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Abstract12

In porous media theory, upscaling techniques are fundamental to deriving rigorous Darcy-scale models13

for flow and reactive transport in subsurface systems. Due to limitations in classical upscaling methods,14

a number of ad hoc techniques have been proposed to address physical regimes of higher reactivity, such15

as moderately reactive regimes where diffusive and reactive mass transport are of the same order of mag-16

nitude. In Part 1 of this two part series, we present a strategy for expanding the applicability of classi-17

cal homogenization theory by generalizing the assumed closure form. We detail the implementation of18

this strategy on two reactive mass transport problems with moderately reactive physics. The strategy19

produces nontrivial homogenized models with effective parameters that couple reactive, diffusive, and ad-20

vective transport. Numerical validation is provided for each problem to justify the implemented strat-21

egy.22

1 Introduction23

Due to the vast spectra of spatiotemporal variations in subsurface processes and geological media,24

multiscale modeling has remained a cornerstone for analyzing flow and reactive transport beneath the25

surface (Scheibe et al., 2015; Molins & Knabner, 2019; Mehmani, Anderson, et al., 2021). The techni-26

cal approaches set forth by this paradigm focus on translating the physical dynamics at finer scales (e.g.,27

the pore-scale) to much larger scales where nontrivial behaviors tend to occur. By providing accurate and28

computationally efficient predictions of such large-scale behaviors, these analysis methods enhance the29

understandings of phenomena observed in geological engineering and hydrology, such as acidification re-30

actions in carbonate rocks and biogeochemical reactions (Tang et al., 2015; Yan et al., 2017; Molins et31

al., 2019; Becker et al., 2022; Mehmani, Castelletto, & Tchelepi, 2021; Wang & Battiato, 2020). While32

many classical approaches to multiscale modeling continue to be employed (Schiller & Wang, 2018; Bat-33

tiato et al., 2019), new data-driven strategies are also being developed to reap the benefits of state-of-34

the-art technologies (Lubbers et al., 2020; Wang & Battiato, 2021).35

Within multiscale modeling, considerable efforts have focused on evolving and generalizing upscal-36

ing techniques, such as the method of volume averaging (MVA) (Whitaker, 1999), homogenization the-37

ory (Hornung, 1997), and thermodynamically constrained averaging theory (TCAT) (Gray & Miller, 2014),38

among others. These techniques provide rigorous approaches to systematically generate macroscopic par-39

tial differential equations (PDEs) from first principle equations at the microscale (Battiato et al., 2019).40

To formulate macroscopic PDEs, supplemental terms and effective coefficients are derived to accurately41

account for multiscale behaviors (Pietrzyk et al., 2021). In addition to the accuracy and computational42

efficiency provided by these models, applicability conditions (also referred to as scaling laws in MVA (Golfier43

et al., 2009; Wood, 2009) and permissibility conditions in TCAT (C. Miller et al., 2018)) can also be ob-44

tained during the upscaling procedures (Battiato & Tartakovsky, 2011; Boso & Battiato, 2013), which45

provide physical constraints under which estimates of the accrued modeling error are known a priori. A46

number of upscaling theories go beyond the derivation of classical Darcy-scale equations for reactive trans-47

port and multiphase flow (e.g., modeling nonhysteretic capillary pressure behavior (C. T. Miller et al.,48

2019)). Some of these include deterministic and stochastic nonlocal modeling techniques (Gelhar & Ax-49

ness, 1983), such as dual and multicontinuum modeling (Cushman & Ginn, 1993; Neuman, 1993; Hag-50

gerty et al., 2000), continuous time random walk modeling (Berkowitz et al., 2006), moment methods (Neuman,51

1993), and projector operator methods (Cushman & Ginn, 1993). Even advanced methods for physics-52

based multiscale modeling with various degrees of coupling have used upscaling techniques as their pri-53

mary machinery for model development (Battiato et al., 2011; Yousefzadeh & Battiato, 2017; Ahmed et54

al., 2022).55

With continued interest in upscaling and related modeling methods, attention has centered around56

extending the applicability of such techniques to physical regimes in which the accuracy of effective-medium57

models has been questioned (Battiato et al., 2009; Arunachalam et al., 2015; Pietrzyk et al., 2021). In58

particular, significant progress has been made toward extending the applicability of upscaling techniques59

to highly advective and reactive regimes. In the context of homogenization theory (Hornung, 1997), problem-60

specific techniques that deviate from the standard theory have been developed to analyze various trans-61

port regimes. Early investigations into systems with strong advection involved expanding temporal deriva-62

tives in an effort to consider dynamics across multiple time scales (Rubinstein & Mauri, 1986; Mei, 1992;63

Salles et al., 1993; Auriault & Adler, 1995). Other methods handled strong advection by adding drift to64

the pore-scale equations, which involved transforming the large-scale coordinates to a moving coordinate65

frame (Garnier, 1997; Donato & Piatnitski, 2005; Marušić-Paloka & Piatnitski, 2005). A similar idea of66

variable transformation was also used to model strong reactive behavior (Mauri, 1991; “Diffusion in Ran-67
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dom Media”, 1995) along with other various mathematical methods (Lewandowska et al., 2002). These68

variable transformation methods have since become the standard for homogenizing strongly advective-69

reactive systems (Allaire & Raphael, 2007; Allaire, Mikelić, & Piatnitski, 2010; Allaire, Brizzi, et al., 2010)70

and more recent homogenization strategies seem to benefit from their influence (Municchi & Icardi, 2020;71

Le et al., 2022).72

As efforts to further generalize and sophisticate upscaling theories persevere, the syntactical, math-73

ematical, and procedural complexities employed continue to grow. These come in addition to the com-74

plexities inherent to realistic geological reactive systems, which can involve multiple coupled physical pro-75

cesses and reaction networks that easily include tens of species or more. The combined complexity is enough76

to deter scientists and practitioners away from upscaling techniques and drive them towards alternative,77

less rigorous modeling techniques. However, known applicability conditions and error limits bring value78

to upscaled models and make them relevant solutions to questions regarding model validity in subsur-79

face flow and reactive transport problems (e.g., CO2 sequestration, H2 subsurface storage, etc.). In light80

of this, it is beneficial to create methods for handling the complexities associated with upscaling tech-81

niques, and ultimately democratize upscaling for efficient use in subsurface flow and reactive transport82

applications.83

In this two part series, we propose a general analytical strategy for extending the applicability of84

homogenized models with respect to classical homogenization theory (Part 1), and implement the strat-85

egy into an automated upscaling framework for rapid use in a wide range of complex systems (Part 2).86

The strategy involves generalizing the assumed forms of ordered solutions by constructing them as lin-87

ear combinations of closure terms. This leads to the definition of multiple closure problems for a single88

ordered solution, whereas in classical homogenization theory, only one closure problem is defined and the89

assumed form of the first order solution consists of only one closure term. We then implement the an-90

alytical strategy into Symbolica, a symbolic computational code for fully automating rigorous analytical91

upscaling procedures on problems with realistic complexities. By streamlining the notoriously lengthy92

and syntactically complex derivations of upscaling, Symbolica enables users with limited mathematical93

expertise to rapidly generate and deploy upscaled models for analysis in complex practical systems. As94

a result, communal access to upscaling techniques is provided in a similar manner to how computational95

physics softwares provide access to numerical methods.96

Aside from speed, democratization, and the ability to apply upscaling theories in complex practi-97

cal systems, Symbolica is also capable of quickly, and rigorously, traversing dimensionless parameter spaces98

for valid upscaled models. Originally pointed out in previous works (Auriault & Adler, 1995; Battiato99

& Tartakovsky, 2011; Boso & Battiato, 2013), the value of this ability has been reemphasized in recent100

works that consider homogenization techniques for handling highly advective and reactive systems. These101

works highlight that varying the magnitudes of the dimensionless parameters in a system can lead to dif-102

ferent macroscopic models:103

“Namely even starting from the same microscale problem, for different sizes of the characteristic104

numbers, the homogenization results in different upscaled (macroscale) model depending on the con-105

sidered regime. Different here means that these can be different types of equations, which cannot106

be converted to each other by simple fitting of the coefficients.” (Iliev et al., 2020)107

“Dimensionless parameters are hence obtained explicitly as ratios of characteristic quantities. Con-108

sidering these dimensionless parameters, at different orders of magnitude, leads to different macro-109

scopic behaviours in the case of homogenisable situations.” (Bloch & Auriault, 2019)110

