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TEXT S1: Extraction and fractionation of total lipid extract (TLE) 9 

The collected samples were wrapped with aluminum foil, sealed in zip-lock bags, transferred to 10 

the lab, and were dried at ≤ 40 °C for 3 to 4 days. Powdered sediment samples (50 g) were 11 

homogenized with unsaturated silica, packed into stainless steel cells, and introduced via Buchi 12 

Speed Extractor E-914 for lipid extraction. Using a solution of dichloromethane (DCM) and 13 

methanol (93:7), the extractor was configured to operate for two cycles at 100 °C and 70 bar 14 

pressure for maximal organic content recovery. The obtained extract was then thoroughly 15 

concentrated at 30 °C using a Buchi P-6 Multivapor. The total extract was loaded into a glass 16 

column comprising 2 cm of glass wool and 17 cm of silica gel with 2 mL of hexane. 20 mL of 17 

hexane was used to separate the saturated hydrocarbon component from the total extract. The 18 

recovered saturated fraction was condensed with dry N2 gas to a volume of 0.5 mL. Subsequently, 19 

this concentrated saturated hydrocarbon fraction was treated with activated copper beads for sulfur 20 

removal. Similarly, the aromatic fraction was eluted by 80 mL solution of Hexane and DCM (4:1), 21 

condensed completely with dry N2 gas and dissolved with 0.5 mL of DCM (Behera et al., 2022; 22 

Ajay et al., 2021).  23 

Text S2: Information about GC-MS parameters and quantitative method for n-alkanes, 24 

UCM, hopanes and PAHs.  25 

The fractionated aliquots were analysed with gas chromatography mass spectrometry (GC-MS; 26 

(Agilent 7890B/5977 MSD) following the methodology described in Behera et al., (2022). Non-27 

polar capillary column (HP5-MS, 30 m × 250 µm × 0.25 µm) was employed and helium was used 28 

as the carrier gas. We have used splitless mode of injection (inlet temperature 320 °C) and up to 1 29 

µL of sample volume. The GC oven was programmed with an initial temperature of 40 °C, hold 30 

for 2 minutes, and then finally increased to 320°C at the rate of 4°C/minute. The flow velocity of 31 



helium gas in the column was maintained at 1.4 cm2/sec. The MSD conditions included 70 eV of 32 

EI ionization source, 45–600 amu of mass range, 2341 V of multiplier voltage, ion source 33 

temperature at 230 °C. The n-alkanes were identified by matching the characteristic mass spectra 34 

with the available literature and NIST library. Authentic standard (analytical standard n-C8 to n-35 

C40 (Sigma–Aldrich, Aldrich Chemical Co. (SIGMA-40147-U))) was prepared at different 36 

concentrations (10 µg/mL, 20 µg/mL, 40 µg/mL, 60 µg/mL, 80 µg/mL, 100 µg/mL and 160 37 

µg/mL) for quantitative identification of the n-alkanes. The concentration of total aliphatic 38 

hydrocarbons present within each given sample was meticulously determined by the total area of 39 

the chromatogram of the aliphatic fraction. To delineate the proportion of Unresolved Complex 40 

Mixture (UCM), a methodical subtraction of the sum total of unidentified peaks in the aliphatic 41 

fraction, apart from the resolved aliphatic hydrocarbons, and the characteristic peaks 42 

corresponding to n-alkanes, pristane, and phytane was conducted. The hopanes (m/z 191) were 43 

quantified by comparing the integrated peak area of the selected ion with the peak area of analytical 44 

reference standard 17β(H), 21β(H)-Hopane solution (SIGMA-07562). To quantify the PAHs, 45 

present in the samples, an external calibration curve was developed for the analytical standards 46 

using varying concentrations (n=8), including Sigma CRM47930 PAH mix (100, 200, 300, 400, 47 

600, 800, 1200, 1600 ng/mL). Various n-alkane parameters/indices were calculated in order to 48 

quantify and comprehend the different sources contributing to the organic content of the system 49 

(Table 1). 50 

Text S3: Quality control and quality assurance 51 

n-Hexane, DCM, and methanol of HPLC-grade (Merck, Darmstadt, Germany) were utilized 52 

for sample processing. Prior to extraction, samples were spiked with an internal standard (5-53 

cholestane) to determine the efficacy of the protocol, which resulted in between 84 and 90 percent 54 



recovery. Methods for GC/MS quality control included frequent system adjustments, tunes, and 55 

method blanks (n-hexane). Between each pair of samples, procedural blanks were performed, and 56 

no contamination was detected. Alongside sediment samples, a triplicate extraction of powdered 57 

pre-combusted sand (500 °C for 8 hours) was performed to rule out any background signals. In 58 

addition, blank samples of reagents were tested for contamination and to improve the precision of 59 

the experimental results. To prepare for sample extraction, a recovery experiment was conducted, 60 

and the samples were enriched with deuterated analytical standards, including 5a-cholestane-61 

2,2,4,4-d4 (Sigma, 747505) and Pyrene-d10 (Sigma, 490695). The average recovery rates of 62 

internal standards across all samples were between 86% to 98%. The limit of detection (LOD) for 63 

n-alkanes, hopanes and PAHs, was 0.001 μg/g, 0.02 ng/g, and 0.38 ng/g. The limit of detection 64 

(LOD) for alkanes was 0.5 μg/g , whereas that for hopanes and PAHs was 0.68 ng/g and 1.14 ng/g 65 

respectively. The precision of aliphatic hydrocarbon measurement was found to be 90%, as 66 

determined by the acceptable range (of values within 15% of the mean). Remarkably, the precision 67 

of the measurement for PAHs and petroleum biomarkers (hopanes) was even higher, with 100% 68 

of the data points meeting this standard. Moreover, the determination of target hydrocarbon 69 

concentrations in the sediment reference material (IAEA-417) was deemed satisfactory, as the 70 

recoveries were in accordance with the certified values within a range of ±35%. Such results 71 

signify the reliability and accuracy of the analytical methodology employed in this study. 72 

