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Abstract

Earthquake-driven subsidence can cause cascading hazards at the coast by exacerbating relative sea level rise, storm surges,

tsunami, and tidal flooding. At Ahuriri Lagoon near Napier, Aotearoa New Zealand, paleoseismic uplift and subsidence is

typically attributed to upper plate faults and subduction interface earthquakes, respectively. We test this assumption with

elastic dislocation models of upper plate and subduction interface earthquakes informed by historical events, seismic surveys,

and modern interface coupling data. We compared our surface deformation results to paleoseismic records preserved at Ahuriri

Lagoon, which includes eight rapid subsidence (c. 0.5 to 1.2 m) and two rapid uplift events over the last c. 7 ky. Our models

demonstrate that offshore upper plate faults could cause subsidence of c. 0.5 to 1 m at Ahuriri Lagoon at recurrence intervals

of c. 2 kyr. A range of subduction interface earthquakes can also produce subsidence at Ahuriri Lagoon, and may explain

larger (>1 m) subsidence, but must rupture the currently creeping (i.e., aseismic) portions of the interface. We demonstrate

that both upper plate fault and subduction interface earthquakes may have contributed to the Ahuriri Lagoon records, and

that interface coupling may be more heterogeneous than modern geodetic data suggest. Models of sea-level rise and earthquake

multi-hazards that do not include the effects of upper plate faulting may mischaracterize risk at the coast.
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(c) Listric upper plate fault (d) Subduction zone interface

(a) Steep planar upper plate fault (b) Gentle planar upper plate fault

schematic; not to scale
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(b) Listric upper plate fault, rake = 135

(c) Planar fault + subduction interface, rake = 135

(a) Listric upper plate fault, rake = 90
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 9 

Key Points:  10 

• Elastic dislocation modeling shows listric upper plate faults can cause coastal coseismic 11 
subsidence above the down-dip rupture limit 12 

• Coseismic subsidence at a key site (Ahuriri Lagoon, central Hikurangi margin) can be 13 
caused by both upper-plate and subduction earthquakes 14 

• Subduction seismic cycle interpretations using coseismic uplift and subsidence records 15 
should consider the influence of upper plate faults 16 

  17 
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Abstract  18 

Earthquake-driven subsidence can cause cascading hazards at the coast by exacerbating relative 19 
sea level rise, storm surges, tsunami, and tidal flooding. At Ahuriri Lagoon near Napier, 20 
Aotearoa New Zealand, paleoseismic uplift and subsidence is typically attributed to upper plate 21 
faults and subduction interface earthquakes, respectively. We test this assumption with elastic 22 
dislocation models of upper plate and subduction interface earthquakes informed by historical 23 
events, seismic surveys, and modern interface coupling data. We compared our surface 24 
deformation results to paleoseismic records preserved at Ahuriri Lagoon, which includes eight 25 
rapid subsidence (c. 0.5 to 1.2 m) and two rapid uplift events over the last c. 7 ky. Our models 26 
demonstrate that offshore upper plate faults could cause subsidence of c. 0.5 to 1 m at Ahuriri 27 
Lagoon at recurrence intervals of c. 2 kyr. A range of subduction interface earthquakes can also 28 
produce subsidence at Ahuriri Lagoon, and may explain larger (>1 m) subsidence, but must 29 
rupture the currently creeping (i.e., aseismic) portions of the interface. We demonstrate that both 30 
upper plate fault and subduction interface earthquakes may have contributed to the Ahuriri 31 
Lagoon records, and that interface coupling may be more heterogeneous than modern geodetic 32 
data suggest. Models of sea-level rise and earthquake multi-hazards that do not include the 33 
effects of upper plate faulting may mischaracterize risk at the coast.   34 

 35 

Plain Language Summary  36 

Earthquakes can cause land to uplift or subside. If land subsides along the coastline it becomes 37 
more susceptible to flooding, storm waves, tsunami, and ongoing seal level rise. The geologic 38 
record at Ahuriri Lagoon near Napier, New Zealand shows that earthquake have caused 39 
subsidence of at least 0.5 m many times over the last 7,000 years. We modeled how earthquakes 40 
on different faults, such as the subduction zone or smaller crustal faults above it, would vertically 41 
move the coastline. We found that both types of earthquakes have likely caused subsidence at 42 
Ahuriri Lagoon, which differs from past interpretations that focus mainly on subduction zone 43 
earthquakes. Additionally, the subduction earthquakes that cause subsidence at Ahuriri Lagoon 44 
are not in the expected location based on modern instrumental data. Therefore, future hazard 45 
models may need to take into account a broader range of earthquake source faults and more 46 
complex earthquake scenarios. 47 

1 Introduction 48 

Vertical deformation from earthquakes near the coast can cause meter-scale, near-49 
instantaneous changes in relative sea level. In particular, coseismic subsidence can cause 50 
localized relative sea level rise (e.g., Kaiser et al., 2012) and worsen the effects of climate-driven 51 
sea level rise (e.g., Ministry for the Environment, 2022), tsunamis (e.g., Dura et al., 2021), storm 52 
surges (e.g., Muis et al., 2016), erosion (e.g., Bruun, 1962; Peterson et al., 2000), saltwater 53 
intrusion (e.g., Bosserelle et al., 2022), and tidal and groundwater flooding (Bosserelle et al., 54 
2022; Sweet & Park, 2014). Geologic records of vertical deformation are critical for 55 
understanding fault behavior and models of the subduction zone seismic cycle (e.g., Atwater & 56 
Hemphill-Hayley, 1997; Berryman et al., 2018; Cochran et al., 2006; Philibosian and Meltzner, 57 
2020; Sieh et al., 2008). Along subduction margins, both upper plate faults and the subduction 58 
interface may cause coseismic uplift and subsidence but the implications for hazard vary greatly 59 
between different fault sources (Clark et al., 2015). Understanding the source, character, and 60 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

likelihood of earthquake-driven coastal deformation is therefore important for hazard mitigation 61 
and forecasting how seismic and coastal hazards will impact communities. 62 

The paleoseismic record at Ahuriri Lagoon (Hayward et al., 2016), situated above the 63 
Hikurangi subduction zone in Aotearoa New Zealand (Fig. 1), encapsulates many of the 64 
challenges involved in using pre-instrumental vertical coastal motions to constrain subduction 65 
behavior and associated seismic hazard. Numerous upper-plate faults are present in onshore and 66 
offshore Hawke’s Bay (Fig. 1) and contribute to vertical motions at Ahuriri Lagoon. The Mw 7.8 67 
1931 Napier earthquake ruptured the steep reverse-oblique Awanui fault and uplifted Ahuriri 68 
Lagoon by 1-2 m (Fig. 1) (Haines and Darby, 1987; Hull, 1990). The c. 7 kyr paleoseismic 69 
record there includes sudden subsidence (0.5-1.2 m per event) in eight inferred paleoearthquakes, 70 
as well as uplift in a further two events (including 1931 CE) (e.g., Hayward et al., 2016; Hull 71 
1990).  72 

Attributing specific fault sources to events at Ahuriri Lagoon and other sites along the 73 
Hikurangi margin is made difficult by wide age uncertainties, short record lengths, limited 74 
spatial preservation, and intertwined signals from subduction and upper plate fault earthquakes 75 
(e.g., Clark et al. 2019). Slip on upper-plate structures clearly controls the topography and 76 
sedimentary basin structure of the area over 10 kyr to 100 kyr timescales (e.g., Barnes et al., 77 
2002; Berryman et al., 2011; Hull, 1987; Litchfield et al., 2022; Paquet et al., 2009). Despite this 78 
established role of upper-plate faulting in the structural evolution of the region, previous work 79 
has not identified upper-plate earthquake sources that explain coseismic subsidence at the 80 
lagoon. Consequently, paleoseismic subsidence at Ahuriri Lagoon has been tentatively attributed 81 
to subduction earthquakes, which are responsible for significant long-wavelength coseismic 82 
subsidence along other subduction margins (e.g., Atwater, 1987; Melbourne et al., 1997; Plafker, 83 
1969; Subarya et al., 2006). 84 

