loading page

The new Radiosounding HARMonization (RHARM) dataset of homogenized radiosounding temperature, humidity and wind profiles with uncertainties. Part II: comparisons with reanalysis, satellite data and validation of uncertainties
  • +9
  • Fabio Madonna,
  • Souleymane SY,
  • Emanuele Tramutola,
  • Federico Serva,
  • Monica Proto,
  • Marco Rosoldi,
  • Francesco Amato,
  • Fabrizio Marra,
  • Simone Gagliardi,
  • Alessandro Fassò,
  • Tom Gardiner,
  • Peter William Thorne
Fabio Madonna
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)

Corresponding Author:[email protected]

Author Profile
Souleymane SY
Italian National Research Council (CNR)
Author Profile
Emanuele Tramutola
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Federico Serva
CNR-ISMAR
Author Profile
Monica Proto
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Marco Rosoldi
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Francesco Amato
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Fabrizio Marra
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Simone Gagliardi
Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA)
Author Profile
Alessandro Fassò
University of Bergamo
Author Profile
Tom Gardiner
National Physical Laboratory
Author Profile
Peter William Thorne
Maynooth University
Author Profile

Abstract

The RHARM (Radiosounding HARMonization) algorithm is the first to provide homogenized radiosonde-based records of temperature, relative humidity and wind profiles since 1978, alongside an estimation of the observational uncertainty for each observation and pressure level. The algorithm and the dataset are presented in the companion paper. In this paper we assess the performance of the dataset through comparison with some of the most widely used climate data records. The RHARM adjustments reduce the difference with the reanalysis especially in the northern hemisphere for temperature and relative humidity. The study of temperature trends at different pressure levels reveals a good agreement between RHARM, reanalysis and existing radiosounding homogenized datasets (<0.1K per decade above 300 hPa, 0.25 K per decade below). For relative humidity, the discrepancies among the datasets are more significant, although RHARM trends are most similar to the reanalysis. For wind speed, the comparison indicates a good agreement above 300 hPa. Compared to IGRA, RHARM also improves by 50% the agreement with the estimated trends in the lower stratosphere from MSU (Microwave Sounding Unit) deep layer averages. For water vapour, the good performance of post-2004 RHARM data is quantified from the comparison of the 300 hPa monthly means in tropics between RHARM and AURA/MLS, as the absolute mean difference is 0.01 g/kg for RHARM and 0.03 g/kg for IGRA, and correlation increases from 0.95 to 0.99. A validation of the observational uncertainties of RHARM is also presented showing that they provide a good estimate or overestimate the theoretical distribution.