
include only 10, 15, 18 MPa in the fit. We show the characteristic load for each probe
and sample type as insets in Figure 7; these are consistent within our experimental er-
rors. The values agree with those recovered by Riviere et al. (2016) on sandstones, but

they are different from those recovered by Simpson et al. (2021) for metamorphic rocks.

5 Discussion

Before interpreting new observations from our data, we first discuss how our data
agree with known results. We observe that the nonlinear response changes by a factor
of three to five, whereas the changes in velocities are on the order of at most ten per-
cent. Scalerandi et al. (2018), among many others, observe that the nonlinear response
to fractures is generally larger than the linear response, consistent with our observations.
Our Sample 1 has larger delays than Sample 2 (Figures 6); this is consistent with the
observations of TenCate et al. (2016), who find that the relative orientations of PUMP,
probe, and sample layering influence the magnitude of the measured traveltime delays.

TenCate et al. (2016) also note, as do we (Figure 6(f)), that there was no change in the
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Figure 7. Fits to the model in equation 1 for (a) Sample 1 (vertical layers) with a P-probe,
(b) Sample 1 with an S-probe, (c) Sample 2 (horizontal layers) with a P-probe, and (d) Sample 2

with an S-probe. For all cases, the characteristic load Py (insets) is the same within error.
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higher-frequency (90 kHz) component of the time delay signal when changing the ori-

entation of the samples.

Our main new observation from these data is that, with the exception of the first
three loads for Sample 2 with an S-probe, the nonlinear signal decreases with applied
load. This decrease is well-described by an exponential decay with an average charac-
teristic load of 11.841 MPa across the four experiments. These results are consistent
with published results using confining pressure (Riviere et al., 2016) instead of our uni-
axial load. (Note that Zinszner et al. (1997) also see a significant drop in the nonlinear
signal near 10 MPa.) We posit that this signal decrease with applied load is controlled
by cracks or other grain-scale structures aligned with the visible layering in the sample.
Before going into the details of this interpretation, we first rule out two other possible

mechanisms.

Bittner and Popovics (2019) show that fluid movement occurs during a nonlinear
resonant ultrasound spectroscopy (NRUS) experiment. The applied loads here are not
large enough to limit pore-scale flow (Gist (1994) find that 40 MPa is sufficient to limit
some pore-scale flow), and so we cannot immediately rule out the movement of water
as a significant mechanism in our results. That said, at ambient load conditions Khajehpour Ta-
davani et al. (2020) find that it takes many days for changes in fluid content to show sim-
ilar magnitude changes as those observed here. This leads us to conclude that changes

in ambient humidity are unlikely to be the controlling mechanism behind our results.

Another potential mechanism to explain our results is that the sample may change
length due to either the PUMP wave or the applied load. (TenCate et al., 2016) note
that strains on the order of 10~* would be necessary to explain their data based on changes
in length due to the PUMP; they also note that travel time delays would also be observed
in linear materials, which they show is not the case. If changes in length were to explain
our signals, we would expect the maximum travel time delay to increase with applied
load as the sample would get longer in both the PUMP and probe propagation direc-
tions. This is counter to our observations. We thus exclude changes in length as a pos-

sible mechanism.

Having ruled out these two potential mechanisms controlling our nonlinear signal,
we now interpret our results in terms of the changes in the layers, as sketched in Figure 3.

We first examine what might be the small-scale structures that are present at the layer
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boundaries. Benson et al. (2005) do interpret crack-like microstructures in rocks from
the same quarry with the cracks aligned with the layers. It is well-established that cracks
are a dominant influence on changes in velocity with applied load (Nur, 1971), and that
cracks are a driver of nonlinearity (Guyer & Johnson, 1999, 2009). We do not think that
we have applied enough stress to produce new cracks (which might increase nonlinear-
ity, as seen in Sample 2 with the S-probe). For example, Browning et al. (2017) find that
new cracks develop at a confining pressure of approximately 40 MPa, which is much higher
than the 18 MPa of uniaxial load that we apply. Batzle et al. (1980) see distinct open-
ing of vertical cracks at uniaxial loads up to 30 MPa. This leads us to expect that we
could open vertical cracks in Sample 1. However, our results (Figure 6) do not show any
increase in nonlinearity in Sample 1, even with low applied loads, meaning that they are

not consistent with a ’crack-opening’ interpretation.

Our data suggest that the underlying mechanism is perhaps less sensitive to the
orientation of the microstructures than to how much strain is required to perturb these
structures. If the mechanism depended on the orientation of the structures, then we would
expect different responses for samples with that micro-structure oriented in different ways
(i.e., Sample 1 vs Sample 2). In contrast, the stiffness of the contacts is likely to increase
as the load is increased, independent of the orientation of the layers. As the contacts get
stiffer, it is logical that they will not be as easily perturbed by the PUMP wave, thus
decreasing the nonlinear response. Our only observation that is not consistent with this
explanation is that, for Sample 2 and the S-probe, the decay does not begin until a larger
load. This is puzzling, yet it also shows consistency with Simpson et al. (2021), where
they observe this kind of holding before changes with (in their case) confining pressure.

It is interesting that once the decay begins it proceeds with the same characteristic load.

As a final observation from our data, we check their consistency with the postu-
lation by Riviere et al. (2015) that there are two clear mechanisms causing changes to
the nonlinear response. This observation is also discussed by Scalerandi et al. (2015), where
they divide these mechanisms into clapping and hysteresis. Our results are consistent
with the presence of two mechanisms. The first mechanism, characterized by the signal
at the frequency of the PUMP, seems independent of the applied load (Figure 6f), and
crack orientation (TenCate et al., 2016). The second mechanism, which follows the shape
of the envelope of the PUMP signal depends strongly on load and crack orientation (Fig-

ure 6a).
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6 Conclusions

We present a dataset showing the evolution of the nonlinear interaction of differ-
ent wave-types as a function of applied uniaxial load. We find a characteristic load that
is consistent with literature results for other samples measured with different experimen-
tal configurations. Our data support the idea that nonlinear measurements are more sen-
sitive to aligned structures (such as cracks or layering) — and their changes to these aligned
stuctures — than other (linear) measurements used to characterize the sample. This is
supported by a larger percentage change in moduli, when compared to directly measured

changes in wavespeed, anisotropy, and amplitude of the perturbing PUMP wave.
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