There have been no large subduction earthquakes along the Hikurangi margin in 85 
historical times that could guide expected patterns of coastal deformation. At many subduction 86 
zones, the spatial pattern of coupled or partially coupled segments corresponds to slip patches in 87 
past great earthquakes (e.g., Chlieh et al., 2008; Loveless & Meade, 2011; Perfettini et al., 2010) 88 
and therefore persistent coupling may inform future earthquake behavior (e.g., Chlieh et al., 89 
2011; Kaneko et al., 2010; Lay & Nishenko, 2022; Uchida and Bürgmann, 2021; Wang, L., et 90 
al., 2015). Geodetic suggest predominantly low modern coupling on central Hikurangi 91 
subduction zone, meaning convergence is currently accommodated through slow-slip and 92 
aseismic (Wallace et al., 2004; Woods, 2022). The current understanding of strain accumulation 93 
and release generally suggests creeping portions of subduction zones are not expected to host 94 
large megathrust earthquakes (e.g., Wang, K., et al., 2012). Is modern Hikurangi interface 95 
behavior and coupling long-lived, and if so, which fault sources produced the coseismic 96 
subsidence observed at Ahuriri Lagoon?  97 

The scarcity of subduction zone paleoseismic records along the Hikurangi margin 98 
highlights the importance of the relatively long record at Ahuriri Lagoon (Clark et al., 2019). The 99 
discrepancy between the inferred earthquakes in the Ahuriri Lagoon record and the modern low 100 
coupling along the central margin is difficult to reconcile. The current New Zealand National 101 
Seismic Hazard model takes a conservative approach to this problem and incorporates a higher 102 
coupling coefficient for the central Hikurangi interface than the geodetically derived values (Van 103 
Dissen et al., 2022; Wallace et al., 2020). Therefore, the Ahuriri Lagoon paleoseismic record 104 
currently underpins models that ultimately inform building codes, and improvements to fault 105 
source characterizations will have a direct impact on future mitigation.   106 
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In this study, we use elastic dislocation modelling to address two questions: (1) can 107 
recognized upper plate faults produce coseismic subsidence at Ahuriri Lagoon, and (2) what is 108 
the range of plausible subduction earthquakes that can cause subsidence at Ahuriri Lagoon? 109 
These slip models can explore a greater suite of potential earthquakes and resulting coastal 110 
deformation from upper plate faults and the subduction interface better than the spatially limited, 111 
short, and fragmentary paleoseismic records. This approach also allows for variations based on 112 
uncertainties in fault source geometries, kinematics, and slip which have never before been 113 
applied to the Ahuriri Lagoon paleoseismic records and are rarely considered elsewhere. Our 114 
results challenge the current paradigm that sudden coastal subsidence at Ahuriri Lagoon only 115 
records megathrust earthquakes, which merits reconsideration of the role of upper plate faults in 116 
the paleoseismic record and characterizing coastal earthquake hazards. 117 
 118 

2 Background 119 

2.1 Expected vertical deformation from upper plate fault and subduction earthquakes 120 
 121 
Coastal coseismic deformation above the Hikurangi subduction zone is likely dictated by 122 

a complex interaction between slip along the subduction interface as well as from multiple 123 
smaller upper plate faults (Fig. 1). Both interface and upper plate fault earthquakes can produce 124 
uplift and subsidence (Fig. 2). Coseismic vertical deformation at the coast, such as at Ahuriri 125 
Lagoon, depends on the site location in relation to the source fault and rupture patch as well as 126 
fault dip. Steeper reverse faults produce significant hanging wall uplift and little-to-no hanging 127 
wall subsidence and may cause subsidence in the near-fault footwall; a similar signal occurred 128 
during the 1931 Napier earthquake (Fig. 1, Fig. 2a) (e.g., Haines & Darby, 1987; Hull, 1990). 129 
Gently dipping reverse faults (upper plate fault or interface) produce uplift above the up-dip 130 
portion of the rupture patch and subsidence above the down-dip limit of the rupture patch (Fig. 131 
2b–2d) (e.g., Meltzner et al., 2006), or along strike from the slip patch (Briggs et al., 2014). 132 
Listric (curved) faults can produce large uplift near the fault tip and are capable of hanging wall 133 
subsidence due to steep dips at shallow depths and gentle dips at deeper depths (Fig. 2c) (e.g., 134 
Cochran et al., 2006).  135 

These expected deformation patterns are the basis for many studies where coastal 136 
deformation records inform past earthquake behavior (e.g., Atwater & Hemphill-Haley, 1997; 137 
Clark et al., 2015; Cochran et al., 2006; Hayward et al., 2016; Witter et al., 2022) and longer-138 
term subduction zone behavior (Meltzner et al., 2010, 2012; Sieh et al., 2008; Tsang et al., 2015; 139 
Woods, 2022). The dual uplift and subsidence record at Ahuriri Lagoon suggests at least two 140 
source faults contribute to coseismic deformation there (e.g., Hull, 1990). Attributing fault 141 
source and other interpretations from paleoseismic site data typically include assumptions about 142 
the source fault and slip behavior, but become less clear if multiple fault sources can produce 143 
similar coastal deformation signals at any one site (e.g., McNeill et al., 1998). In order to build 144 
realistic elastic dislocation models, we summarize below the known seismogenic fault sources in 145 
central Hawke’s Bay and evidence that informs expected earthquake behavior at Ahuriri Lagoon. 146 

2.2 Hikurangi subduction zone behavior 147 

Large-magnitude subduction earthquakes have not been observed on the Hikurangi 148 
margin since European colonization in 1840 CE. Therefore, much of subduction zone earthquake 149 
characterization, expected slip behavior, and hazard forecasts are heavily informed by interface 150 
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coupling models (e.g., Van Dissen et al., 2022). Coupling estimates use modern geodetic 151 
motions to infer the degree of interface locking across the plate margin (e.g., Johnson et al., 152 
2022; Wallace et al., 2004). Megathrust earthquakes are thought to occur in highly coupled 153 
(locked) zones, while aseismic processes, like slow slip and creep, are inferred to dominate in 154 
zones of low coupling (e.g., Herman & Furlong, 2021; Witter et al., 2014). The central Hikurangi 155 
margin has low coupling and has experienced multiple slow slip events in recent decades 156 
(Wallace et al., 2004, 2009). Some locking may occur near the trench, but geodetic data there, 157 
and thus coupling models, are poorly constrained (Wallace et al., 2004, 2009; Woods, 2022). 158 
Other studies that use vertical derivatives of horizontal strain suggest more heterogeneous 159 
coupling near Hawke’s Bay with smaller locked patches between slow-slip event extents 160 
(Dimitrova et al., 2016). The relatively rough central Hikurangi interface, caused by subducted 161 
sea mounts and a change in interface protolith, likely contributes to the creeping and slow slip 162 
behavior and lack of large magnitude earthquakes (e.g., Wang, K., & Bilek, 2014) 163 

The paleoseismic record along the central margin shows evidence of both large vertical 164 
displacements and tsunami deposits, indicative of larger magnitude stick-slip earthquake 165 
behavior, which is seemingly at odds with modern low coupling and slow-slip behavior (Clark et 166 
al., 2019; Hayward et al., 2016; Wallace et al., 2009). Whether the interpreted contemporary 167 
coupling reflects long-term subduction behavior, and whether the central margin will host great 168 
subduction earthquakes, remains unknown (Clark et al., 2019).   169 

