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Key points: 10 

1. LakeFlow is a new algorithm that uses SWOT satellite data to estimate river inflow and 11 

outflow at lakes via mass conservation.  12 

2. Applying LakeFlow to three sample lake systems shows promising performance for 13 

estimating lake inflows and outflows (median NSE = 0.88).  14 

3. Including modeled estimates of non SWOT-observed evaporation and tributary inflows 15 

can further improve LakeFlow discharge estimates. 16 

 17 

Abstract  18 

Rivers and lakes are intrinsically connected waterbodies yet they are rarely used to 19 

hydrologically constrain one another with remote sensing. Here we begin to bridge the gap 20 

between river and lake hydrology with the introduction of the LakeFlow algorithm. LakeFlow 21 

uses river-lake mass conservation and observations from the Surface Water and Ocean 22 

Topography (SWOT) satellite to provide river discharge estimates of lake and reservoir inflows 23 

and outflows. We test LakeFlow performance at three lakes using a synthetic SWOT dataset 24 
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containing the maximum measurement errors defined by the mission science requirements, and 25 

we include modeled lateral inflow and lake evaporation data to further constrain the mass 26 

balance. We find that LakeFlow produces promising discharge estimates (median Nash-Sutcliffe 27 

efficiency=0.88, relative bias=14%). LakeFlow can inform water resources management by 28 

providing global lake inflow and outflow estimates, highlighting a path for recognizing rivers 29 

and lakes as an interconnected system.  30 

 31 

Plain language summary 32 

Effective water resource management depends on our ability to monitor and understand lake and 33 

reservoir inflows and outflows. Satellite remote sensing of lakes and rivers has become 34 

increasingly important for water management but little work has been done to estimate 35 

streamflow at river-lake interfaces. Here we present the LakeFlow algorithm that leverages 36 

satellite observations of lakes and rivers to estimate streamflow at lake inflows and outflows. We 37 

test LakeFlow at three U.S. lakes in Georgia, Arizona and Kansas, and find that it provides 38 

promising estimates of streamflow at river-lake boundaries. LakeFlow provides valuable insights 39 

into river-lake streamflow dynamics, which can inform water management decisions and is a 40 

step forward in the integration of river and lake studies.  41 

 42 

1. Introduction 43 

Rivers and lakes serve as vital sources of freshwater for ecosystems and civilizations 44 

worldwide (Everard and Powell, 2002; Macklin and Lewin, 2015; Yevjevich, 1992). While 45 

rivers and lakes are often treated as separate systems in large-scale remote sensing studies, their 46 

hydrologies are intimately related such that hydrologic changes in one water body type can be 47 
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used to constrain the hydrology of an adjacent water body of a different type (Vörösmarty et al., 48 

2000). For example, the relationship between inflow and outflow of a natural lake or human-49 

made reservoir (hereinafter collectively referred to as a “lake” unless otherwise stated) can 50 

control the lake’s volumetric water storage and water surface elevation. Natural lakes located 51 

along river networks can attenuate local discharge downstream and actively managed reservoirs 52 

can significantly affect downstream flow regime by altering the natural timing and quantity of 53 

river discharge (Doll et al., 2009; Wang et al., 2017; Yang et al., 2022). Reservoir inflow and 54 

outflow dynamics are key for modeling reservoir operations, which can be difficult to simulate 55 

from water mass balance alone, especially at the continental to global scale (Cohen et al., 2014; 56 

Harrigan et al., 2020).  57 

At these large scales, understanding of the hydrologic interplay between rivers and lakes 58 

has largely been developed through the analysis of streamflow gauges located on lake inflows 59 

and outflows (i.e., the rivers flowing into and out of a lake), as well as lake-level gauges (Batalla 60 

et al., 2004; Shiklomanov and Lammers, 2009; Yang et al., 2008). Unfortunately, most of 61 