As described, the macroscopic model of a system cannot be trivially assumed for general dimensionless111

parameter magnitudes; the upscaling procedure must be re-executed for each set of dimensionless param-112

eter magnitudes considered. With Symbolica, the workload associated with upscaling for each combina-113

tion of dimensionless parameter magnitudes is removed, as the code automatically upscales across the114

dimensionless parameter space in a short amount of time (Pietrzyk et al., 2021).115

In Part 1, we present the general analytical strategy for extending applicability by annotating its116

implementation in two example reactive mass transport problems and numerically validate the homog-117

enized results. Nontrivial homogenized models and effective parameters are found and discussed in de-118

tail. The proposed approach has a number of advantages. Firstly, it directly generalizes and extends the119

applicability of classically homogenized, reactive mass transport models into moderately reactive regimes,120
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where diffusive and reactive terms are of the same order. Secondly, the presented strategy is compati-121

ble with, and can further generalize, theories for homogenizing highly advective and reactive systems, as122

well as theories for analyzing inhomogeneous boundary conditions (Municchi & Icardi, 2020). Thirdly,123

the strategy can be easily implemented into automated upscaling frameworks in an algorithmic fashion124

for automated closure form and closure problem definition. This capability is explored in Part 2 of this125

series, where we validate the implementation of the strategy in Symbolica by analyzing two additional re-126

active mass transport problems. Overall, we find this implementation invaluable, as it enables Symbol-127

ica to automatically homogenize complex systems with multiple, moderately strong reactions and pro-128

duce nontrivial homogenized models.129

The manuscript is organized as follows. In Section 2, a general problem of reactive transport in porous130

media is formulated for multiple solutes and reaction interfaces. The governing equations and boundary131

conditions are introduced in Subsection 2.1 with a general scaling, a unit-cell formulation, and expan-132

sions of the temporal derivative and dependent variables presented in Subsections 2.2, 2.3, and 2.4, re-133

spectively. Then, from the previously presented general reactive transport problem, we derive the equa-134

tions and boundary conditions for the first considered transport problem: a single species undergoing a135

linear, heterogeneous reaction (Section 3). While the detailed implementation of the proposed homog-136

enization strategy can be found in Appendix A, the main homogenized results are presented in Subsec-137

tion 3.1 and numerical validation is provided in Subsection 3.2. A second transport problem consisting138

of two solutes undergoing linearly coupled, heterogeneous reactions is then considered in Section 4, where139

the equations and boundary conditions are derived from the general reactive transport problem. Again,140

the detailed implementation can be found in Appendix B while the main homogenized results and nu-141

merical validation are provided in Subsections 4.1 and 4.2, respectively. Finally, concluding remarks for142

Part 1 of this two part series can be found in Section 5.143

2 Problem Formulation144

Similar to the setup in our previous work (Pietrzyk et al., 2021), we consider a porous medium Ω̂ϵ ⊂145

Rb, where b ∈ {1, 2, 3}, consisting of a pore-space B̂ϵ and an impermeable solid matrix Ĝϵ. A smooth146

interface Γ̂ϵ is assumed to exist between the two domains. We also assume the physical gradients within147

this medium are adequately described using two length scales: a larger scale L̂ and a smaller scale ℓ̂. A148

length scale ratio149

ϵ ≡ ℓ̂

L̂
(1)

can then be defined, where L̂ ≫ ℓ̂ implies ϵ ≪ 1. Unless otherwise stated, hatted variables are assumed150

to have physical dimension, while variables without hats are assumed to be dimensionless.151

2.1 Governing Equations and Boundary Conditions152

We assume an incompressible liquid fully saturates the pore-space. The Stokes equation, the incom-153

pressible continuity equation, and a no-slip boundary condition govern the velocity and pressure fields154

of the liquid, such that155

µ̂∇̂2ûϵ − ∇̂p̂ϵ = 0 in B̂ϵ, (2a)

∇̂ · ûϵ = 0 in B̂ϵ, (2b)

subject to156

ûϵ = 0 on Γ̂ϵ, (2c)

where ûϵ ≡ ûϵ (x̂) is the fluid velocity at spatial coordinate x̂ ∈ B̂ϵ, µ̂ is the dynamic viscosity, and157

p̂ϵ ≡ p̂ϵ (x̂) is the pressure. Theoretically, we only consider these equations far from the boundaries of158

Ω̂ϵ, such that non-local effects due to macroscale boundary conditions on Ω̂ϵ are negligible.159
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In addition to the fluid flow, we consider the transport of N species subject to advection, diffusion,160

and both homogeneous and heterogeneous reactions. For each species i, where i ∈ {1, 2, · · · , N}, we con-161

sider bimolecular homogeneous reactions of the type A+B ↔ C+D in the liquid phase and heteroge-162

neous reactions of the type M(l) ↔ M(s) at the liquid-solid interface. We note that generalizations to163

reactions beyond those described here are straightforward. To accommodate multiple heterogeneous re-164

actions occurring on different sections of the interface Γ̂ϵ, we divide the liquid-solid interface into NΓ parts,165

such that166

Γ̂ϵ =

NΓ⋃
j=1

Γ̂(j)
ϵ , (3)

where Γ̂
(j)
ϵ is the interface j, a subsection of the total interface Γ̂ϵ. This allows multiple heterogeneous167

reactions to be defined across the various interface subsections Γ̂
(j)
ϵ for a single solute. Then, the trans-168

port of each reactive species in the pore-space is governed by a system of advective-diffusive-reactive (ADR)169

equations of the form170

∂ĉ
(i)
ϵ

∂t̂
+ ∇̂ ·

(
ûϵĉ

(i)
ϵ − D̂(i)∇̂ĉ(i)ϵ

)
= R̂(i)

ϵ in B̂ϵ, (4a)

R̂(i)
ϵ =

N∑
k=1

(−1)
p
(i,k)
L K̂(i,k)

L ĉ(k)ϵ +

N∑
k=1

N∑
l=k

(−1)
p
(i,k,l)
NL K̂(i,k,l)

NL ĉ(k)ϵ ĉ(l)ϵ , (4b)

subject to171

−n(j) · D̂(i)∇̂ĉ(i)ϵ = T̂ (i,j)
ϵ on Γ̂(j)

ϵ , (4c)

T̂ (i,j)
ϵ =

N∑
k=1

(−1)
p
(i,j,k)
SL K̂(i,j,k)

SL

(
ĉ(k)ϵ − Ĉ

(i,j,k)
SL

)
+

N∑
k=1

N∑
l=k

(−1)
p
(i,j,k,l)
SNL K̂(i,j,k,l)

SNL

(
ĉ(k)ϵ ĉ(l)ϵ − Ĉ

(i,j,k,l)2

SNL

)
,

(4d)

where ĉ
(i)
ϵ ≡ ĉ

(i)
ϵ (t̂, x̂) is the concentration of species i at time t̂ > 0 and spatial coordinate x̂ ∈ B̂ϵ,172

D̂(i) is the diffusion coefficient of species i, R̂
(i)
ϵ is the sum of all bulk reaction terms for species i, p

(i,k)
L173

and p
(i,k,l)
NL are either 0 or 1, K̂(i,k)

L is the reaction rate constant of the linear bulk reaction correspond-174

ing to species k in the transport equation for species i, K̂(i,k,l)
NL is the reaction rate constant of the non-175

linear bulk reaction corresponding to species k and l in the transport equation for species i, n(j) ≡ n(j)(x̂)176

is the normal vector to the liquid-solid interface subsection j pointed towards the solid, T̂
(i,j)
ϵ is the sum177

of all heterogeneous reaction terms for species i on the liquid-solid interface subsection j, p
(i,j,k)
SL and p

(i,j,k,l)
SNL178

are either 0 or 1, K̂(i,j,k)
SL is the reaction rate constant of the linear reaction at the liquid-solid interface179

subsection j corresponding to species k in the system of equations for species i, Ĉ
(i,j,k)
SL is the threshold180

concentration for the linear reaction at the liquid-solid interface subsection j for species k in the system181

of equations for species i (Morse & Arvidson, 2002), K̂(i,j,k,l)
SNL is the reaction rate constant of the non-linear182

reaction at the liquid-solid interface subsection j corresponding to species k and l in the system of equa-183

tions for species i, and Ĉ
(i,j,k,l)
SNL is the threshold concentration for the non-linear reaction at the liquid-184

solid interface subsection j for species k and l in the system of equations for species i. Similar to before,185

we consider these equations far from the boundaries of Ω̂ϵ to eliminate concern of non-local effects from186

macroscale boundary conditions on Ω̂ϵ, and do not assume any specific initial conditions.187