2.3 Coastal uplift records 170 

The Mw 7.8 1931 Napier earthquake (also referred to as the 1931 Hawke’s Bay 171 
earthquake; see McGinty et al. (2001)) is the only earthquake since 1840 CE that deformed the 172 
Hawke’s Bay coast and likely occurred on the Awanui fault (Fig. 1c) (Hull et al., 1990; Kelsey et 173 
al., 1998). The  earthquake produced a >90-km-long uplifted dome with peak uplift of 2.5 m, c. 174 
1.5 m uplift at Ahuriri Lagoon, and up to 1.1 m of localized onshore subsidence in the proximal 175 
fault footwall (Fig. 1c) (Hull, 1990). Two additional paleoseismic uplift events are recorded in 176 
the combined Ahuriri Lagoon and Pakuratahi Valley sediments since 7 ka (Fig. 3) (Hayward et 177 
al., 2016; Pizer et al., 2022). These uplift events are attributed to the Awanui fault or similar 178 
faults in that zone. 179 

Uplifted marine terraces farther east provide longer-term, time-averaged uplift records as 180 
well as individual paleoearthquake uplift data (Fig. 3). Mahia Peninsula uplift is considered 181 
dominantly controlled by the northwest-dipping Lachlan fault (discussed further below), and 182 
provides general constraints for a fast-slipping and well-characterized offshore structure (Fig. 1c) 183 
(Berryman, 1993a; Berryman et al., 2018; Clark et al., 2019). Uplifted terraces there record a 184 
minimum of five earthquakes since c. 4,500 yrs BP, per-event uplift of 1.4–3.1 m, and longer-185 
term uplift rates up to 1.9 ± 0.5 mm/yr since 40 ka (Fig. 3) (Berryman, 1993b, 1993a; Berryman 186 
et al., 2018). 187 

Farther south, uplifted Holocene marine terraces are preserved at Cape Kidnappers, 188 
Waimārama, and Aramoana and are attributed to earthquakes on the northwest-dipping 189 
Kidnappers Ridge, Waimārama, and Kairākau fault network (Fig. 1c) (Hull, 1987; Litchfield et 190 
al., 2022; Miyauchi et al., 1989; Paquet et al., 2011). These sites record one to three 191 
paleoearthquakes since c. 5.5 ka. The large height difference between some Holocene terraces 192 
indicate additional intermediate terraces, and thus records of past earthquakes, may have eroded 193 
away (Fig. 3) (Clark et al., 2019; Hull, 1987; Litchfield et al., 2022; Miyauchi et al., 1989). 194 
Pleistocene strandlines in central Cape Kidnappers provide an uplift rate of 1.6 mm/yr since c. 195 
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120 ka (Hull, 1985; Paquet et al., 2011). Other less well-preserved Pleistocene strandlines at the 196 
eastern Cape Kidnappers margin have been used to infer an uplift gradient across Cape 197 
Kidnappers, however, both strandlines are undated (Fig. S1). We use only the central, better-198 
preserved strandline for constraints in this study. 199 

2.4 Coastal subsidence records 200 

Localized footwall subsidence in the 1931 Napier earthquake is the only historical 201 
coseismic subsidence in central Hawke’s Bay (Fig. 1c). Longer records of coseismic subsidence 202 
in Hawke’s Bay are inferred from lagoon sediments that record repeated rapid relative sea level 203 
rise events. The best-studied and most complete records are from Ahuriri Lagoon, which shows 204 
eight subsidence events ranging from 0.5–1.2 m over the last c. 7 ka (Fig. 3) (Hayward et al., 205 
2015, 2016; Hull, 1986). These geologic records provide evidence for abrupt subsidence events 206 
(i.e., from earthquakes) rather than from post- or interseismic processes. Hayward et al. (2016) 207 
also found an additional 1.6–2 m of subsidence since 7 ka at Ahuriri Lagoon that could not be 208 
confidently attributed to earthquakes.  209 

Initial studies of coseismic subsidence at Ahuriri Lagoon did not interpret possible source 210 
faults for these events, but recognized a potential link to the overall fold structure between 211 
Napier and Cape Kidnappers (Hull, 1986). The 1931 Napier earthquake source fault, other upper 212 
plate faults, and the seismogenic potential of the subduction zone were not understood at the 213 
time. More recent studies inferred that some, if not all, subsidence events were caused by 214 
subduction interface earthquakes because similar phenomena occurred along other margins 215 
(Hayward et al., 2006, 2016). 216 

Some Ahuriri Lagoon subsidence events correlate with paleoseismic events elsewhere 217 
along the Hikurangi margin (≥70 km along-margin distance), suggesting widespread deformation 218 
and strong ground motions, and thus a larger (i.e., subduction interface) fault source (Clark et al., 219 
2019; Hayward et al., 2016; Pizer et al., 2022). The adjacent Pakuratahi Valley and more 220 
northerly Te Paeroa/Opoho sites also record multiple rapid subsidence and tsunami deposits in 221 
the Holocene, some of which have overlapping age distributions with Ahuriri Lagoon records 222 
(Fig. 3) (Clark et al., 2019; Cochran et al., 2006; Pizer et al., 2022). None of the rapid subsidence 223 
events at Ahuriri Lagoon correlate with the preserved Holocene uplift events at Cape 224 
Kidnappers, as would be expected from a nearby upper plate fault earthquake, though this could 225 
be due to incomplete preservation at either site (Hull, 1987). The age of one Ahuriri Lagoon 226 
subsidence event does overlap with terrace uplift at Waimārama at c. 5 ka (Fig. 3) (Clark et al., 227 
2019; Pizer et al., 2022).  228 

Longer term (c. 400 ka) subsidence near Ahuriri Lagoon is recorded in the numerous 229 
forearc basins in offshore and near-shore Hawke’s Bay; these basins (e.g., the Kidnappers Basin) 230 
are located between active thrust-fault-controlled ridges and develop in response to changes in 231 
climate, sedimentation, and tectonic processes (Fig. 1c) (e.g., Dravid and Brown 1997, Paquet et 232 
al, 2011). The basin-scale records are too coarse to resolve individual earthquake histories, but 233 
indicate that cumulative fault displacements follow expected upper plate fault deformation 234 
patterns (i.e., hanging wall uplift and footwall subsidence; Fig 2), and across the Awanui fault, 235 
mimic the 1931 event displacement profile (e.g., Begg et al., 2022; Dravid and Brown 1997; Hull 236 
1986).   237 
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2.5 Upper plate faults  238 

The active offshore and nearshore faults in Hawke’s Bay are generally characterized as 239 
out-of-sequence thrust faults that maintain the accretionary wedge taper (Fig. 1c) (Barnes et al., 240 
2010). Published seismic survey data indicate the presence of predominantly northwest-dipping 241 
listric faults, which result from reactivation of extensional faults preceding the current 242 
convergent regime (Fig. 1b) (Barnes et al., 2010; Barnes & Nicol, 2004). The fault tips are 243 
generally buried in the near-surface below anticline ridges that are separated by sedimentary 244 
basins (e.g., Barnes et al., 2002; Paquet et al., 2011; Paquet et al., 2009). Southeast-dipping 245 
backthrusts are relatively shallow features (i.e. limited to the upper few kilometers) that splay 246 
from the primary northwest-dipping structures (e.g., Barnes et al., 2002; Paquet et al., 2011; 247 
Paquet et al., 2009), and are therefore unlikely to be independently seismogenic. 248 

The Lachlan fault is the best-characterized, fastest slipping fault in Hawke Bay (Fig. 1c) 249 
(Barnes et al., 2002; Mountjoy & Barnes, 2011). Depth-corrected seismic profiles suggest a 250 
listric shape, steep dips (55–70°) in the upper 1–2 km, and gentle dips (15–20°) from 7–8 km 251 
depth to the subduction zone interface (Barnes et al., 2002; Mountjoy & Barnes, 2011). Full 252 
rupture of the Lachlan fault (79 km length) could produce an earthquake with c. Mw 7.7–8.0, 253 
while rupture along only the fastest slipping segment is estimated at c. Mw 7.6–7.8 (Barnes et al., 254 
2002). 255 