Earth’s lakes do not have publicly available gauge data and those that do are primarily located on 62 

large lakes or in a few geographically isolated regions (Brazil National Water Agency, 2022; Do 63 

et al., 2018; Gudmundsson et al., 2018; U.S. Geological Survey, 2022). This lack of 64 

observational data limits our understanding of how impoundments impact surface water flows 65 

and has motivated the development of alternative techniques for supplementing river and lake 66 

gauge observations.  67 

Satellite remote sensing is uniquely capable of providing observation-based discharge 68 

estimates in near-real time and at the global scale (Smith, 1997). Although remote sensing of 69 

discharge (RSQ) has been performed using a variety of satellite data and techniques (Gleason 70 
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and Durand, 2020), much of the recent focus has been in preparation for the recently launched 71 

Surface Water and Ocean Topography (SWOT) mission (Biancamaria et al., 2016). Though 72 

SWOT cannot directly observe river discharge, it can potentially provide unprecedented 73 

cotemporal measurements of river area, elevation, width, and slope for all rivers within the 74 

SWOT River Database (SWORD) (Altenau et al., 2021). The SWOT mission will also produce 75 

discharge estimates calculated by combining cotemporal SWOT observations with flow laws 76 

(e.g. hydraulic geometry, Manning’s equation), mass conservation principles, and a priori 77 

estimates of non-SWOT-observable flow-law parameters (FLP) such as frictional resistance 78 

(Manning’s n) and bathymetry (Brinkerhoff et al., 2020; Durand et al., 2014). These SWOT 79 

discharge estimates will be practically produced using the Confluence program which houses 80 

several different RSQ algorithms (Durand et al., 2023). SWOT RSQ algorithms are sensitive to 81 

FLP estimates (Durand et al., 2016) which are provided by the SWORD of Science (SoS) 82 

database for all rivers in SWORD (Brinkerhoff et al., 2020). SoS priors of Manning’s n and 83 

bathymetry are developed using in situ measurements that are then paired with river attributes 84 

such as mean width, allowing for mean width alone to provide prior estimates of these FLPs. 85 

Although SWOT discharge is expected to improve our understanding of global river discharge 86 

(Pavelsky et al., 2014), existing SWOT RSQ algorithms do not leverage SWOT observations of 87 

lakes into their workflow, which could improve performance. 88 

In lakes, SWOT can observe lake surface area and elevation, which together can be 89 

combined to estimate volumetric storage change (Busker et al., 2019; Crétaux et al., 2011; Gao, 90 

2015; Zhao and Gao, 2019). Storage change estimates are valuable for understanding seasonal 91 

and long-term trends in water availability and usage (Cooley et al., 2021; Keys and Scott, 2018; 92 

Ryan et al., 2020). Storage change fluctuations also influence downstream river discharge 93 
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(Nickles and Beighley, 2021; Wang et al., 2013) but very few remote sensing applications 94 

consider lakes and rivers as an interconnected system (Gardner et al., 2019). The few remote 95 

sensing studies that do assess lakes and rivers together rely on modeled discharge and use 96 

satellite estimates of lake storage change to revise the modeled outflow discharge (Bonnema and 97 

Hossain, 2019; Yoon et al., 2016; Yoon and Beighley, 2015). This calibration only improves the 98 

difference between the inflow and outflow discharge, leaving the original bias in the modeled 99 

inflow (or outflow) discharge uncorrected (Bonnema et al., 2016b). However, the accuracies for 100 

both inflow and outflow discharge are important because together they provide key insights into 101 

human water management and the impact lakes have on river flow regime. Currently, SWOT 102 

RSQ algorithms have neither been assessed nor are specifically designed to run at river-lake 103 

boundaries (Bonnema et al., 2016a; Durand et al., 2016; Frasson et al., 2021).  104 

To address these gaps in our ability to monitor the river-lake continuum, we develop 105 

LakeFlow, an algorithm which applies river-lake mass conservation to estimate both lake inflow 106 

and outflow discharge. Like other SWOT RSQ algorithms, LakeFlow relies on Manning’s 107 

equation and mass conservation (Feng et al., 2021; Hagemann et al., 2017) but also leverages 108 

additional SWOT observations of lake storage change to further constrain river discharge. In 109 

addition to discharge, LakeFlow estimates Manning’s n and bathymetry of lake inflow and 110 

outflow channels, which can be used to inform or improve other SWOT RSQ algorithms. 111 