Text S4: Statistical analysis 73 

Principal component analysis (PCA) was utilized in this study, which was conducted using Origin 74 

Pro 10.0. (Origin Lab. Corp., Northampton, MA). Similar samples tend to cluster together, and the 75 

degree of difference between groups and clusters is indicated through this analysis. The spatial 76 

interpolation of hydrocarbons concentration and indices was performed using the inverse distance 77 



weighted (IDW) technique in geographic information system. The distribution maps were 78 

generated using ArcGIS software package – ArcMap (version 10.8.0.12790).  79 

 80 

Supplementary Table S1: The hopanes identified in the study with their respective diagnostic 81 
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Serial No. Retention Time 

(min.) 

Compound Name Diagnostic 

Ions 

1. 63.59 
18α(H)-22,29,30-

trisnorneohopane 
191, 370 

2. 64.99 
17α(H)-22,29,30-

trisnorhopane 
191, 370 

3. 68.13 
17α(H), 21β(H) 

C29 hopane 
191, 398 

4. 69.23 Hop-17(21)-ene 
191, 231, 367, 

410 

5. 70.04-70.75 
17α(H), 21β(H) 

C30 hopane 
191, 412 

6. 72.26-72.614 
C31homohopanes 

(22S, 22R) 
191,426 

7. 73.52-74.67 
C32homohopanes 

(22S, 22R) 
191, 440 

8. 75.77-76.71 
C33homohopanes 

(22S, 22R) 
191, 454 

9. 77.51-78.57 
C34homohopanes 

(22S, 22R) 
191, 470 

10. 79.51-80.58 
C35homohopanes 

(22S, 22R) 
191, 484 



Supplementary Table S2: The PAHs identified in the study with their respective diagnostic ions 99 
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Serial No. Compound Composition No of rings Ions (m/z) 

1. Phenanthrene (Ph) C14H10 3 178 

2. Fluoranthene (Fla) C16H10 4 202 

3. Pyrene (Py) C16H10 4 202 

4. Benz[a]anthracene (BaA) C18H12 4 228 

5. Chrysene (Chr) C18H12 4 228 

6. Benzo[b]fluoranthene (BbF) C20H12 5 252 

7. Benzo[k]fluoranthene (BkF) C20H12 5 252 

8. Benzo[a]pyrene (BaP) C20H12 5 252 

9. Benzo[g,h,i]perylene (Bpe) C22H12 6 276 

10. Indeno[1,2,3-c,d]pyrene (Ipy) C22H12 6 276 

11. Dibenzofuran C12H8O 3 168 

12. Benzonaphthofuran C16H10O 4 218 



Table S3: Compilation of diverse investigations detailing the concentrations (in μg/g) of the n-113 

alkanes. 114 
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Location Σn-alkanes (μg/g) References 

Krishna-Godavari Basin, 

India 

269.50-449.90 Mani et al., 2016 

Kharg Island, SW Iran 19.75-49.25 Akhbarizadeh et al., 2016 

Capibaribe Estuarine System, 

Brazil 

N.D.-9.47 Maciel et al., 2016 

Bohai Sea, China 0.88-3.48 Li et al., 2015 

Northern Persian Gulf N.D.-1.71 Mohebbi-Nozar et al., 2015 

Bohai Bay 6.3-535 Zhou et al., 2014 

Barataria Bay, Gulf of 

Mexico 

219.06-77399 Kirman et al., 2016 

Gulf of Mexico 0.05-535000 Sammarco et al., 2013 

Khniss Tunisian Coast, 

Mediterran Sea 

1020-2320 Ines et al., 2013 

Cross River and Estuary 

System, SE Nigeria 

0.05-1179 Pisani et al., 2013 



Table S4: Compilation of diverse investigations detailing the concentrations (in ng/g) of the 122 

hopanes. 123 
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Location ΣHopanes (ng/g) References 

Mandovi Estuary, India 2.2-681.3 Bulbul et al., 2021 

Caspian Sea, Iran 429.3-21691.1 Shirneshan et al., 2016 

Paranagua Bay, South Brazil 40.2-197.7 Garcia et al., 2019 

Persian Gulf 88-568 Jafarabadi et al., 2017 

Astamudi Estuary, India N.D.-363.2 Bulbul et al., 2022 



Table S5: Compilation of diverse investigations detailing the concentrations (in ng/g) of the 143 

PAHs. 144 

 145 
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 150 

Location ΣPAHs (ng/g) References 

Timor Sea, Australia 1.8-11.2 Burns and Jones, 2016 

Luan River Estuary, China 5.1-545.12 Zhang et al., 2016 

Kharg Island, SW, Iran 29.5-253.3 Akhbarizadeh et al., 2016 

Northern Gulf of Mexico 68-158 Adhikari et al., 2016 

Yangtze River Estuary, China 27.2-621.6 Wang et al., 2016 

South China Sea 24-647 Kaiser et al., 2015 

Barataria Bay, Gulf of 

Mexico 

233-390835 Kirman et al., 2016 

Pearl River Estuary, China 126.08-3828.58 Zhang et al., 2015 

Pearl River Estuary, Daya 

Bay and northern South 

China Sea 

248-2089 Yuan et al., 2015 

Imam Khomeini Port, Persian 

Gulf, Iran 

2885.8-5482.23 Abdolahi et al., 2013 

Vembar Islands Group, Gulf 

of Mannar, India 

0.36-15.98 Pradhap et al., 2021 
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