Farther south are the Waimārama, Kairākau, and Kidnappers Ridge faults (Fig. 1c) (e.g., 256 
Paquet et al., 2011). Kidnappers Ridge is a zone of uplifted and folded sea floor that is cored by 257 
several active but unnamed northwest-dipping, listric reverse faults and a southeast dipping 258 
backthrust (the Kidnapper’s fault) (Fig. 1c) (Barnes et al., 2002). The northwest-dipping faults 259 
likely continue along strike under Cape Kidnappers, though the surface expression there is less 260 
clear and the fault tip may be buried (Fig. 1c) (Paquet et al., 2011). The Waimārama-Kairākau 261 
thrust faults dip steeply northwest in the near-surface and are inferred to be listric, similar to 262 
other nearby faults, but cannot be imaged at depth by marine surveys (Fig. 1c) (Mountjoy & 263 
Barnes, 2011).  264 

Mapped onshore faults located near Napier (e.g., Awanui, Tukituki, and similar faults) 265 
dip steeply northwest in the near-surface and accommodate oblique dextral-reverse slip (Fig. 1c) 266 
(Begg et al., 2022; Kelsey et al., 1998; Lee et al., 2020; McGinty et al., 2001). These faults likely 267 
produce coseismic uplift at Ahuriri Lagoon; any subsidence would be southeast within their 268 
respective footwalls, as observed in 1931, or much farther inland (Figs. 1, 2) (Haines & Darby, 269 
1987; Hull, 1990; McGinty et al., 2001). This is consistent with the long-term geologic record 270 
which shows Kidnappers basin growth in the Awanui fault footwall (Begg et al. 2022; Dravid 271 
and Brown, 1997).  272 

The rake for these upper plate faults is poorly constrained. Due to the obliquity of plate 273 
convergence compared to fault strike, these faults likely contain a variable component of dextral 274 
slip (Fig. 1) (e.g., Barnes et al., 2002; Barnes & Nicol, 2004). Thus, reported dip-slip and vertical 275 
separation rates represent a minimum of the full slip rate or single-earthquake slip values. 276 

Finally, the Community Fault Model includes simplified versions of the Kidnappers 277 
Ridge, Waimārama, and Kairākau faults, represented with planar 40 ± 10º northwest dips and a 278 
90 ± 20º rake (reverse motion) (Seebeck et al., 2022). How these simplifications (i.e., shape, slip 279 
distribution, dip angle, and rake) might affect expected coastal displacements and hazard 280 
assessments remains untested. 281 
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2.6 Previous elastic dislocation modeling  282 

Previous studies used forward elastic dislocation models to estimate tsunami hazard or to 283 
determine source faults for historic earthquake and paleoseismic records along the central 284 
Hikurangi margin (Cochran et al., 2006; Fraser et al., 2014; Hayward et al., 2016; Litchfield et 285 
al., 2022; McGinty et al., 2001). The 1931 Napier earthquake coseismic surface deformation was 286 
fit using steep planar faults, rupture from 5 km depth to the interface, and up to 8 m each of 287 
dextral and reverse slip (Haines & Darby, 1987; McGinty et al., 2001).  288 

Cochran et al. (2006) investigated sources for subsidence at Te Paeroa and Opoho and 289 
uplifted terraces at Mahia Peninsula (Fig. 3). Results indicated that both a gently dipping Lachlan 290 
fault and subduction interface sources could contribute to uplift and subsidence there, either 291 
synchronously or separately, but subduction rupture was required for the larger subsidence (>0.9 292 
m) records (Cochran et al., 2006). Fraser et al. (2014) presented forward elastic dislocation 293 
models of the Lachlan fault and subduction interface to estimate tsunami inundation hazard at 294 
Napier. Those Lachlan fault scenarios used a planar, steep fault (60º dip) and uniform slip that 295 
resulted in negligible hanging wall and coastal subsidence. The subduction rupture followed 296 
interface geometry (i.e., not planar) with a slip distribution informed by contemporary coupling 297 
patterns; several central margin rupture scenarios (Mw 8.2–8.4) and multi-segment scenarios (Mw 298 
8.8–9.0) result in subsidence between 0.3 and 0.6 m near Napier (Fraser et al., 2014).  299 

Litchfield et al. (2022) showed that reverse slip on the Kairākau fault could produce 300 
observed meter-scale terrace uplift at Aramoana, and potentially other coastal sites, but 301 
subsidence from that fault did not reach Ahuriri Lagoon. Hayward et al. (2016) provided one 302 
subduction interface elastic dislocation model that produces subsidence at Ahuriri Lagoon and 303 
the Hawke’s Bay coastline, but provided no information on the earthquake source parameters or 304 
magnitude. None of the existing dislocation models explore subsidence at Ahuriri Lagoon from 305 
smaller subduction interface earthquakes (<Mw 8.2) or closer offshore upper plate faults. 306 

3 Elastic dislocation modeling methods  307 

We used elastic dislocation models to test whether recognized upper plate fault and 308 
subduction interface sources could produce recorded subsidence (≥0.5 m) at Ahuriri Lagoon. The 309 
models focus on the Kidnappers Ridge, Waimārama, and Kairākau upper plate faults because 310 
these structures have gentle dips at depth and likely extend near or below Ahuriri Lagoon, and 311 
are thus capable of producing subsidence there (e.g., Fig. 2c). Closer faults (e.g., Awanui and 312 
Tukituki faults) are likely to produce uplift at Ahuriri Lagoon based on the proximal hanging 313 
wall location, as seen in the 1931 earthquake (Fig. 1c, Fig 2b, 2c) (Hull, 1990; Haines & Darby, 314 
1987; McGinty et al., 2001). There are no mapped, active, northwest-dipping reverse faults 315 
northwest of Ahuriri Lagoon that could produce coseismic footwall subsidence there.  316 

We also modeled displacements from several possible subduction zone rupture scenarios. 317 
Those elastic dislocation models explore how slip location on the interface affects coseismic 318 
subsidence at Ahuriri Lagoon and whether those slip distributions reflect modern coupling.   319 

 320 
3.1 Upper plate fault elastic dislocation models 321 
 322 
We present two upper plate fault model geometries: a listric fault based on seismic survey 323 

data and a planar fault as represented in the Community Fault Model (Seebeck et al., 2022). Both 324 
listric and planar fault geometries use the same simplified trace of the combined Kidnappers 325 
Ridge, Waimārama, and Kairākau faults with a strike of 227º and total fault length of 75 km. 326 
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Fault length is based on the distribution of mapped fault traces, which could conceivably link 327 
during an earthquake, and the 80-km-long Napier earthquake rupture (McGinty et al., 2001). All 328 
upper plate scenarios use 8 m peak slip, informed by average earthquake dip-slip estimates on 329 
the Lachlan fault (5–9 m for single segment, 4–7 m for multi segment) (Barnes et al., 2002) and 330 
the dislocation modelling discussed above in Section 2.5 (Cochran et al., 2006; Fraser et al., 331 
2014; McGinty et al., 2001).  332 

The planar upper plate fault model dips uniformly at 40º from the surface to the 333 
subduction interface at 15.7 km depth. The listric upper plate fault model dips change from 80º at 334 
0–1 km depth to 22º at 6 km depth, and continues at 22º from 6 to 21 km depth (to the 335 
intersection with the interface). For both upper plate fault shapes, we test whether allowing 336 
additional slip on the subduction interface (up to 3 km depth) affects the slip distribution and 337 
deformation pattern. Since rake is not well constrained, all upper plate dislocation models are run 338 
twice: once with pure reverse rake (90º rake) and again with oblique reverse-dextral rake (135°).  339 

 Model geometries were discretized into 3 km by 3 km patches. Green’s functions 340 
representing vertical displacements at Ahuriri Lagoon for 1 m of slip on each patch were 341 
calculated using the method of Okada (1985), assuming a Poisson ratio (𝜈) of 0.25. 342 