LakeFlow could potentially be applied to the nearly 17 thousand SWOT observable lakes that are 112 

located along the SWORD network and have at least one inflow and one outflow reach that are 113 

observable from SWOT (Figure 1). In total, LakeFlow could possibly provide valuable insights 114 

into discharge dynamics at 19,380 inflow and 16,959 outflow reaches that are connected to 115 
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SWOT observable lakes. Ultimately, LakeFlow bridges the gap between lake storage and river 116 

discharge to improve SWOT discharge coverage and accuracy.  117 

 118 

Figure 1. Global distribution of lakes suitable for LakeFlow implementation (N=16,610) with 119 

three sample lakes highlighted. Each of these lakes is observable by SWOT (Sheng et al., 2016) 120 

and contains at least one SWOT observable inflow and one SWOT observable outflow (Allen 121 

and Pavelsky, 2018; Altenau et al., 2021). Note the Lake Allatoona inflow gauge is located on 122 

the inflow mainstem (dashed orange line) but is located 7 km upstream of the SWORD reach 123 

(orange line).  124 

 125 

2. Methods 126 

2.1 LakeFlow algorithmic design 127 
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The LakeFlow algorithm uses SWOT observed river and lake variables to estimate 128 

discharge. LakeFlow uses the modified version of Manning’s equation from Durand et al. (2014) 129 

to describe discharge dynamics for the inflow and outflow reaches,  130 

 𝑄 =  𝑛−1(𝐴0 + 𝛿𝐴)5/3𝑊−2/3𝑆1/2, (1) 131 

where 𝑄 is discharge and 𝑛 is the frictional resistance of the river channel, referred to as 132 

Manning’s n. 𝐴0 represents the unobservable cross-sectional area that extends beyond the 133 

minimum observed water level, hereinafter referred to as bathymetry, 𝛿𝐴 is the SWOT 134 

observable change in cross-sectional area, 𝑊 is river width, and 𝑆 is slope. LakeFlow leverages 135 

SWOT estimated lake storage change (𝛿𝑉) during the time period between two consecutive 136 

SWOT overpasses (𝑝) to constrain inflow and outflow discharge based on mass conservation, 137 

 𝛿𝑉𝑝 = ∫ (𝑛𝑖
−1(𝐴0𝑖 + 𝛿𝐴𝑖)5/3𝑊𝑖

−2/3𝑆𝑖
1/2 − 𝑛𝑜

−1(𝐴0𝑜 + 𝛿𝐴𝑜)5/3𝑊𝑜
−2/3

𝑆𝑜
1/2 + 𝑄𝑙 − 𝐸)

𝑡

𝑝

𝑡=0
. (2)  138 

Here 𝑡 represents any time during period 𝑝, 𝑄𝑙 is lateral inflows from channels too small to been 139 

observed by SWOT, 𝐸 is lake evaporation, and all other variables are the same as eq. 1 with 𝑖 140 

and 𝑜 denoting the variables of the SWOT observable inflow and outflow reaches, respectively 141 

(Figure 2). Simply put, LakeFlow assumes that lake storage change is equal to inflow minus 142 

outflow discharge while accounting for lateral inflows and evaporation. While SWOT provides 143 

estimates of lake storage change (𝛿𝑉), change in river cross-sectional area (𝛿𝐴), slope (𝑆), and 144 

width (𝑊), it does not observe Manning’s n (𝑛) or bathymetry (𝐴0) for the inflow and outflow 145 

reaches, leaving four unknown variables in eq. 2. Note that for simplicity, we only include one 146 

inflow reach and one outflow reach for eq. 2 but LakeFlow has the capability to be applied on 147 

lakes with multiple inflow and outflow reaches. 148 
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 149 

Figure 2. Conceptual diagram of the LakeFlow algorithm which uses repeat SWOT observations 150 

of lakes and rivers to estimate the inflows and outflows of lakes in cubic meters per second. See 151 

eq. 1 and 2 for variable definitions. Shown are two snapshots of a lake system corresponding to 152 

two SWOT overpasses (t=0 and t=p). Note that time p corresponds to the minimum observed 153 

flow and that only SWOT observable variables are shown for t=0.  154 

 155 

Like many other SWOT RSQ algorithms, LakeFlow struggles from parameter 156 

equifinality; there are roughly equal numbers of known and unknown parameters in eq. 2. 157 