2.2 Scaling188

To scale systems (2) and (4), we consider the following:189
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ĉ(i)ϵ = Ĉ(i)c(i)ϵ , ∇̂ =
1

L̂
∇, D̂(i) = D̂D(i), ûϵ = Ûuϵ, p̂ϵ = P̂pϵ,

t̂ =
L̂2

D̂
t, R̂(i)

ϵ =
D̂Ĉ(i)

L̂2
R(i)

ϵ , T̂ (i,j)
ϵ =

D̂Ĉ(i)

L̂
T (i)
ϵ ,

(5)

where Ĉ(i) is the concentration scale for species i, D̂ is the diffusion coefficient scale, Û is the fluid veloc-190

ity scale, and P̂ is the fluid pressure scale. Applying these scales to system (2) yields191

Aϵ∇2uϵ −∇pϵ = 0 in Bϵ, (6a)

∇ · uϵ = 0 in Bϵ, (6b)

subject to192

uϵ = 0 on Γϵ. (6c)

Here, we note that the ratio Aϵ = µ̂Û/(P̂L̂) in equation (6a) is assumed to have a magnitude of O(ϵ2)193

in the classical homogenization of the Stokes equation (Auriault & Adler, 1995). After applying the de-194

fined scales to system (4), we obtain195

∂c
(i)
ϵ

∂t
+∇ ·

(
Peuϵc

(i)
ϵ −D(i)∇c(i)ϵ

)
= R(i)

ϵ in Bϵ, (7a)

R(i)
ϵ =

N∑
k=1

(−1)
p
(i,k)
L Da

(i,k)
L c(k)ϵ +

N∑
k=1

N∑
l=k

(−1)
p
(i,k,l)
NL Da

(i,k,l)
NL c(k)ϵ c(l)ϵ , (7b)

subject to196

−n(j) ·D(i)∇c(i)ϵ = T (i,j)
ϵ on Γ(j)

ϵ , (7c)

T (i,j)
ϵ =

N∑
k=1

(−1)
p
(i,j,k)
SL Da

(i,j,k)
SL

(
c(k)ϵ − θ

(i,j,k)
SL

)
+

N∑
k=1

N∑
l=k

(−1)
p
(i,j,k,l)
SNL Da

(i,j,k,l)
SNL

(
c(k)ϵ c(l)ϵ − θ

(i,j,k,l)
SNL

)
,

(7d)

where the dimensionless numbers are defined as197

Pe =
Û L̂
D̂

, Da
(i,k)
L =

K̂(i,k)
L L̂2Ĉ(k)

D̂Ĉ(i)
, Da

(i,k,l)
NL =

K̂(i,k,l)
NL L̂2Ĉ(k)Ĉ(l)

D̂Ĉ(i)
, Da

(i,j,k)
SL =

K̂(i,j,k)
SL L̂Ĉ(k)

D̂Ĉ(i)
,

θ
(i,j,k)
SL =

Ĉ
(i,j,k)
SL

Ĉ(k)
, Da

(i,j,k,l)
SNL =

K̂(i,j,k,l)
SNL L̂Ĉ(k)Ĉ(l)

D̂Ĉ(i)
, θ

(i,j,k,l)
SNL =

Ĉ
(i,j,k,l)2

SNL

Ĉ(k)Ĉ(l)
.

(8)

Here, Pe is the Péclet number, Da
(i,k)
L , Da

(i,k,l)
NL , Da

(i,j,k)
SL , and Da

(i,j,k,l)
SNL are Damköhler numbers, and θ

(i,j,k)
SL198

and θ
(i,j,k,l)
SNL are concentration ratios.199
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2.3 Unit-Cell Domain Formulation200

We define the unit-cell in a similar manner as our previous work (Pietrzyk et al., 2021), and pro-201

vide the formulation here for completeness. By introducing a spatially-dependent variable ξ̂(x̂) ≡ x̂, and202

scaling ξ̂(x̂) by ℓ̂ and x̂ by L̂, we obtain203

ξ (x) = ϵ−1x, (9)

where ξ(x) and x are referred to as “fast” and “slow” variables, respectively (Hornung, 1997). Any spatially-204

dependent function fϵ(x) is then written as fϵ(x) = f(x, ξ(x)), and the chain rule is applied when con-205

sidering ∇, the total differential operator in space, to write206

∇fϵ ≡ ∇xf +
1

ϵ
∇ξf. (10)

Here, ∇ is shown to be a sum of two differential operators in space: ∇x and ∇ξ, which scale with 1/L̂207

and 1/ℓ̂, respectively.208

We now assume ϵ ≪ 1 and consider systems with spatial periodicity on the length scale ℓ̂. Under209

these constraints, we treat ξ(x) as an independent variable ξ, uncoupled from x, that traverses a spa-210

tially periodic “unit-cell” domain Y . This domain consists of a pore-space region B and an impermeable211

solid region G. A smooth interface Γ = ∪NΓ
j=1Γ

(j) consisting of NΓ subsections Γ(j) exists within Y be-212

tween B and G. Finally, we note that regions B and G should be arranged within Y such that a collec-213

tion of contiguously placed unit-cell domains Y is representative of how B̂ϵ and Ĝϵ are arranged within214

Ω̂ϵ.215

With the provided unit-cell formulation, our intention is to average the reactive transport and fluid216

flow over the unit-cell domain (Bachmat & Bear, 1986). To do this, we reconsider x as an element of Ω ≡217

Ωϵ = Ω̂ϵ/L̂b, a fictitious model domain treated as an “ℓ̂-averaged” continuum, and define averaging op-218

erators over the unit-cell Y , its pore-space B, the total liquid-solid interface Γ, and the liquid-solid in-219

terface subsections Γ(j) as220

⟨·⟩Y ≡ 1

|Y |

∫
B
(·) dξ, ⟨·⟩B ≡ 1

|B|

∫
B
(·) dξ, ⟨·⟩Γ ≡ 1

|Γ|

∫
Γ

(·) dξ,

and ⟨·⟩Γ(j) ≡
1∣∣Γ(j)
∣∣ ∫

Γ(j)

(·) dξ,
(11)

respectively. Depending on b, |Y |, |B|, |Γ|, and |Γ(j)| are the volumes, areas, segments, or points of the221

unit-cell, the pore-space in the unit-cell, the liquid-solid interface in the unit-cell, and the liquid-solid in-222

terface subsections in the unit-cell, respectively. Here, we also define ϕ = |B|/|Y | as the porosity of the223

unit-cell and note that ⟨·⟩B = ϕ−1⟨·⟩Y .224

2.4 Expansions of the Temporal Derivative and Dependent Variables225

Similar to the handling of multiple spatial scales, we introduce additional time variables to account226

for the dynamics occurring on small time scales. Typically, these time variables are introduced based on227

the dimensionless numbers related to advective and reactive time scales (i.e., Péclet and Damköhler num-228

bers) (Rubinstein & Mauri, 1986; Mei, 1992; Salles et al., 1993; Auriault & Adler, 1995; Battiato & Tar-229

takovsky, 2011; Boso & Battiato, 2013), as these are often the only physical mechanisms appearing in the230

governing equations besides diffusion. Here, however, we explicitly define the time variables τm(t) = ϵ−mt,231

where m ∈ {1, 2}, to introduce a temporal derivative at each equation order considered during our ho-232

mogenization procedure. This allows us to clarify the assumptions implied when not considering addi-233

tional time scales, and ultimately remove ambiguity in the role of additional time scales in the homog-234

enization procedure. We note that while further time variables may be defined in this manner, the time235

variables introduced here are sufficient for analyzing all small time scale dynamics in our analysis. Any236

temporally-dependent function fϵ(t) is then written as fϵ(t) = f(t, τ (t)), where τ (t) is a tuple with com-237

ponents [τ (t)]m = τm(t), and the total differential operator in time takes the form238
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∂fϵ
∂t

≡ ∂f

∂t
+ ϵ−1 ∂f

∂τ1
+ ϵ−2 ∂f

∂τ2
. (12)