We use a combination of slip inversions and forward models to investigate the 343 
plausibility of subsidence at Ahuriri Lagoon due to upper plate earthquakes. Our inversions solve 344 
for slip distributions on upper plate faults that maximize subsidence at the lagoon. We emphasize 345 
that there is no unique solution to this inversion — clearly, the range of values of single-event 346 
vertical motions at a single site cannot constrain the 3,600 parameters required to define a slip 347 
distribution on our modelled listric fault, even if the uncertainty in this geometry is ignored. The 348 
inversion results are highly sensitive to specified fault geometry, rake, maximum slip, and 349 
smoothing parameters, but are useful for, but are useful for three reasons. First, they test whether 350 
an upper-plate earthquake could cause subsidence at Ahuriri Lagoon, although that test could 351 
also be done using forward models. Second, they help identify the optimal location for slip that 352 
promotes subsidence of Ahuriri Lagoon (within the constraints of the parameters above). It 353 
would be possible to search for this optimal location using a grid search or forward models and a 354 
trial-and-error approach; however, our inversions allow for more freedom in the shape of the slip 355 
distribution than these other approaches. Third, inverting for slip allows us to estimate an 356 
approximate maximum magnitude for subsidence, again assuming the orientation, smoothness 357 
and maximum magnitude of slip. 358 

Since there are few constraints on slip distributions that could cause subsidence at Ahuriri 359 
Lagoon, we also run a suite of forward models to investigate the sensitivity of vertical motions at 360 
the lagoon to different parameters, including slip taper width, down-dip extent, and up-dip 361 
extent. The forward models use the same fault geometry as the inversion and hold all other 362 
parameters the same in each trial (further details in Data Repository Text S1). 363 

  The inversions used the pygmo (Biscani & Izzo, 2020) and NLopt 364 
(http://github.com/stevengj/nlopt) libraries, monotonic basin hopping and SLSQP algorithms 365 
(Kraft, 1988; Wales & Doye, 1997), and 𝑙ଶ-norm minimization. We experimented with different 366 
relative weights for Laplacian smoothing and penalized slip on all the modelled fault edges. This 367 
slip taper also approximates a buried fault rupture tip, where slip is zero along the top 3 km of 368 
the fault (i.e., one tile length), consistent with 1931 Napier earthquake modeled slip and fault 369 
propagation folds beneath Cape Kidnappers and in Hawke Bay (Barnes & Nicol, 2004; Haines & 370 
Darby, 1987; McGinty et al., 2001).  371 

 372 
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3.2 Subduction interface elastic dislocation models 373 
 374 
We used forward elastic dislocation models to investigate if subduction interface 375 

earthquakes, informed by modern coupling and slow-slip event locations, produce subsidence at 376 
Ahuriri Lagoon. Wallace et al. (2020) show that over decadal timescales, the central Hikurangi 377 
interface has low coupling (i.e., is creeping). However, between slow-slip events on annual 378 
timescales, the slow-slip source areas are more coupled (Wallace et al., 2020). We therefore test 379 
rupture patches that only include the shallow, more permanently locked interface as well as those 380 
that include the slow-slip source area. We also tested slip on the interface patches located 381 
between slow-slip events, which may be partially or heterogeneously coupled based on vertical 382 
derivative of horizontal strain data (Dimitrova et al., 2016; Wallace, 2020). Finally, we estimate 383 
the location and slip patch for the smallest interface earthquake capable of producing 0.5 m 384 
subsidence at Ahuriri Lagoon, irrespective of the modern coupling data.  385 

We calculated surface displacements using the method of Nikkhoo & Walter (2015) and 386 
the Poisson ratio above (0.25). The interface is represented by a triangular mesh surface with 3 387 
km triangles that follows geometry of Williams et al. (2013). The scenarios used average slip 388 
that follows the magnitude-area scaling relationship from Stirling et al., (2021) with a C value of 389 
4.0 (Gerstenberger et al., 2022). Interface slip tapers to zero over 12 km to the patch edge 390 
(approximately matching upper plate fault inversion taper). The rake for each subduction 391 
interface patch is from Wallace et al. (2012).  392 

4 Elastic dislocation modeling results 393 

The paleoseismic subsidence records at Ahuriri Lagoon provide minimum constraints on 394 
coastal deformation preservation potential (Fig. 3). The eight documented coseismic subsidence 395 
events range from 0.5 – 1.2 m (average 0.85 m) subsidence, and the smallest subsidence is 396 
estimated at 0.5 m ± 0.5 m (Hayward et al. (2015).  These values are similar to subsidence 397 
documented at Te Paeroa and Opoho, where the smallest measured coseismic subsidence was c. 398 
0.5 – 1.0 m and the largest subsidence was c. 1.0 – 2.0 m (Cochran et al., 2006), and at 399 
Pakuratahi Valley, with >0.5 m estimated coseismic subsidence (Fig. 3) (Pizer et al., 2022). It is 400 
therefore probable that subsidence events <0.5 m would not be reliably preserved in the 401 
geological record at Ahuriri Lagoon, and we adopt c. 0.5 m as a minimum threshold.  402 

4.1 Upper plate fault inversion model results 403 

Both the modelled listric and planar fault geometries can produce subsidence of at least 404 
0.5 m at Ahuriri Lagoon with reasonable slip magnitudes and distributions (Fig. 4). The listric 405 
fault inversion models produce 0.73 m and 0.72 m subsidence for reverse and oblique rakes, 406 
respectively, without any slip on the subduction interface. The resulting earthquake magnitudes 407 
are Mw 7.7 (Fig. 4). Allowing additional slip on the subduction interface increased the maximum 408 
subsidence to 0.96 m for the oblique rake model, but did not increase subsidence for the pure 409 
reverse rake model (Fig. S2).  410 

For the planar fault, subsidence at Ahuriri Lagoon only occurs when slip continues onto 411 
the subduction interface. This results in subsidence of 0.61 m and 0.48 m with reverse and 412 
oblique rakes, respectively, and results in a magnitude of Mw 7.6 (Fig. 4c) (see supplement for 413 
additional results). Higher average fault dip compared to the listric fault models contribute to 414 
slightly larger uplift values given the same rake (Fig. 2).  415 
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In all upper plate fault models, variations in rake influence the spatial pattern of surface 416 
deformation. Oblique slip shifts peak subsidence southwest (i.e., opposite the direction of rake) 417 
and peak uplift northeast compared to pure reverse rake (Fig. 4, S4, S5).  418 

In addition to rake, the location of peak uplift and subsidence, and thus our modeled 419 
subsidence at Ahuriri Lagoon, is dependent on the extent of slip at depth. We reiterate that these 420 
subsidence values and exact locations are non-unique results (Figs. S4, S5). However, the 421 
inversion results demonstrate that sizeable subsidence from upper plate faults is plausible and 422 
consistent with a range of slip distributions and geometries. We explore those results in more 423 
detail below.  424 

4.2 Sensitivity of subsidence at Ahuriri Lagoon to modelled slip distribution 425 

The forward models demonstrate how certain inversion parameter choices (i.e., slip taper; 426 
up-dip, down-dip, and lateral slip extent) might change our findings (Figs. S4-S8; additional 427 
details in Text S1). Changing the up-dip slip extent only affects subsidence insofar as it changes 428 
the overall slip area, and thus maximum displacement. These effects are negligible for 429 
subsidence Ahuriri Lagoon in our models (Fig. S3). The down-dip slip extent model variations 430 
show that subsidence is largest at Ahuriri Lagoon when slip terminates underneath, or just up-dip 431 
of, Ahuriri Lagoon (Figs. S6-S8). The range of subsidence values at Ahuriri Lagoon is small (c. 432 
0.2 m) for ruptures that terminate between 9 km up-dip and 9 km down-dip of upper plate-433 
interface intersection, given the same slip taper width (Figs. S6-S8). The slip taper width (i.e., 434 
how sharply slip tapers) affects Ahuriri Lagoon subsidence by moving the peak slip values, and 435 
thus peak subsidence, closer or father away (e.g., compare part d for Figs. S6-S8). For the same 436 
down-dip slip extent, our taper widths (9 km, 15 km, and 21 km) change Ahuriri Lagoon 437 
displacement by <0.2 m.  438 