Following the approach of Hagemann et al. (2017) and Brinkerhoff et al. (2022), we use 158 
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Bayesian inference to constrain the uncertainty in LakeFlow’s unknown parameters (𝑛𝑖, 𝐴0𝑖 , 𝑛𝑜, 159 

𝐴0𝑜) given repeated SWOT observations. Bayesian approaches start from Bayes rule,  160 

 𝑝(𝛩|𝑥)  =  
𝑓(𝑥|𝛩)𝑝(𝛩)

𝑝(𝑥)
, (3) 161 

where 𝛩 is a set of unobserved SWOT parameters, 𝑥 is the SWOT observed data, 𝑓(𝑥|𝛩) is the 162 

sampling model where data are conditional on the parameters, and 𝑝(𝛩)is the joint prior 163 

distribution of the parameters. Thus, we are interested in approximating 𝑝(𝛩|𝑥), the posterior 164 

distribution. Bayesian inference aims to approximate the posterior distribution by assuming 165 

proportionality ( 𝑝(𝛩|𝑥)  ∝  𝑓(𝑥|𝛩)𝑝(𝛩)) and using Monte Carlo sampling. To implement the 166 

Bayesian inference, we log transform and scale Manning’s equation to have integer coefficients, 167 

 6 𝑙𝑜𝑔 𝑄 =  −6 𝑙𝑜𝑔 𝑛 + 10 𝑙𝑜𝑔(𝐴0 + 𝛿𝐴) − 4 𝑙𝑜𝑔 𝑊 + 3 𝑙𝑜𝑔 𝑆. (4) 168 

To provide a likelihood equation, we rearrange eq. 4 to isolate the measured variables for both 169 

the inflow and outflow reaches, 170 

 4 𝑙𝑜𝑔 𝑊 − 3 𝑙𝑜𝑔 𝑆 =  −6 𝑙𝑜𝑔 𝑛 − 6 𝑙𝑜𝑔𝑄 + 10 𝑙𝑜𝑔(𝐴0 + 𝛿𝐴), (5) 171 

and the likelihood equation for river-lake mass conservation is,  172 

 𝛿𝑉 − 𝑄𝑙 + 𝐸 =  𝑒𝑥𝑝(𝑙𝑜𝑔𝑄𝑖) − 𝑒𝑥𝑝(𝑙𝑜𝑔𝑄𝑜). (6) 173 

The Bayesian approach requires prior estimates of all unknown parameters in eq. 2 which 174 

are taken from the SWOT SoS. In addition to estimates of Manning’s n and bathymetry, the SoS 175 

provides gauge-constrained and unconstrained modeled estimates of mean flow and LakeFlow 176 

uses the gauge-constrained estimate, taken from the Global Reach-Level A Priori Discharge 177 

Estimates for SWOT (GRADES) model product (Lin et al., 2019). The Bayesian inference uses 178 

the Stan probabilistic programming language (Stan Development Team, 2023) to approximate 179 

the posterior distribution and provide estimates of all unknowns in eq. 2.  180 

2.2 Datasets 181 
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We investigate the performance of LakeFlow in three sample lakes spanning a range of 182 

climate regions as seen in Figure 1: Lake Allatoona (humid); Lake Mohave (arid); and Tuttle 183 

Creek Reservoir (semi-arid). Lake Allatoona (area: 36 km2) is a flood control reservoir along the 184 

Etowah River in northwestern Georgia. Lake Mohave (area: 99 km2) is a hydropower reservoir 185 

on the Colorado River spanning the border of Arizona and Nevada. Tuttle Creek Reservoir (area: 186 

43 km2) is located in northeastern Kansas and is built to control floods on the Little Blue and Big 187 

Blue Rivers. These lakes each have a U.S. Geological Survey (USGS) gauge station on or near 188 

their SWOT observable inflow and outflow reaches as well as on the lakes themselves. Lake 189 

Allatoona and Lake Mohave each contain one inflow and one outflow reach and Tuttle Creek 190 