While simultaneously considering the independent variables in space, dependent variables c
(i)
ϵ (t,x)239

and uϵ(x) are now redefined as functions of ξ and τ (t), and expanded as power series in terms of ϵ such240

that241

c(i)ϵ (t,x) ≡ c(i) (t,x, τ (t), ξ) =

∞∑
k=0

ϵkc
(i)
k (t,x, τ (t), ξ) , (13a)

uϵ (x) ≡ u (x, ξ) =

∞∑
k=0

ϵkuk (x, ξ) , (13b)

where c
(i)
k (t,x, τ (t), ξ) and uk(x, ξ) are assumed to be periodic in ξ.242

3 Linear Heterogeneous Reaction: One Species243

We now demonstrate our strategy for generalizing the closure form by homogenizing the mass trans-
port of a single species undergoing a linear heterogeneous reaction. We note that a similar problem setup
may be found in previous analyses (Pietrzyk et al., 2021; Battiato & Tartakovsky, 2011). While a detailed
outline of the applied strategy can be found in Appendix A, we provide a brief description of the prob-
lem and homogenized results here. We consider the reactive transport of a single species, whose concen-
tration cϵ is governed by

∂cϵ
∂t

+∇ · (Peuϵcϵ −D∇cϵ) = 0 in Bϵ, (14a)

subject to244

−n ·D∇cϵ = Da (cϵ − θ) on Γϵ, (14b)

where the Péclet number Pe, Damköhler number Da, and concentration ratio θ are defined as245

Pe =
Û L̂
D̂

, Da =
K̂L̂
D̂

, θ =
Ĉ

Ĉ
. (15)

System (14) can be obtained from the general mass transport problem in system (7) by letting N = 1,246

NΓ = 1, i ∈ {1}, j ∈ {1}, R(i)
ϵ = 0, p

(i,j,k)
SL = 0, and Da

(i,j,k,l)
SNL = 0, and simplifying the notation247

of the remaining variables to {c(1)ϵ , Ĉ(1), D(1), Γ
(1)
ϵ , n(1), Da

(1,1,1)
SL , K̂(1,1,1)

SL , θ
(1,1,1)
SL , Ĉ

(1,1,1)
SL } =248

{cϵ, Ĉ, D, Γϵ, n, Da, K̂, θ, Ĉ}.249

We homogenize the system for a moderately reactive case, where diffusive and reactive terms are
of similar order, i.e.,

Pe ∼ O(ϵ−1), Da ∼ O(ϵ0), θ ∼ O(ϵ0). (16)

As highlighted in the work of Municchi and Icardi (Municchi & Icardi, 2020), the classical treatment for250

systems involving heterogeneous reactions is limited to slow reaction rates (i.e., Da ≤ O(ϵ)), and there-251

fore, cannot be used to homogenize this physical scenario. We also note that a large advective term is252

considered, but we recover the diffusion-reaction model studied in Bourbatache et al. (Bourbatache et253

al., 2020) by letting Pe = 0 and θ = 0.254

3.1 Homogenized Results255

With the provided formulation, we show in Appendix A that a homogenized system for ⟨c⟩Y = ⟨c0⟩Y +256

ϵ⟨c1⟩Y +O(ϵ2) can be derived for the moderately reactive case with O(ϵ) error using the closure form257

c1 = χ[1] ·∇xc0 + (c0 − θ)χ[2] + c1, (17)
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instead of the more classical postulate258

c1 = χ ·∇xc0 + c1, (18)

where c1 ≡ c1(t,x, τ (t)) = ϕ−1⟨c1⟩Y , and χ[1] and χ[2] are the closure variables. The resulting homog-259

enized equation is written as260

ϕ
∂⟨c⟩Y
∂t

+U ·∇x⟨c⟩Y −∇x · (D ·∇x⟨c⟩Y ) + R
(
ϕ⟨c⟩Y − ϕ2θ

)
= O (ϵ) for x ∈ Ω, (19a)

where the effective parameters are defined as261

U = Pe⟨u⟩Y + ϕDa
|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩Y + Peϵ⟨uχ[2]⟩Y , (19b)

D = ϕDI+D⟨∇ξχ
[1]⟩Y − Peϵ⟨u⊗ χ[1]⟩Y , (19c)

R = Da
|Γ|
|B|

[
ϵ−1 + ⟨χ[2]⟩Γ

]
. (19d)

In system (19), the closure variables are found by solving the closure problems262

Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
[1] −D∇ξ ·

(
I+∇ξχ

[1]
)
= 0 for ξ ∈ B, (20a)

subject to263

−n ·D
(
I+∇ξχ

[1]
)
= 0 for ξ ∈ Γ, (20b)

and264

−Da
|Γ|
|B|

+ Peϵu0 ·∇ξχ
[2] −D∇2

ξχ
[2] = 0 for ξ ∈ B, (21a)

subject to265

−n ·D∇ξχ
[2] = Da for ξ ∈ Γ. (21b)

Here, ⟨χ[1]⟩B = 0 and ⟨χ[2]⟩B = 0. As shown, by generalizing the assumed closure form of c1, valid clo-266

sure problems can be created in scenarios where the traditionally assumed closure form (equation (18))267

fails. While an additional closure problem needs to be solved, virtually no mathematical complexity is268

added to the classical homogenization theory through this strategy.269

Upon analyzing the homogenized equation and effective parameters, we find contributions due to270

the moderate reaction rate in both the effective reaction rate R and effective velocity U. We notice the271

product between ϕ and the first term in R exactly matches the effective reaction rate previously derived272

for slow heterogeneous reactions (i.e., Da ∼ O(ϵ)) (Battiato & Tartakovsky, 2011; Boso & Battiato, 2013).273

As detailed in Appendix A, the second term in R, which contains ⟨χ[2]⟩Γ, acts as the first correction to274

the effective reaction rate. In light of closure problem in system (21), this correction modifies the effec-275

tive reaction rate based on the microscopic geometry and high advective flux. Regarding the effective ve-276

locity U, three contributions are made due to the moderate reaction rate. This coincides with the results277

of previous analyses showing reaction-dependent effective velocities (Mikelić et al., 2006). We note that278

contributions −D⟨∇ξχ
[2]⟩Y and Peϵ⟨uχ[2]⟩Y are similar to the contributions in the dispersion tensor in-279

volving χ[1] (i.e., D⟨∇ξχ
[1]⟩Y and −Peϵ⟨u⊗χ[1]⟩Y ). Therefore, −D⟨∇ξχ

[2]⟩Y and Peϵ⟨uχ[2]⟩Y are in-280

terpreted analogously as contributions that account for the interactions between (i) the effective reaction281

–9–
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Figure 1. A schematic of the 2D pore-scale, unit-cell, and continuum domains considered for the array of cylin-

ders geometry. Details of the labeled geometric aspects are found in Table 1.

rate correction and the diffusive flux, and (ii) the effective reaction rate correction and the advective flux,282

respectively. Finally, the third contribution to the effective velocity, ϕDa |Γ|
|B| ⟨χ

[1]⟩Γ, represents the addi-283

tional reactive flux due to the diffusion flux correction.284

We emphasize that the effective velocity remains in the homogenized equation, even if Pe = 0 and285

θ = 0. Further, the remaining terms in the effective velocity (i.e., ϕDa |Γ|
|B| ⟨χ

[1]⟩Γ and −D⟨∇ξχ
[2]⟩Y ) rep-286

resent a coupling between diffusion and reaction, even though the effective reaction rate does not depend287

on diffusion, and the dispersion tensor does not depend on reaction. This early onset of coupling between288

diffusion and reaction causes the macroscopic equations to not simply consist of terms similar to those289

in the microscopic equations, a case warned about in the work of Iliev et al. (Iliev et al., 2020). These290

results advise caution when assuming the form of macroscopic equations to be similar to their microscopic291

counterparts.292

3.2 Numerical Validation293

3.2.1 Problem Setup294

We now provide validation for the homogenized model derived using the generalized closure form295

strategy by numerically resolving and comparing the averaged solutions from the pore-scale (system (14))296

and homogenized (systems (19), (20), and (21)) models.297

To conduct the validation, we consider a 2D array of cylinders geometry in a Cartesian plane (i.e.,298

x ≡ [x, y] and ξ ≡ [ξ, η]). Schematics of the considered pore-scale, unit-cell, and continuum domains299

can be found in Figure 1 with relevant geometric labels, which are detailed in Table 1. We also consider300

an initial discontinuous concentration profile in the pore-scale simulation, where the concentration is al-301

ternatively equal to 0 and 1 in the two halves of the domain. To obtain the corresponding initial condi-302

tion for the homogenized model, we average the pore-scale initial condition using the averaging opera-303

tor304

⟨·⟩Wϵ(x) ≡ ϵ−2 1

|Y |

∫
Wϵ(x)

(·) dy, (22a)

where305

Wϵ (x) = {(x′, y′) : x− 0.5ϵ < x′ < x+ 0.5ϵ, y + 0.5ϵ < y′ < y − 0.5ϵ, x′ ∈ Bϵ} for x ∈ Ω. (22b)

–10–
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Table 1. Specifications for the geometric aspects in the pore-scale, unit-cell, and continuum domains considering

the 2D array of cylinders geometry.

