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Text S1: Developing SWOT-like synthetic dataset 22 

To develop the synthetic SWOT dataset, we leverage gauge records from the USGS (U.S. 23 

Geological Survey, 2022), Landsat-based Global Surface Water (GSW) dataset (Pekel et al., 24 

2016), and prior channel attributes in the SWOT River Database (SWORD) (Altenau et al., 25 

2021). For each studied lake, we obtain daily gauge based water volume (𝑉) and surface level (𝐿) 26 

and calculate surface area (𝑆𝐴) as 27 

 𝑆𝐴 = 𝑑𝑉/𝑑𝐿, (S1) 28 

where 𝑑𝑉 and 𝑑𝐿 represent daily reservoir volume and level changes, respectively. 29 

To add in SWOT-like errors, we corrupt the surface area (𝑆𝐴𝑐) using 15% relative errors and 30 

corrupt water level (𝐿𝑐) using 10-cm error, which corresponds to the mission science 31 

requirements of SWOT (Biancamaria et al., 2016). It is worth noting that the error budgets 32 

required by the mission science are the expected baseline of SWOT performance, and the actual 33 

measurement errors may often be smaller than the science requirement errors applied here 34 

(Desrochers et al., 2021). Thus, our LakeFlow assessment using the science requirement error 35 

budgets may result in a conservative accuracy. Following this step, we calculate corrupted 36 

volume (𝑉𝑐) using 37 

 𝑉𝑐 = 𝑆𝐴𝑐 × 𝐿𝑐. (S2) 38 

For the synthetic river dataset, we rely on the GSW dataset, in situ discharge, and SWORD 39 

attributes. To produce river width (𝑊), we develop a width-discharge power law relationship 40 

(Leopold and Maddock, 1953) by pairing minimum width-discharge and maximum width-41 

discharge to develop a linear regression in log-log space. The minimum and maximum 42 

discharges are retrieved from the gauge records in our five-year testing period for each lake, 43 

whereas the minimum and maximum widths are manually approximated from the GSW water 44 
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occurrence map assuming the latter can represent river width variability within the testing period. 45 

To reduce the possible bias and error in manual approximation, the minimum and maximum 46 

widths are further calibrated by the difference between their mean and the channel width 47 

recorded in the corresponding SWORD reach. Using this power law relationship, we invert in 48 

situ discharge to produce a synthetic river width and then we corrupt river width (𝑊𝑐) with 49 

10.6% relative errors (Biancamaria et al., 2016). To produce cross-sectional area changes (𝑑𝐴) 50 

we assume a simple trapezoidal shape (Tuozzolo et al., 2019) and calculate it as follows: 51 

 𝑑𝐴 = 0.5(𝑊 + 𝑊𝑚𝑖𝑛) × (𝐿 − 𝐿𝑚𝑖𝑛), (S3) 52 

where the subscript 𝑚𝑖𝑛 denotes the minimum measurement of a parameter. We corrupt cross-53 

sectional area (𝑑𝐴𝑐) using eq. S3, but substituting in the corrupted width (𝑊𝑐) and corrupted 54 

level (𝐿𝑐) values. We calculate 𝐴0 using eq. 1, where we assume a Manning’s n value based on 55 

local geology and channel geomorphology (Manning’s n values ranging from 0.030 to 0.035 56 

s/m1/3) (Brinkerhoff et al., 2020; Chow, 1959; Durand et al., 2014), a slope corresponding to the 57 

reach-specific slope value from SWORD, and use the median observed value for the remaining 58 

variables. Following this, we consider 𝐴0 and 𝑛 to be constants in time and combine them with 59 

the rest of our uncorrupted estimates values in eq. 1 to solve for time varying slope (𝑆). We then 60 

corrupt slope (𝑆𝑐) using the recommended 1.7 cm/km error (Biancamaria et al., 2016). We limit 61 

both the synthetic dataset to one observation each week as SWOT will not provide daily 62 

observations. One observation each week is approximately equal to the number of SWOT 63 

overpasses for each of our lakes during SWOT’s 21-day orbit.  64 

Text S2: Ancillary data: Lateral inflow data and lake surface evaporation 65 

For the non-SWOT observed tributary inflow discharge and evaporation, we use modeled 66 

daily discharge data from the Global Reach-Level A Priori Discharge Estimates for SWOT 67 
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(GRADES) (Lin et al., 2019) and monthly lake surface evaporation estimates from the Global 68 