Reservoir has two inflow reaches. 191 

Because SWOT data are not yet available, we generate a synthetic dataset of SWOT 192 

observable variables by utilizing gauge records from the USGS (U.S. Geological Survey, 2022), 193 

a Landsat-based water occurrence map (Pekel et al., 2016), and a priori channel attributes 194 

provided in SWORD. We then corrupt these data to produce SWOT-like observations by using 195 

the measurement errors defined by the mission science requirements and limit the number of 196 

observations to one observation per week corresponding to the approximate average overpass 197 

rate of SWOT over these lakes (Biancamaria et al., 2016). The synthetic dataset is developed 198 

using hydraulic principles and contains values of non SWOT observed Manning’s n and 199 

bathymetry (see Supplemental Text S1 for details of the synthetic dataset). The historical time 200 

period of the synthetic dataset is determined by the availability of USGS gauge records, such that 201 

the measurements of the lake and its inflow and outflow must all overlap in time. As a result, the 202 

timespan (𝑝 in eq. 2) for each of the three lakes is 10/01/2009 to 09/30/2014 for Lake Allatoona, 203 
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10/01/2008 to 09/30/2013 for Lake Mohave, and 10/01/2006 to 09/30/2011 for Tuttle Creek 204 

Reservoir.  205 

Where the LakeFlow algorithm can run, lake storage change is predominantly governed 206 

by large-river inflows and outflows that are observable by SWOT, but lake storage change can 207 

also be influenced by other factors including inflow from groundwater runoff, small lateral 208 

streams (pink lines in Figure 1), and evaporation loss (Tayfur et al., 2007; Tian et al., 2022; Zhao 209 

et al., 2022). To study the impact of including these factors on LakeFlow’s performance, we run 210 

two scenarios of LakeFlow: one that only includes SWOT-based observations and a second that 211 

includes SWOT observations and also ancillary datasets of lateral inflow and evaporation, 212 

represented by 𝑄𝑙 and 𝐸 in eq. 2, respectively. We estimate lateral inflow using high-resolution 213 

simulated discharge from GRADES (Lin et al., 2019) and we estimate evaporation losses using 214 

modeled data from the Global Lake Evaporation Volume (GLEV) dataset (Zhao et al., 2022) (see 215 

Supplemental Text S2 for details of these ancillary datasets). We then assess LakeFlow’s 216 

performance related to the ancillary datasets for each of the three study sites by comparing same-217 

day LakeFlow estimated discharge with gauge discharge from the USGS and calculate Nash-218 

Sutcliffe Efficiency (NSE), relative bias (rBias), normalized root-mean-square error (NRMSE), 219 

and mean absolute error (MAE) (Table S1). In addition to assessing discharge accuracy, we 220 

compare LakeFlow FLP estimates with the synthetic dataset’s values of Manning’s n and 221 

bathymetry. We further compare LakeFlow FLP estimates with the SoS prior estimates to assess 222 

LakeFlow’s capabilities for informing other SWOT-based RSQ algorithms. The SoS FLPs are 223 

chosen for comparison as these are the default prior FLP estimates for SWOT RSQ algorithms 224 

(Durand et al., 2023) (see section 1 for more information). 225 

3. Results 226 
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The results of the analysis, generated from synthetic SWOT data at the three test sites, 227 

indicate that the LakeFlow algorithm will be able to successfully estimate lake inflows and 228 

outflows from SWOT observations. In general, we find that LakeFlow estimated discharge 229 

skillfully resembles the gauge hydrograph for all of the inflow and outflow reaches (Figure 3). 230 

However, there is clear bias on some reaches, namely the Allatoona Lake Inflow and Tuttle 231 

Creek Reservoir Inflow 1. Even where there are biases present, LakeFlow captures flow 232 

variability for each of the reaches analyzed here as evidenced by a positive NSE for all reaches 233 

and a median NSE and NRMSE of 0.88 and 29.0%, respectively. While two reaches have 234 

relatively large rBias values, all of the other reaches have an absolute rBias less than 15% with a 235 

median rBias of 13.5%, indicating that on average, LakeFlow provides near-zero discharge 236 

estimates at river-lake interfaces.  237 
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 238 

Figure 3. LakeFlow estimated discharge for all lake inflows and outflows compared to gauge 239 

records.  240 

 241 

LakeFlow accurately estimates discharge dynamics across all seven study reaches (Figure 242 