Variations in along-strike rupture extent result in translations of surface displacement. 439 
The resulting changes in subsidence at Ahuriri Lagoon are more pronounced for oblique rakes 440 
because maximum subsidence is not orthogonal to fault strike (Fig. S4, S5). In the oblique rake 441 
inversion model, for example, slip is primarily east of the lagoon to maximize subsidence at the 442 
lagoon (Fig. 4). If slip instead extends along the entire modeled fault, peak slip is shifted 443 
southwest and Ahuriri Lagoon subsidence is slightly reduced (Fig. S5). This relationship is also 444 
why additional slip on the interface results in greater subsidence at Ahuriri Lagoon for oblique 445 
rakes, but not for pure reverse rake (Fig. S2).  446 

The individual effects of slip taper, down-dip slip terminations, and lateral slip 447 
terminations are relatively minor and lend confidence that our interpretations based on inversion 448 
results are valid. Together, they indicate that a rupture that terminates or has peak slip far away 449 
from Ahuriri Lagoon (e.g., Fig. S6a, S8d) will be less likely to produce subsidence ≥0.5 m at 450 
Ahuriri Lagoon. In other words, if earthquakes on these upper plate faults terminate at especially 451 
shallow or deep depths rather than near upper plate fault-interface transition, or too far away 452 
along strike, subsidence may not be large enough to be preserved at Ahuriri Lagoon. Conversely, 453 
they indicate that there are a wide range of slip distributions capable of producing subsidence 454 
≥0.5 m at Ahuriri Lagoon. 455 

4.3 Subduction interface model results 456 

In our subduction interface forward models, subsidence did not exceed 0.5 m at Ahuriri 457 
Lagoon when slip was constrained by the locked, partially locked, or shallow slow-slip event 458 
extents, even at great magnitudes (≥Mw 8.5) (Fig. 5a–b). The subduction interface rupture 459 
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scenarios only produce subsidence ≥ 0.5 m at Ahuriri Lagoon when the down-dip termination of 460 
the slip patch is approximately below Ahuriri Lagoon (Fig. 5c–d, S9). Importantly, that part of 461 
the interface is between slow-slip patches and in a zone that is considered creeping over decadal 462 
timescales (Wallace, 2020); it does however overlap with a possible smaller locked interface 463 
patch shown by Dimitrova et al. (2016). Our smallest subduction interface rupture that produced 464 
≥ 0.5 m subsidence at Ahuriri Lagoon had a magnitude of Mw 7.6 (Fig. 5d). Both uplift and 465 
subsidence from the Mw 7.6 scenario diminish to near-zero over a short distance (c. 50 km).  466 

These rupture scenarios are not exhaustive or predictive, but take into consideration how 467 
interface slip extent translates to surface deformation and the minimum requirements to produce 468 
sizable coastal subsidence. Different magnitude events or alternative slip distributions will 469 
change the absolute vertical deformation values, but the overall patterns would remain similar. 470 
Even a whole-margin rupture (i.e., c. Mw 9.0) will not produce significant subsidence at Ahuriri 471 
lagoon if slip only occurs within the currently fully coupled portions of the interface. 472 

5 Discussion 473 

5.1 Can slip on upper plate faults cause subsidence at Ahuriri Lagoon? 474 

Our results demonstrate that both upper plate fault and subduction interface earthquakes 475 
may produce coseismic subsidence of at least 0.5 m at Ahuriri Lagoon. These scenarios fit within 476 
the known fault and slip parameters and suggest that coseismic subsidence at Ahuriri lagoon can 477 
be produced from several fault sources and rupture scenarios.  478 

For the elastic dislocation models presented here, the greatest Ahuriri Lagoon subsidence 479 
is caused by a gently dipping fault with a slip patch southeast (i.e., on the up-dip side) of Ahuriri 480 
Lagoon. Our results also imply that multi-fault or multi-segment ruptures on the Kidnappers 481 
Ridge, Waimārama, and Kairākau fault systems are required to produce similar-sized or larger 482 
earthquakes (Fig. 1). How these structures may link at depth remains unknown, but given the 483 
similarity in orientation, close proximity, and short steps between fault traces, it is reasonable 484 
that these faults may rupture together (e.g., Clark et al., 2017; Litchfield et al., 2022). If the 485 
upper plate faults are significantly steeper at depth than considered here, or have moderate dips 486 
and do not rupture with the subduction zone interface, then surface displacement may be 487 
dominated by uplift (e.g., Fig. 2a).  488 

Earthquakes smaller than c. Mw 7.5 may not produce enough subsidence for preservation 489 
in the lagoons, though smaller amounts of coastal subsidence would still present significant 490 
coastal hazard and risk. The estimated magnitude for a full Lachlan fault rupture is Mw 7.8-8.0 491 
(Barnes et al., 2002; Mountjoy & Barnes, 2011); the Kidnappers Ridge, Waimārama, and 492 
Kairākau faults are less well characterized but their similar geometry suggests comparable 493 
earthquake potentials. If these faults rupture with the subduction interface, their potential 494 
earthquake magnitudes could be greater. 495 

5.2 Are subduction earthquakes required to explain the Ahuriri Lagoon record? 496 

We have shown that upper plate faults can cause subsidence at Ahuriri Lagoon, but here 497 
we consider whether known faults in Hawke Bay have fast enough slip rates, short enough 498 
recurrence times, or large enough earthquake slip to account for all Holocene geologic 499 
subsidence records at Ahuriri Lagoon.  500 

Ahuriri Lagoon records eight rapid subsidence events over the last c. 7 ka with an 501 
average inter-event time of 900 yr and net tectonic subsidence of c. 8–9 m (prior to the 1931 CE 502 
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earthquake) (Fig. 3) (Hayward et al., 2016; Hull, 1986). Our simplified upper plate fault elastic 503 
dislocation models produce an average 4 m slip per earthquake, similar to models of the 1931 504 
Napier event. For a minimum slip rate of 2.0 mm/yr on the Kidnappers Ridge-Waimārama faults 505 
(see justification in Text S1), this corresponds to an average recurrence interval of 2,000 yrs. 506 
This is a crude estimate; coseismic displacement distributions and sedimentary environment 507 
conditions mean not all earthquake subsidence may be recorded (resulting in a longer apparent 508 
recurrence interval), while the minimum slip rate means earthquakes may have a shorter 509 
recurrence interval. Despite these caveats, the substantial difference between the c. 900 yr 510 
average inter-event time recorded at Ahuriri Lagoon and the 2,000 yr estimated upper plate fault 511 
recurrence interval range shows some additional source other than upper plate faults is likely 512 
needed to produce all subsidence events recorded at Ahuriri Lagoon. Barring an unmapped, fast-513 
slipping upper plate fault, the subduction interface is the most feasible alternate contributor to 514 
subsidence at Ahuriri Lagoon. Alternatively, faults may have temporally variable slip rates or 515 
exhibit earthquake clustering.  516 