Variable Definition for the 2D Array of Cylinders Geometry

Dimensional Parameters

ℓ̂ Unit-cell domain length

L̂ Pore-scale domain length
r̂ϵ Cylinder radius

Pore-scale Domain

rϵ r̂ϵ/L̂
Ωϵ {(x, y) : −0.5 < x < 0.5, −0.5ϵ < y < 0.5ϵ}
Gϵ {(x, y) : (x+ 0.5 (1 + ϵ)−mϵ)

2
+ y2 < r2ϵ , m ∈ Z+, m ≤ ϵ−1}

Γϵ {(x, y) : (x+ 0.5 (1 + ϵ)−mϵ)
2
+ y2 = r2ϵ , m ∈ Z+, m ≤ ϵ−1}

Bϵ Ωϵ \ (Gϵ ∪ Γϵ)
∂Bw

ϵ {(x, y) : x = −0.5, −0.5ϵ < y < 0.5ϵ}
∂Be

ϵ {(x, y) : x = 0.5, −0.5ϵ < y < 0.5ϵ}
∂Bs

ϵ {(x, y) : −0.5 < x < 0.5, y = −0.5ϵ}
∂Bn

ϵ {(x, y) : −0.5 < x < 0.5, y = 0.5ϵ}
Unit-cell Domain

r r̂ϵ/ℓ̂
Y {(ξ, η) : −0.5 < ξ < 0.5, −0.5 < η < 0.5}
G

{
(ξ, η) : ξ2 + η2 < r2

}
Γ

{
(ξ, η) : ξ2 + η2 = r2

}
B Ω \ (G ∪ Γ)

∂Bw {(ξ, η) : ξ = −0.5, −0.5 < η < 0.5}
∂Be {(ξ, η) : ξ = 0.5, −0.5 < η < 0.5}
∂Bs {(ξ, η) : −0.5 < ξ < 0.5, η = −0.5}
∂Bn {(ξ, η) : −0.5 < ξ < 0.5, η = 0.5}
|Y | 1
|G| πr2

|Γ| 2πr
|B| |Y | − |G|
ϕ |B| / |Y |

“ℓ̂-averaged” Continuum Domain

Ω {(x, y) : −0.5 < x < 0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωw {(x, y) : x = −0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωe {(x, y) : x = 0.5, −0.5ϵ < y < 0.5ϵ}
∂Ωs {(x, y) : −0.5 < x < 0.5, y = −0.5ϵ}
∂Ωn {(x, y) : −0.5 < x < 0.5, y = 0.5ϵ}

–11–
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Table 2. The simulation and mesh parameters used to solve the various models and problems defined on the

pore-scale, unit-cell, and continuum domains for the single species system undergoing a linear heterogeneous reac-

tion. Here, ex and eξ are the unit vectors in the x-direction and ξ-direction, respectively.

Simulation and Mesh Parameters

General Parameters

ϵ = 0.1, D = 1, Pe = ϵ−1, Da = ϵ0, θ = ϵ0, ∆t = 10−4

Pore-scale Fluid Flow and Mass Transport

rϵ = 0.02, Aϵ = ϵ2, Φϵ = 8ex, Nelem = 38287, max(∆x) = 0.0036

Homogenized Mass Transport

ϕ = 0.8744, Nelem = 4006, max(∆x) = 0.0113

Unit-cell Fluid Flow and Closure Problems

r = 0.2, A = 1, Φ = 8eξ, Nelem = 44413, max(∆ξ) = 0.0099

This averaging operator can be considered a “moving-average” that brings pore-scale concentration fields306

into the continuum domain. We note that the extension of this operator at points near the edges of the307

continuum domain is trivial when using periodic boundary conditions, as will be considered here. Fur-308

ther details regarding the simulation parameters are provided in Table 2, while details regarding the bound-309

ary conditions and initial conditions are provided in Table 3. All numerical calculations are completed310

using FEniCS, an open-source finite element software (Logg et al., 2012; Alnaes et al., 2015). To min-311

imize the potential for under-resolved results, the spatial and temporal discretizations are refined to show312

converged solutions to plotting accuracy, and second-order elements are used. Further details regarding313

the discretizations of each mesh, including the number of elements Nelem and maximum spacing between314

vertices [max(∆x),max(∆ξ)], are presented with the other simulation parameters in Table 2.315

To obtain fluid velocity and pressure fields for the pore-scale model, system (6) is resolved for Aϵ =316

ϵ2, the same value considered in the classical homogenization of the Stokes equation (Auriault & Adler,317

1995). To drive the flow, we allow the pressure gradient to be represented as ∇pϵ = Φϵ + ∇p̃ϵ, where318

Φϵ is physically interpreted as a known, large-scale pressure gradient across the pore-scale domain and319

∇p̃ϵ is interpreted as the gradient of an unknown local pressure field. By choosing an appropriate value320

for Φϵ, the flow fields uϵ and p̃ϵ can be solved for such that |uϵ| ∼ O(1). This ultimately verifies that321

the value of Û calculated using the definition of the Péclet number in equation (15) is consistent with the322

magnitude of the flow driven by Φϵ.323

For the homogenized model, the equations governing fluid flow are directly taken from the classi-324

cal homogenization of the Stokes equation (equation (20) in (Auriault & Adler, 1995)) and written as325

A∇2
ξu−∇ξp̃− Φ = 0 for ξ ∈ B, (23a)

∇ξ · u = 0 for ξ ∈ B, (23b)

subject to326

u = 0 for ξ ∈ Γ, (23c)

where we let A = 1 and Φ is physically interpreted as a known, large-scale pressure gradient across the327

unit-cell domain. We note that the flow driven in the unit-cell domain by Φ should be reflective of that328

driven in the pore-scale domain by Φϵ, i.e., Φ = Φϵ. Upon solving system (23) in the unit-cell domain,329

the velocity field u can be averaged over the unit-cell and used to calculate the effective parameters (equa-330

tions (19b)-(19d)).331
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Table 3. The simulation boundary conditions and initial conditions used to solve the various problems on the

pore-scale, unit-cell, and continuum domains for the single species system undergoing a linear heterogeneous reac-

tion. Here, H(x) is the Heaviside function.

Simulation Boundary Conditions

Pore-scale Mass Transport

cϵ|∂Bw
ϵ
= cϵ|∂Be

ϵ
n ·∇cϵ|∂Bw

ϵ
= −n ·∇cϵ|∂Be

ϵ

cϵ|∂Bs
ϵ
= cϵ|∂Bn

ϵ
n ·∇cϵ|∂Bs

ϵ
= −n ·∇cϵ|∂Bn

ϵ

Pore-scale Fluid Flow

uϵ|∂Bw
ϵ
= uϵ|∂Be

ϵ
n ·∇uϵ|∂Bw

ϵ
= −n ·∇uϵ|∂Be

ϵ

uϵ|∂Bs
ϵ
= uϵ|∂Bn

ϵ
n ·∇uϵ|∂Bs

ϵ
= −n ·∇uϵ|∂Bn

ϵ

p̃ϵ|∂Bw
ϵ
= p̃ϵ|∂Be

ϵ
n ·∇p̃ϵ|∂Bw

ϵ
= −n ·∇p̃ϵ|∂Be

ϵ

p̃ϵ|∂Bs
ϵ
= p̃ϵ|∂Bn

ϵ
n ·∇p̃ϵ|∂Bs

ϵ
= −n ·∇p̃ϵ|∂Bn

ϵ

Homogenized Mass Transport

⟨c⟩Y |∂Ωw = ⟨c⟩Y |∂Ωe n ·∇x⟨c⟩Y |∂Ωw = −n ·∇x⟨c⟩Y |∂Ωe

⟨c⟩Y |∂Ωs = ⟨c⟩Y |∂Ωn n ·∇x⟨c⟩Y |∂Ωs = −n ·∇x⟨c⟩Y |∂Ωn

Closure Problems

χ[1]
∣∣
∂Bw = χ[1]