4a). Overall, LakeFlow discharge performance tends to modestly improve with the addition of 243 

the lateral inflow and evaporation ancillary datasets but does not tend to improve with the 244 
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addition of only a single one of these datasets (Figure S1). This discrepancy is likely due to the 245 

inherent bias introduced when only including one of these ancillary terms. LakeFlow discharge 246 

mean absolute error (MAE) improves by 1.6% when both ancillary datasets are included 247 

compared to including neither. However, the bias marginally increases when both ancillary data 248 

are used but remains near-zero (Figure 4a). With and without the ancillary data, LakeFlow 249 

discharge for each study location correlates well with same-day gauge discharge observations 250 

with marginal overestimations and underestimations in low and high flows, respectively (Pearson 251 

correlation coefficient, 𝑅 ranges from 0.95 to 0.99).  252 

 253 

Figure 4. LakeFlow performance without (“SWOT only”) and with (“SWOT+𝐸𝑄𝑙”) ancillary 254 

data. (a) Scatterplots of same-day gauge discharge vs. LakeFlow estimated discharge across all 255 

reaches. (b) Boxplots and half violin plots of LakeFlow discharge performance metrics across all 256 
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reaches: NSE (scaled by 100), rBias (%), and NRMSE (%). (c)  Scatterplots of synthetic 257 

bathymetry vs. LakeFlow estimated bathymetry across all reaches. (d) Scatterplots of log 258 

synthetic Manning’s n vs. log LakeFlow estimated Manning’s n across all reaches. 259 

 260 

Across all reaches, we find that discharge performance modestly improves with the 261 

addition of the ancillary data (Figure 4b). For example, the mean NSE and NRMSE improve by 262 

4.8% and 6.7%, respectively, when including ancillary data. Conversely, there is a positive bias 263 

present in most reaches and the mean rBias is unaffected by the inclusion of the ancillary data. 264 

Nearly all of the metrics have a negatively skewed distribution, indicating that LakeFlow 265 

performs well on average but occasionally exhibits poor performance. In addition to estimating 266 

discharge, LakeFlow can estimate unobserved bathymetry (𝐴0) and Manning’s n, with MAE 267 

values of 44 m2 and 0.37 s/m1/3 (log), respectively. Across all reaches and scenarios, LakeFlow 268 

MAE for bathymetry is on average 80% lower than the SoS MAE (Figure 4c) while LakeFlow 269 

estimated Manning’s n values are marginally worse than the SoS (Figure 4d). LakeFlow tends to 270 

overestimate Manning’s n values in the three test lakes, which may be related to bathymetry 271 

estimates having a positive bias. Bathymetric accuracy declines by 2.8% and Manning’s n 272 

accuracy remains stable with the inclusion of the ancillary data.  273 

4. Discussion 274 

The LakeFlow algorithm can provide useful discharge estimates at river-lake interfaces 275 

and will enhance the SWOT mission’s capabilities for monitoring surface water dynamics. We 276 

do not test LakeFlow in locations where other SWOT RSQ algorithms have been assessed, but 277 

our findings indicate that LakeFlow’s discharge accuracy is comparable or better than other 278 

SWOT RSQ algorithms (Frasson et al., 2021), thus providing the capability to extend the SWOT 279 
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discharge product to river-lake boundaries with no expected decline in accuracy. These discharge 280 

data can inform hydroelectric and water management decisions and improve our understanding 281 

of how reservoir dynamics affect the surrounding environment (Barnett and Pierce, 2008; 282 

Chadwick et al., 2021; Huang et al., 2019; Wang et al., 2018). Reservoir operations are 283 

particularly important in transboundary water basins where water management in upstream 284 

portions of the basin can lead to actual or perceived inequities in downstream water distribution 285 

(UNEP, 2016). However, LakeFlow inflow and outflow discharge estimates can potentially 286 

increase the transparency of reservoir management practices with implications for water 287 

management decisions within transboundary basins (Gleason and Hamdan, 2017).  288 

In addition to discharge, LakeFlow’s ability to accurately estimate Manning’s n and 289 

bathymetry values could provide useful geomorphic insights near river-lake interfaces. 290 