Lake Evaporation Volume (GLEV) dataset (Zhao et al., 2022). GRADES contains daily 69 

discharge estimates for 2.94 million river reaches globally from 1979-2014. The discharge is 70 

based on runoff simulation from the Variable Infiltration Capacity (VIC) land surface model 71 

(Liang et al., 1994), using meteorological forcing that merges gauge-, reanalysis-, and satellite-72 

based data (Beck et al., 2019). The simulated runoff is then routed by the Routing Application 73 

for Parallel computation of Discharge (RAPID) model (David et al., 2011) to give discharge for 74 

the ~3 million reaches, which offer adequate hydrographic details to represent lateral tributaries 75 

to our studied reservoirs. To be consistent with the evaporation dataset, we calculate mean 76 

monthly discharge estimates for each reach in GRADES and use these values to estimate a total 77 

mean monthly lateral discharge for each reservoir which is denoted as 𝑄𝑙 in eq. 2.  78 

GLEV contains monthly lake evaporation estimates from 1.42 million lakes. GLEV is 79 

developed by pairing monthly lake surface area measurements from the Landsat derived GSW 80 

dataset (Zhao and Gao, 2018) with monthly meteorological data from several sources 81 

(Abatzoglou et al., 2018; Rodell et al., 2004; Xia et al., 2018). Where these meteorological data 82 

overlap, the mean monthly value is used to reduce uncertainty. The evaporation rate is then 83 

modeled using the Penman Equation (Penman, 1948) with consideration of lake heat storage 84 

(Zhao and Gao, 2019). Monthly evaporation loss from each reservoir is calculated as the 85 

modeled evaporation rate multiplied by the GSW derived lake surface area and is denoted by 𝐸 86 

in eq. 2.   87 

 88 

 89 

 90 
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Table S1. Error metrics used in this study.  92 
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Where  

𝑁 is the number of 

observations, 𝑋𝑖 is an in 

situ or synthetic value at 

time i and 𝑋̂𝑖 is LakeFlow 

or SoS estimated value at 

time i. 
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 94 

Figure S1. LakeFlow discharge performance for four combinations of input data. Synthetic 95 

SWOT data with various ancillary data included from no ancillary data (“SWOT only”), only 96 

evaporation data (“SWOT+𝐸”), only lateral inflow data (“SWOT+𝑄𝑙”), and both evaporation 97 

and lateral inflow data (“SWOT+𝐸𝑄𝑙”). (a) Scatterplots of same-day gauge discharge vs. 98 

LakeFlow estimated discharge across all reaches. (b) Boxplots and half violin plots of LakeFlow 99 

discharge performance metrics across all reaches: NSE (scaled by 100), rBias (%), and NRMSE 100 

(%). 101 
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 102 

Figure S2. The LakeFlow algorithm’s performance of unknown variables for four combinations 103 

of input data. Synthetic SWOT data with various ancillary data included from no ancillary data 104 

(“SWOT only”), only evaporation data (“SWOT+𝐸”), only lateral inflow data (“SWOT+𝑄𝑙”), 105 

and both evaporation and lateral inflow data (“SWOT+𝐸𝑄𝑙”). MAE for LakeFlow (black) and 106 

SoS priors (red) shown. (a) Scatterplots of true bathymetry vs. LakeFlow estimated bathymetry 107 

across all reaches. (b) Scatterplots of log true Manning’s n vs. log LakeFlow estimated 108 

Manning’s n across all reaches.  109 

  110 
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