∣∣
∂Be n ·∇ξχ

[1]
∣∣
∂Bw = −n ·∇ξχ

[1]
∣∣
∂Be

χ[1]
∣∣
∂Bs = χ[1]

∣∣
∂Bn n ·∇ξχ

[1]
∣∣
∂Bs = −n ·∇ξχ

[1]
∣∣
∂Bn

χ[2]
∣∣
∂Bw = χ[2]

∣∣
∂Be n ·∇ξχ

[2]
∣∣
∂Bw = −n ·∇ξχ

[2]
∣∣
∂Be

χ[2]
∣∣
∂Bs = χ[2]

∣∣
∂Bn n ·∇ξχ

[2]
∣∣
∂Bs = −n ·∇ξχ

[2]
∣∣
∂Bn

Unit-cell Fluid Flow

u|∂Bw = u|∂Be n ·∇ξu|∂Bw = −n ·∇ξu|∂Be

u|∂Bs = u|∂Bn n ·∇ξu|∂Bs = −n ·∇ξu|∂Bn

p̃|∂Bw = p̃|∂Be n ·∇ξp̃|∂Bw = −n ·∇ξp̃|∂Be

p̃|∂Bs = p̃|∂Bn n ·∇ξp̃|∂Bs = −n ·∇ξp̃|∂Bn

Simulation Initial Conditions

Pore-scale Mass Transport Homogenized Mass Transport

cϵ = H (−x) for (x, y) ∈ Bϵ, t = 0 ⟨c⟩Y = ⟨cϵ⟩Wϵ(x) for (x, y) ∈ Ω, t = 0
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Figure 2. The numerical results of the flow and closure problems in the unit-cell for the single species system

undergoing a linear heterogeneous reaction. (a) The magnitude of the resulting flow velocity in the unit-cell. (b)

The local pressure of the resulting flow in the unit-cell. (c) The resulting closure solutions χ[1] and χ[2]. From left

to right: [χ[1]]1 the ξ-component of χ[1], [χ[1]]2 the η-component of χ[1], and χ[2].

3.2.2 Flow and Closure Problem Results332

Prior to solving the homogenized model, solutions to the flow and closure problems must be obtained.333

The flow problem described in system (6) is solved on the pore-scale domain, and system (23) on the unit-334

cell domain. The resulting flow velocity magnitude |u| and local pressure p̃ contours are found in Fig-335

ures 2(a) and 2(b), respectively. As shown in Figure 2(a), the choice of Φ = 8eξ (Table 2) is suitable336

for the current problem due to |u| ∼ O(1). We also note that only the flow fields in the unit-cell do-337

main are presented, as the pore-scale flow fields result in contiguously placed unit-cell flow fields due to338

the periodicity of the pore-scale domain. Therefore, no new information is provided by the pore-scale flow339

fields. Regarding the closure problems, systems (20) and (21) are solved on the unit-cell domain, and the340

resulting components of χ[1], [χ[1]]1 and [χ[1]]2, are plotted alongside χ[2] in Figure 2(c). As shown, the341

contour of χ[2] has a different appearance than [χ[1]]1 and [χ[1]]2, but maintains a similar magnitude for342

the considered geometry.343

3.2.3 Pore-scale and Homogenized Model Results344

With the solutions to the closure and flow problems, the pore-scale (system (14)) and homogenized345

(systems (19), (20), and (21)) models are solved using the simulation parameters, boundary conditions,346

and initial conditions provided in Tables 2 and 3. Then, the pore-scale solution cϵ is averaged using the347

averaging operator in equation (22a) to obtain the averaged pore-scale solution ⟨cϵ⟩Wϵ(x). To quantita-348

tively compare ⟨cϵ⟩Wϵ(x) to the homogenized solution ⟨c⟩Y , we define the absolute error function349
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Figure 3. The numerical results for the system involving a single species undergoing a linear heterogeneous

reaction. (a) The Wϵ(x)-averaged and Y -averaged concentration profiles from the pore-scale (symbols) and ho-

mogenized (lines) models, respectively, at various times along the x-direction. (b) The absolute error between the

averaged concentration profiles of ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y at various times along the x-direction. The upper error limit

predicted by the homogenized model is displayed by the red dotted line. (c) Contour plots of the pore-scale con-

centration field cϵ at various times. Here, t0 = 0, t1 = 0.25× 10−2, t2 = 1.25× 10−2, and t3 = 3.75× 10−2.

E
(
⟨Ψϵ⟩Wϵ(x), ⟨Ψ⟩Y

)
=
∣∣⟨Ψϵ⟩Wϵ(x) − ⟨Ψ⟩Y

∣∣ , (24)

where ⟨Ψϵ⟩Wϵ(x) and ⟨Ψ⟩Y are dummy averaged pore-scale and homogenized solutions, respectively.350

In Figure 3, we present the pore-scale, averaged pore-scale, and homogenized model results. The351

qualitative comparison between ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y in Figure 3(a) shows the homogenized model is ca-352

pable of capturing the averaged behavior of the pore-scale model along the x-direction at the recorded353

times. We note that in conjunction with the periodicity, the prescribed initial condition in this problem354

causes the evolution of ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y to be 1D, and therefore, the results in Figure 3(a) are inde-355

pendent of y. We also note that while the prescribed initial condition in the pore-scale simulation is dis-356

continuous at x = 0 (as recorded in Table 3 and shown in Figure 3(c) at t = t0), the initial condition357

of the homogenized model shown at t = t0 in Figure 3(a) displays a sharp slope around x = 0. This358

is due to the averaging of the pore-scale initial condition using equation (22a) that was completed to ob-359

tain the appropriate corresponding initial condition for the homogenized model.360

In addition to the qualitative comparison, a quantitative comparison between ⟨cϵ⟩Wϵ(x) and ⟨c⟩Y361

at the recorded times is provided in Figure 3(b), where the absolute error between the solutions along362

the x-direction is calculated using equation (24). As shown, the absolute error remains below the upper363

error limit predicted by the homogenized model (∼ O(ϵ); denoted by the red dotted line) for all times.364

This provides confidence in the validity of the generalized closure form strategy used to derive the ho-365

mogenized model.366
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Finally, contours of the pore-scale solution at the recorded times are provided in Figure 3(c). As367

previously noted, the initial discontinuous concentration profile can be seen in the contour at t = t0.368

With the progression of time, the solute diffuses to eliminate the discontinuity at t = t1 and t = t2,369

and advection translates the solute in the positive x-direction. We note that the concentration gradients370

above and below the cylinders are observed to be slightly y-dependent due to the transport around the371

cylindrical obstacles. Lastly, in the contour at t = t3, the system is observed to evolve toward a homo-372

geneous state.373

With the qualitative and quantitative evidence in Figure 3, we deem the generalized closure form374

strategy valid for problems involving moderately reactive physics, where diffusive and reactive terms are375

of similar order. In the next section, this strategy is applied to develop a homogenized model for a more376

complex case involving two species.377

4 Linear Heterogeneous Reaction: Two Species378

We now apply the generalized closure form strategy to a system of two species undergoing linear379

heterogeneous reactions. In particular, we investigate the system presented in the work of Bourbatache380

et al. (Bourbatache et al., 2021) with advection, which is written as381

∂ĉ
(1)
ϵ

∂t̂
+ ∇̂ ·

(
ûϵĉ

(1)
ϵ − D̂(1)∇̂ĉ(1)ϵ

)
= 0 in B̂ϵ, (25a)

∂ĉ
(2)
ϵ

∂t̂
+ ∇̂ ·

(
ûϵĉ

(2)
ϵ − D̂(2)∇̂ĉ(2)ϵ

)
= 0 in B̂ϵ, (25b)

subject to382

−n · D̂(1)∇̂ĉ(1)ϵ = K̂(1)
SLĉ

(1)
ϵ − K̂(2)

SLĉ
(2)
ϵ on Γ̂ϵ, (25c)

−n · D̂(2)∇̂ĉ(2)ϵ = K̂(2)
SLĉ

(2)
ϵ − K̂(1)