In the paleoseismic record, there is only one interpreted earthquake that potentially 517 
indicates synchronous coseismic marine terrace uplift and lagoon subsidence near Napier (Fig. 3) 518 
(Clark et al., 2019; Pizer et al., 2022). This possible event is recorded by 0.5 m ± 0.5 m rapid 519 
(i.e., coseismic) subsidence at Ahuriri Lagoon at 5,205–4,625 cal yr B.P (Clark et al., 2019; 520 
Hayward et al., 2016), rapid subsidence at Pakuratahi Valley at 4,837–4,584 cal yr B.P. (Pizer et 521 
al., 2022), and 3.5 m of terrace uplift at Waimārama at 5,030–4,490 cal yr B.P (Fig. 3) (Clark et 522 
al., 2019; Miyauchi et al., 1989). The overlap between these records could suggest the same 523 
earthquake at all sites, or multiple closely timed events. If these records are from a single event, 524 
the deformation fits the expected uplift and subsidence profile from an upper plate fault source 525 
(Fig. 3).  526 

The lack of other correlating paleoearthquakes across all sites is perhaps not surprising 527 
given that vertical deformation from upper plate sources is more sensitive to the slip patch 528 
location and rake than a larger subduction interface event. It is possible that some upper plate 529 
fault earthquakes may not generate both a subsidence record and uplifted terrace due to a non-530 
optimal slip patch. Alternatively, coastal erosion and sea level rise may remove marine terrace 531 
evidence while better preserving subsidence (e.g., Dura et al., 2016; Hull 1987).  532 

An alternative way to distinguish Ahuriri Lagoon paleoearthquake sources is through the 533 
magnitude and extent of subsidence, since subduction earthquakes are capable of producing 534 
larger and more widespread coseismic subsidence than upper plate faults (Fig. 2). At Ahuriri 535 
Lagoon, most event subsidence is c. 0.5–1.0 m, but two Ahuriri Lagoon paleoearthquakes show 536 
subsidence ≥ 1.0 m (1.0 ± 0.3 m and 1.2 ± 0.4 m; Hayward et al., 2016). In our elastic dislocation 537 
models, only larger magnitude (>Mw 8.0) interface earthquakes were capable of maximum 538 
hanging wall subsidence ≥ 1 m (Fig. 5, S9). Larger subsidence events may be more reasonably 539 
explained by a subduction interface source (or combination upper plate and subduction) than 540 
upper plate faults alone, similar to conclusions from Te Paeroa and Opoho (Fig. 3) (Cochran et 541 
al., 2006). Additionally, several of the Ahuriri Lagoon records have been correlated elsewhere 542 
along the margin, suggesting a larger source with broader deformation (Clark et al., 2019). 543 
However, the age control on these events can span hundreds of years and it is difficult to 544 
distinguish between closely timed, smaller earthquakes and more widespread synchronous 545 
deformation. 546 
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5.3 Megathrust slip behavior through multiple seismic cycles 547 

The subduction interface scenarios constrained by the contemporary locked or partially 548 
locked interface do not produce sizable subsidence at Ahuriri Lagoon (Fig. 5). If any of the 549 
Ahuriri Lagoon paleoseismic subsidence events are from subduction earthquakes, as suggested 550 
by paleoseismic interpretations, they likely included slip on the interface currently dominated by 551 
creep (e.g., Fig. 5c, S9). Spatial heterogeneity in coupling on the central Hikurangi interface may 552 
provide a mechanism for deeper subduction slip and coseismic coastal subsidence (e.g., 553 
Dimitrova et al., 2016). Whether these potentially locked patches rupture in smaller earthquakes, 554 
or include more of the interface in larger events, remains unknown.  555 

The mismatch between low modern coupling and paleoseismic evidence has also been 556 
noted along the Aleutian margin (Kelsey et al., 2015; Witter et al., 2019), with proposed 557 
explanations such as transient interseismic coupling over one or more seismic cycles, 558 
heterogeneous megathrust rupture properties, non-megathrust fault sources for tsunami deposits, 559 
or dynamic rupture processes. Dynamic weakening can cause slip into creeping segments of a 560 
fault when an earthquake initiates in a more locked section (Noda & Lapusta, 2013). Temporally 561 
variable coupling has been observed on the Chilean and Sumatran subduction zones over multi-562 
year and decadal time scales when previous ruptures enhance shear stress on adjacent interface 563 
patches (Loveless, 2017; Melnick et al., 2017; Philibosian et al., 2017). However, the slow-slip 564 
and creeping behavior on the central Hikurangi subduction zone appears correlated to the 565 
interface roughness, subducting sediment composition and supply, and other more long-lived 566 
conditions, and therefore may not change over relatively short geologic time intervals (Gao and 567 
Wang, 2014; Gase et al., 2022). Additional monitoring is needed to evaluate the spatial and 568 
temporal variability in coupling on the Hikurangi subduction zone. 569 

In light of our results, other proxies that inform our understanding of the seismic cycle of 570 
subduction zones should account for potential upper plate faulting. For example, coral 571 
microatolls are one of the most important ways of tracking coupling and subduction zone 572 
behaviour through time (e.g., Mallick et al., 2021; Meltzner et al., 2015; Philibosian et al., 2017). 573 
At a minimum, upper plate faulting may add noise to signals that have previously been attributed 574 
to subduction zone processes; in margins with significant upper plate faulting, previous 575 
interpretations may need re-evaluation to account for vertical deformation from non-subduction 576 
sources. 577 

5.4 Tectonic contributions to present-day vertical land movements in Hawke’s Bay 578 

Modern geodetic data show the entire east coast of the North Island is subsiding with 579 
rates up to 5 mm/yr near Napier (Hamling et al., 2022). Elastic earthquake behavior suggests that 580 
coseismic subsidence here should be the counterpart of gradual interseismic uplift (Savage, 581 
1983; Sieh et al., 1999; Wesson et al., 2015). Over multiple earthquake cycles, long-term vertical 582 
deformation should be near zero from the subduction interface and distal offshore upper plate 583 
faults (i.e., Waimārama, Kairakau, and Kidnapper Ridge faults) (e.g., Briggs et al., 2008), or 584 
slightly positive from the nearby Awanui fault (Fig. 1). Instead, Ahuriri Lagoon shows c. 8–9 m 585 
net tectonic subsidence over the Holocene (Hayward et al., 2016).   586 

These apparently conflicting data suggest the central Hikurangi margin does not fit with 587 
the conventional seismic cycle model of coseismic recovery of interseismic strain accumulation. 588 
Other factors besides elastic and creeping subduction cycle strain recovery, such as groundwater 589 
removal and sediment compaction (Naish et al., 2022), may contribute to subsidence over 101 – 590 
103 yr timescales.  591 
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5.5 Earthquake and tsunami hazard implications 592 

The sizable subsidence difference between the listric and planar upper plate fault models 593 
presented here highlight that simplifying fault geometry may be adequate for some hazard 594 
applications (e.g., ground shaking), but underestimate hazard for other applications (e.g., 595 
displacement hazards) (Fig. 4). A gentler fault dip increases the maximum possible rupture width 596 
and affects the expected location and amount of surface deformation (Barnes et al., 2002). Thus, 597 
displacement-based hazard models should incorporate more realistic fault geometries or values 598 
that better represent dips at depth. 599 

Fault source geometry can affect tsunami inundation because lower dips produce more 600 
coastal subsidence and thus greater flow depths and inundation extent. The previous tsunami 601 
inundation model for Napier overestimates dip on the Lachlan fault and therefore underestimates 602 
subsidence, though coseismic subsidence at Napier is likely minimal from that fault (Fraser et 603 
al., 2014). The Kidnappers Ridge, Kairākau, and Waimārama fault sources were not investigated 604 
in the previous tsunami inundation model for Napier, but produce up to c. 0.7 m subsidence at 605 
Napier in our models. However, these faults are included as fault sources in the National 606 
Tsunami Hazard Model that estimate wave heights along a fixed coastline (Power, 2013). The 607 
wave height models incorporate uncertainties by modelling a larger-than-expected event, and are 608 
thus less susceptible to underestimations caused by fault geometry (Power, 2013).  609 