Compared to the SoS, LakeFlow provides marginally worse Manning’s n estimates but 291 

significantly more accurate bathymetric estimates. However, Manning’s n values are inherently 292 

limited to a small range of 0.02-0.07 s/m1/3  (Arcement and Schneider, 1989) whereas bathymetry 293 

varies widely globally. Since RSQ algorithms are sensitive to prior FLP estimates (Bonnema et 294 

al., 2016a; Durand et al., 2016; Tuozzolo et al., 2019), the more accurate LakeFlow bathymetries 295 

could improve the performance and efficiency of other RSQ algorithms near river-lake 296 

interfaces. Thus, there is potential to implement LakeFlow into the SWOT Confluence program 297 

(Durand et al., 2023) to inform other SWOT RSQ algorithms.  298 

While LakeFlow is shown to perform well at the three study sites presented here, further 299 

work should be done to fully assess LakeFlow’s performance. First, expanding the analysis to 300 

contain many more lakes spanning a variety of conditions would help to determine which factors 301 

(e.g. lake size, climate) are the dominant control on LakeFlow performance. To determine 302 
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LakeFlow’s benefits beyond discharge information, studies should quantify the effect of using 303 

LakeFlow estimates of Manning’s n and bathymetry as a priori information in other SWOT RSQ 304 

algorithms. Further work is also needed to better characterize the importance of including 305 

ancillary data in LakeFlow as these data, on average, improve LakeFlow discharge estimates 306 

while decreasing bathymetric accuracy. Future work should also investigate whether additional 307 

ancillary data (e.g. water withdrawal, groundwater outflows) can improve LakeFlow’s ability to 308 

estimate inflows and outflows. Finally, running LakeFlow with real SWOT data will allow for a 309 

more accurate assessment of LakeFlow performance. Running LakeFlow at the global scale 310 

using SWOT observations requires a harmonized lake and river dataset to link river reaches to 311 

lakes and to identify these reaches as inflows or outflows. This dataset is currently being 312 

developed and will enable the further understanding of river-lake interactions worldwide. 313 

 Overall, this study presents a first step in bridging river and lake hydrology with satellite 314 

remote sensing, illuminating a path forward for monitoring river-lake dynamics globally. 315 

Potential applications of LakeFlow include informing reservoir operations for flood control or 316 

optimizing the distribution of freshwater resources to humans and ecosystems (Boulange et al., 317 

2021; Grimaldi et al., 2016; Munier et al., 2015). LakeFlow could also be used to provide 318 

estimates of water residence time in lakes which could offer insights into the variability of lake 319 

greenhouse gas emissions (Maavara et al., 2020, 2019), sediment supply of rivers and lakes 320 

(Kondolf et al., 2014; Lewis et al., 2013; Wisser et al., 2013), and lotic-lentic ecosystem 321 

connectivity (Harvey and Schmadel, 2021). Applied at the global scale, LakeFlow could 322 

potentially enhance our ability to monitor and understand the impact of reservoir operations on 323 

the global water cycle.  324 

5. Conclusion 325 
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The LakeFlow algorithm applies observations from SWOT to a river-lake mass 326 

conservation framework to estimate river discharge at lake inflows and outflows. We applied 327 

LakeFlow on three sample lakes spanning a variety of physiographic conditions using a synthetic 328 

dataset of SWOT-like measurements. Our findings suggest that LakeFlow can provide accurate 329 

discharge estimates of river-lake boundaries using data from the SWOT satellite. Specifically, 330 

LakeFlow captures the flow dynamics at all of the SWOT-observable inflow and outflow reaches 331 

in this study with NSE values ranging from 0.46-0.95, similar or better to other SWOT RSQ 332 

algorithm performance (Frasson et al., 2021). Incorporating lateral inflow and lake evaporation 333 

ancillary datasets into LakeFlow typically improves performance, although the impact of 334 

ancillary datasets on algorithm efficacy will be clearer once SWOT data becomes available in 335 

sufficient quantities. LakeFlow can improve upon prior estimates of bathymetry, which may 336 

prove beneficial for other SWOT RSQ algorithms, with relevance to the SWOT Confluence 337 

program. Estimating discharge at reservoir inflow and outflow reaches will improve our 338 

understanding of reservoir regulations' effect on river discharge. LakeFlow is a step toward 339 

integrating remote sensing of lake storage variability and river discharge to provide a more 340 

comprehensive view of surface water dynamics.  341 
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