SLĉ
(1)
ϵ on Γ̂ϵ. (25d)

These equations can be described using system (4) by letting N = 2, NΓ = 1, i ∈ {1, 2}, j ∈ {1},383

R̂
(i)
ϵ = 0, Ĉ

(i,j,k)
SL = 0, K̂(i,j,k,l)

SNL = 0, Ĉ
(i,j,k,l)
SNL = 0, p

(1,1,1)
SL = p

(2,1,2)
SL = 0, p

(1,1,2)
SL = p

(2,1,1)
SL = 1, n(1) = n,384

Γ̂
(1)
ϵ = Γ̂ϵ, K̂(n,1,1)

SL = K̂(1)
SL for n ∈ {1, 2}, and K̂(n,1,2)

SL = K̂(2)
SL for n ∈ {1, 2}. To scale the system, we385

use the relevant nondimensionalizations in equation (5) to gain386

∂c
(1)
ϵ

∂t
+∇ ·

(
Peuϵc

(1)
ϵ −D(1)∇c(1)ϵ

)
= 0 in Bϵ, (26a)

∂c
(2)
ϵ

∂t
+∇ ·

(
Peuϵc

(2)
ϵ −D(2)∇c(2)ϵ

)
= 0 in Bϵ, (26b)

subject to387

−n ·D(1)∇c(1)ϵ = Da
(1)
SLc

(1)
ϵ −Da

(2)
SLc

(2)
ϵ on Γϵ, (26c)

−n ·D(2)∇c(2)ϵ = Da
(2)
SLc

(2)
ϵ −Da

(1)
SLc

(1)
ϵ on Γϵ, (26d)

where388

Pe =
Û L̂
D̂

, Da
(1)
SL =

K̂(1)
SLL̂
D̂

, Da
(2)
SL =

K̂(2)
SLL̂
D̂

. (27)

In addition to the previous syntactic simplifications, we have let Da
(n,1,1)
SL = Da

(1)
SL and Da

(n,1,2)
SL = Da

(2)
SL389

for n ∈ {1, 2} with respect to the notation used in system (7) and equation (8).390
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In their previous work, Bourbatache et al. found that their homogenized models for moderate to391

high values of Damköhler numbers (i.e., Da
(1)
SL ≥ O(ϵ0) and Da

(2)
SL ≥ O(ϵ0)) were unable to capture392

the system dynamics at early times (Bourbatache et al., 2021). Here, we study the case where diffusive393

and reactive terms are of similar order, namely the moderately reactive regime where394

Pe ∼ O
(
ϵ−1
)
, Da

(1)
SL ∼ O

(
ϵ0
)
, Da

(2)
SL ∼ O

(
ϵ0
)
, (28)

and show that the generalized closure form strategy can be used to derive a homogenized model for the395

system that remains accurate at early times.396

4.1 Homogenized Results397

With the provided formulation, we show in Appendix B that a homogenized system for ⟨c(i)⟩Y =398

⟨c(i)0 ⟩Y + ϵ⟨c(i)1 ⟩Y +O(ϵ2), where i = {1, 2}, can be derived for the moderately reactive case with O(ϵ)399

error using the closure forms400

c
(1)
1 = χ(1)[1] ·∇xc

(1)
0 +

(
Da

(1)
SLc

(1)
0 −Da

(2)
SLc

(2)
0

)
χ(1)[2] + c

(1)
1 , (29a)

c
(2)
1 = χ(2)[1] ·∇xc

(2)
0 +

(
Da

(2)
SLc

(2)
0 −Da

(1)
SLc

(1)
0

)
χ(2)[2] + c

(2)
1 , (29b)

where c
(i)
1 ≡ c

(i)
1 (t,x, τ (t)) = ϕ−1⟨c(i)1 ⟩Y , and χ(i)[1] and χ(i)[1] are closure variables. The resulting ho-401

mogenized system is written as402

ϕ
∂⟨c(1)⟩Y

∂t
+U(1) ·∇x⟨c(1)⟩Y −V(1) ·∇x⟨c(2)⟩Y −∇x ·

(
D(1) ·∇x⟨c(1)⟩Y

)
= R(2)⟨c(2)⟩Y − R(1)⟨c(1)⟩Y +O (ϵ) for x ∈ Ω,

(30a)

ϕ
∂⟨c(2)⟩Y

∂t
+U(2) ·∇x⟨c(2)⟩Y −V(2) ·∇x⟨c(1)⟩Y −∇x ·

(
D(2) ·∇x⟨c(2)⟩Y

)
= R(1)⟨c(1)⟩Y − R(2)⟨c(2)⟩Y +O (ϵ) for x ∈ Ω,

(30b)

where the effective parameters are defined as403

U(i) = Pe⟨u⟩Y +Da
(i)
SL

[
ϕ
|Γ|
|B|

⟨χ(i)[1]⟩Γ −D(i)⟨∇ξχ
(i)[2]⟩Y + Peϵ⟨uχ(i)[2]⟩Y

]
, (30c)

V(1) = Da
(2)
SL

[
ϕ
|Γ|
|B|

⟨χ(2)[1]⟩Γ −D(1)⟨∇ξχ
(1)[2]⟩Y + Peϵ⟨uχ(1)[2]⟩Y

]
, (30d)

V(2) = Da
(1)
SL

[
ϕ
|Γ|
|B|

⟨χ(1)[1]⟩Γ −D(2)⟨∇ξχ
(2)[2]⟩Y + Peϵ⟨uχ(2)[2]⟩Y

]
, (30e)

D(i) = ϕD(i)I+D(i)⟨∇ξχ
(i)[1]⟩Y − Peϵ⟨u⊗ χ(i)[1]⟩Y , (30f)

R(i) = Da
(i)
SLR, (30g)

R = ϕ
|Γ|
|B|

[
ϵ−1 +Da

(1)
SL⟨χ

(1)[2]⟩Γ +Da
(2)
SL⟨χ

(2)[2]⟩Γ
]
, (30h)

for i ∈ {1, 2}. In system (30), the four closure variables are found by solving the closure problems404
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Peϵ (u0 − ⟨u0⟩B) + Peϵu0 ·∇ξχ
(i)[1] −D(i)∇ξ ·

(
I+∇ξχ

(i)[1]
)
= 0 for ξ ∈ B, (31a)

subject to405

−n ·D(i)
(
I+∇ξχ

(i)[1]
)
= 0 for ξ ∈ Γ, (31b)

and406

−|Γ|
|B|

+ Peϵu0 ·∇ξχ
(i)[2] −D(i)∇2

ξχ
(i)[2] = 0 for ξ ∈ B, (32a)

subject to407

−n ·D(i)∇ξχ
(i)[2] = 1 for ξ ∈ Γ. (32b)

We note that even for Pe = 0, the homogenized equations differ from those derived in the work408

of Bourbatache et al. (Bourbatache et al., 2020). In comparison to the previous problem, similar con-409

tributions to the effective velocities U(i) are found; however, the effective reaction rates R(i) contain ad-410

ditional contributions that account for the heterogeneous reactions involving the opposing solute (i.e.,411

R(1) contains Da
(2)
SL⟨χ(2)[2]⟩Γ and R(2) contains Da

(1)
SL⟨χ(1)[2]⟩Γ). As a result, not only do the terms R(1)⟨c(1)⟩Y412

and R(2)⟨c(2)⟩Y couple the homogenized equations, but the effective reaction rates R(i) induce a coupling413

between the averaged reactive mass transport behavior of the solutes through the closure variables.414

In addition to the coupling induced by the reaction terms, V(1) ·∇x⟨c(2)⟩Y and V(2) ·∇x⟨c(1)⟩Y415

appear in the homogenized equations for ⟨c(1)⟩Y and ⟨c(2)⟩Y , respectively, due to the moderate reaction416

rates. These terms induce emergent behaviors in the system through nontrivial couplings within their417

corresponding homogenized equations, as they consider the gradient of the opposing solute in an advective-418

like fashion. While V(1) and V(2) have similar forms to the reaction induced contributions in the effec-419

tive velocities U(i), they each contain contributions that consider the scalar closure variable of the cor-420

responding species (i.e., V(1) contains −Da
(2)
SLD

(1)⟨∇ξχ
(1)[2]⟩Y +Da

(2)
SLPeϵ⟨uχ(1)[2]⟩Y and V(2) contains421

−Da
(1)
SLD

(2)⟨∇ξχ
(2)[2]⟩Y +Da

(1)
SLPeϵ⟨uχ(2)[2]⟩Y ), and a contribution that considers the vector closure vari-422

able of the opposing species (i.e., V(1) contains ϕDa
(2)
SL

|Γ|
|B| ⟨χ

(2)[1]⟩Γ and V(2) contains ϕDa
(1)
SL

|Γ|
|B| ⟨χ

(1)[1]⟩Γ).423

As in the case of the effective reaction rate, these contributions induce a coupling between the averaged424

reactive mass transport behavior of the solutes through the closure variables in the effective parameters425