In addition to fault geometry, modeled rake clearly impacts the spatial distribution of 610 
uplift and subsidence (Fig. 4) and is therefore an important parameter in displacement hazard 611 
analyses. We note that the Community Fault Model rake (90 ± 20º) gives equal probability of a 612 
minor sinistral or dextral component of slip (Seebeck et al., 2022). A more realistic rake range 613 
for faults in Hawke Bay based on the oblique orientation to convergence is 90–135º, which spans 614 
from pure reverse to equal parts reverse and dextral slip (Fig. 1). 615 

The extent of subduction interface slip drastically affects expected earthquake size, 616 
deformation, and hazard potential. The New Zealand National Seismic Hazard Model (NZ 617 
NSHM) incorporates the subduction interface coupling distribution for estimating shaking hazard 618 
from the subduction zone (Van Dissen et al., 2022). Because the paleoseismic record in Hawke’s 619 
Bay indicates past large earthquakes, and the modern coupling distribution shows almost no slip 620 
deficit (i.e., no coupling), the hazard model manually imposes a slip deficit of 20% to the central 621 
Hikurangi margin. Therefore, resolving the relationship between earthquakes on upper plate 622 
faults and the subduction interface has direct implications for the NZ NSHM and downstream 623 
policies. Our new insights into upper plate faults as a cause of subsidence at Ahuriri Lagoon may 624 
justify reducing the influence of the Ahuriri record on the imposed slip deficit in future revisions 625 
of the NZ NSHM.   626 

5 Conclusions 627 

Understanding potential fault sources directly affects hazard planning and mitigation 628 
efforts. Hazards from ground motions, coastal vertical deformation, and tsunami — exacerbated 629 
by ongoing sea-level rise worldwide — vary greatly between great subduction earthquakes and 630 
upper plate faults. Elastic dislocation modelling of upper plate fault and subduction interface 631 
earthquakes provides a means to test possible sources for repeated coseismic subsidence at 632 
Ahuriri Lagoon near Napier, Aotearoa New Zealand. We find that both sources can produce 633 
subsidence ≥ 0.5 m at Ahuriri Lagoon. Our preferred upper plate fault source scenarios include 634 
more accurate listric fault geometry with gentle dips based on seismic reflection data. Simpler 635 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

fault models that use steeper, planar faults do not result is coastal subsidence and are likely 636 
inadequate for modeling coastal deformation in this setting.  637 

The modeling results, along with slip rate and recurrence data, suggest that at least some 638 
of the eight paleoseismic subsidence events at Ahuriri Lagoon since 7 ka could be caused by slip 639 
on upper plate structures. This result deviates from many interpretations of coastal subsidence 640 
records, both in New Zealand and along other subduction margins, where megathrust events are 641 
typically the default source without significant evidence to the contrary. In Hawke’s Bay, the 642 
upper plate structures may be important drivers of coseismic subsidence and should be 643 
considered as possible sources for the paleoseismic records there. 644 

Our subduction earthquake model scenarios also showed that interface earthquakes only 645 
caused sizeable subsidence at Ahuriri Lagoon when slip occurred on currently creeping parts of 646 
the interface. Paleoseismic data recording large single-event subsidence and margin-wide 647 
correlations suggest megathrust events have occurred in the past. This apparent discrepancy 648 
between expected and past earthquake behavior suggests that modern coupling patterns are either 649 
more spatially and temporally heterogeneous than modern measurements, or that earthquake 650 
rupture can include creeping portions of the interface. 651 
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Figure 1. Tectonic setting of the Hawke’s Bay region. (a) Plate boundaries and simplified 673 
tectonic regimes of the North Island. Hawke’s Bay is located near the transition from upper plate 674 
accretionary wedge thrust faults to the North Island Dextral Fault System (NIDFS). (b) Cross-675 
section of the Hikurangi subduction zone with schematic upper plate faults. Little is known about 676 
the subsurface geometry of coastal upper plate faults, but primary structures typically dip 677 
northwest. (c) Major active faults and key paleoseismic sites near central Hawke’s Bay. 678 
Northwest-dipping faults typically control slip and continue to interface; southeast-dipping faults 679 
are typically shallow back thrusts that splay from other faults (e.g., Paquet et al., 2009, 2011; 680 
Mountjoy and Barnes, 2011). Data: bathymetric DEM, Mitchell et al. (2012); onshore DEM, 681 
Landcare Research NZ Ltd. (2011), onshore faults, Langridge et al. (2016) and Lee et al. (2020); 682 
offshore faults, Paquet et al. (2009, 2011) and Mountjoy and Barnes (2011); Hikurangi Plateau 683 
thickness, Davy & Wood (1994); paleoseismic data, Clark et al. (2019) (and referenecs within). 684 
 685 
Figure 2. Generalized vertical deformation from various fault sources, assuming simple uniform 686 
reverse slip on (a) steeply dipping planar upper plate, (b) gently dipping upper plate, (c) listric 687 
upper plate, and (d) subduction interface faults. Both upper plate faults and subduction zone 688 
earthquakes can produce sizeable subsidence depending on interest location relative to the fault, 689 
fault dip angle, and slip amount. Estimates are based on the method of Okada (1985). 690 
 691 
Figure 3. Paleoseismic data in the Hawke’s Bay region. (a) Coastal uplift and subsidence sites 692 
with estimated per-event vertical deformation, where available. Long-term uplift rates are 693 
derived from uplifted Pleistocene marine terraces. (b) Age data for rapid uplift (red) and 694 
subsidence (blue) events attributed to paleoearthquakes, presented at 2σ (95%). Question marks 695 
indicate suspected erosion and potentially missing uplifted Holocene terraces. Simplified fault 696 
mapping from Mountjoy and Barnes (2011); Paquet et al. (2009, 2011). Paleoseismic data from 697 
Clark et al. (2019) (and references within), Litchfield et al. (2022), and Pizer et al. (2022). 698 
 699 
Figure 4. Select elastic dislocation model results for listric and planar upper plate faults (UPF) 700 
(see Data Repository for additional results). These models have set geometry, rake, peak slip, 701 
and slip taper conditions are inverted for the slip distribution that produces maximum subsidence 702 
at Ahuriri Lagoon (A.L.). (a) The listric UPF with pure reverse motion and (b) listric UPF with 703 
oblique motion both can produce at least 0.5 m of subsidence at Ahuriri Lagoon with reasonable 704 
magnitudes and slip distributions. (c) The steeper, planar fault only produces 0.5 m subsidence at 705 
Ahuriri Lagoon when substantial slip also occurs on the subduction interface. C.K. = Cape 706 
Kidnappers. Grey contour interval = 1 m vertical displacement; blue dashed contour = -0.5 m 707 
vertical displacement. 708 
 709 
Figure 5. Forward elastic dislocation model results of subduction interface earthquakes. (a) 710 
Interface earthquakes on the locked or partially locked Hikurangi margin results in offshore 711 
subsidence but o subsidence at Ahuriri Lagoon (A.L.). Coupling boundary (grey dashed line) 712 
from Wallace et al., (2012). (b) Earthquakes on the locked interface and adjacent, shallow slow-713 
slip event (SSE) extent do not produce significant subsidence at A. L. Teal dotted polygon = 20 714 
mm cumulative slip contour from 2006–2008 SSEs; teal dashed polygons = 100 mm cumulative 715 
slip contour from 2002–2014 SSEs (Wallace, 2020). (c) Slip between modern SSEs on the 716 
currently creeping interface produces moderate subsidence at Ahuriri Lagoon. (d) Smaller 717 
magnitude interface earthquakes can produce c. 0.5 m of subsidence at Ahuriri Lagoon with an 718 
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optimally located slip patch that terminates down-dip below Ahuriri Lagoon. C.K. = Cape 719 
Kidnappers. Listric upper plate fault geometry used in the main text shown as a grey dashed line 720 
in the cross sections.   721 
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Figure 1: setting.
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Figure 2: displacement schematic.
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Figure 3: paleoseismic sites.
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Figure 4: UPF results.
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Figure 5: SZ results.
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