V(i). Because the contributions have similar forms to those in the previous problem, we interpret them426

in an analogous manner, and again note that they also demonstrate the early onset of a coupling between427

advective, diffusive, and reactive physics.428

Upon analyzing the homogenized model obtained through the generalized closure form strategy, we429

reemphasize and add to the point made by Iliev et al. (Iliev et al., 2020). The macroscopic equations de-430

rived for this problem are considerably different than their microscopic counterparts (system (26)) due431

to the emergent terms. These terms induce nontrivial couplings between the equations and disallow ho-432

mogenized models derived for slow reaction rates to accurately model systems with moderate reaction433

rates by simply fitting effective parameters. Furthermore, we highlight that new effective parameters V(i)
434

appeared with the emergent terms, and the contributions to R(i) and V(i) involve closure variables (i.e.,435

information about the advective, diffusive, and reactive physics) of the opposing solute, as previously noted436

in our analysis. Therefore, not only can macroscopic equations vastly differ from their microscopic coun-437

terparts due to emergent terms, but new effective parameters that inherently couple the macroscopic be-438

havior through the closure variables can appear with the emergent terms. As a result, predicting macro-439

scopic equations from their microscopic counterparts is nontrivial on multiple accounts: the equation forms440

can differ, the ratio of effective parameters to microscopic coefficients may not be one-to-one, and the ef-441

fective parameters can be inherently coupled to different physical transport mechanisms in the system442

through the closure variables (e.g., V(1), an effective parameter of ⟨c(1)⟩Y , depends on χ(2)[1], a closure443

variable of ⟨c(2)⟩Y ). Overall, these intricacies greatly support and push the boundary of the point made444

by Iliev et al. (Iliev et al., 2020), and for this reason, we again advise caution when assuming the form445

of macroscopic equations from the microscopic counterparts.446
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Table 4. The simulation and mesh parameters used to solve the various models and problems defined on the

pore-scale, unit-cell, and continuum domains for the two species system undergoing linear heterogeneous reactions.

Simulation and Mesh Parameters

General Parameters

ϵ = 0.05, D(1) = 1, D(2) = 2, Pe = 0,

Da
(1)
SL = ϵ−1/2, Da

(2)
SL = ϵ−1/2, ∆t = 10−4

Pore-scale Fluid Flow and Mass Transport

rϵ = 0.01, Nelem = 38617, max(∆x) = 0.0026

Homogenized Mass Transport

ϕ = 0.8744, Nelem = 4054, max(∆x) = 0.0078

Closure Problems and Unit-cell Fluid Flow

r = 0.2, Nelem = 44413, max(∆ξ) = 0.0099

4.2 Numerical Validation447

4.2.1 Problem Setup448

We now provide validation for the derived homogenized model (systems (30), (31), and (32)) by nu-449

merically resolving and comparing its solutions to the averaged solutions from the pore-scale model (sys-450

tem (26)). To provide a direct comparison with the work of Bourbatache et al., we consider Pe = 0 for451

the validation (Bourbatache et al., 2021). Similar to before, we use FEniCS to fully resolve the models452

on the pore-scale, unit-cell, and continuum domains found in Figure 1, which consider the 2D array of453

cylinders geometry. The discretization details for each mesh are presented in Table 4 with other simu-454

lation parameters. Again, the geometric specifications of each domain are outlined in Table 1; however,455

we note that ϵ = 0.05 in this validation, which differs from the previous problem.456

Regarding initial conditions, we consider discontinuous concentration profiles for each solute in the457

pore-scale simulation, where the concentrations are alternatively equal to 0 and 1 in the two halves of458

the domain. The corresponding initial conditions for the homogenized model are then obtained by av-459

eraging the pore-scale initial condition using the equation (22a). Further details regarding the simula-460

tion parameters, boundary conditions, and initial conditions can be found in Tables 4 and 5.461

4.2.2 Closure Problem Results462

Similar to before, the four closure problems described in systems (31) and (32) must be solved on463

the unit-cell domain prior to resolving the homogenized model. As shown in Figure 4, the components464

of χ(1)[1], [χ(1)[1]]1 and [χ(1)[1]]2, are plotted alongside χ(1)[2] in Figure 4(a), and the components of χ(2)[1],465

[χ(2)[1]]1 and [χ(2)[1]]2, are plotted alongside χ(2)[2] in Figure 4(b). The contours of [χ(i)[1]]1, [χ
(i)[1]]2,466

and χ(i)[2] for i ∈ {1, 2} have similar appearance to those of [χ[1]]1, [χ
[1]]2, and χ[2] from the first prob-467

lem (Figure 2(c)), but the presence of advection in the first problem slightly alters [χ[1]]1 from [χ(1)[1]]1468

and [χ(2)[1]]1. Additionally, we note that the magnitudes displayed by χ(2)[2] are less than those of χ(1)[2]
469

and χ[2]. We attribute this difference to the high diffusive constant D(2) (Table 4), which is the only dif-470

ference between the closure problems for χ(1)[2] and χ(2)[2] (system (32)).471

4.2.3 Pore-scale and Homogenized Model Results472

With the closure solutions, the pore-scale (system (26)) and homogenized (systems (30), (31), and473

(32)) models are solved. Upon doing so, the pore-scale solutions c
(1)
ϵ and c

(2)
ϵ are averaged using the av-474

eraging operator in equation (22a) to obtain the averaged pore-scale solutions ⟨c(1)ϵ ⟩Wϵ(x) and ⟨c(2)ϵ ⟩Wϵ(x).475

The absolute errors between the averaged pore-scale solutions and the respective homogenized solutions476

⟨c(1)⟩Y and ⟨c(2)⟩Y are then calculated using equation (24).477
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Table 5. The simulation boundary conditions and initial conditions used to solve the various problems on the

pore-scale, unit-cell, and continuum domains for the two species system undergoing linear heterogeneous reactions.

Here, H(x) is the Heaviside function and i ∈ {1, 2}.

Simulation Boundary Conditions

Pore-scale Mass Transport

c
(i)
ϵ

∣∣∣
∂Bw

ϵ

= c
(i)
ϵ

∣∣∣
∂Be

ϵ

n ·∇c
(i)
ϵ

∣∣∣
∂Bw

ϵ

= −n ·∇c
(i)
ϵ

∣∣∣
∂Be

ϵ

c
(i)
ϵ

∣∣∣
∂Bs

ϵ

= c
(i)
ϵ

∣∣∣
∂Bn

ϵ

n ·∇c
(i)
ϵ

∣∣∣
∂Bs

ϵ

= −n ·∇c
(i)
ϵ

∣∣∣
∂Bn

ϵ

Homogenized Mass Transport

⟨c(i)⟩Y
∣∣
∂Ωw = ⟨c(i)⟩Y

∣∣
∂Ωe n ·∇x⟨c(i)⟩Y

∣∣
∂Ωw = −n ·∇x⟨c(i)⟩Y

∣∣
∂Ωe

⟨c(i)⟩Y
∣∣
∂Ωs = ⟨c(i)⟩Y

∣∣
∂Ωn n ·∇x⟨c(i)⟩Y

∣∣
∂Ωs = −n ·∇x⟨c(i)⟩Y

∣∣
∂Ωn

Closure Problems

χ(i)[1]
∣∣
∂Bw = χ(i)[1]

∣∣
∂Be n ·∇ξχ

(i)[1]
∣∣
∂Bw = −n ·∇ξχ

(i)[1]
∣∣
∂Be

χ(i)[1]
∣∣
∂Bs = χ(i)[1]

∣∣
∂Bn n ·∇ξχ

(i)[1]
∣∣
∂Bs = −n ·∇ξχ

(i)[1]
∣∣
∂Bn

χ(i)[2]
∣∣
∂Bw = χ(i)[2]

∣∣
∂Be n ·∇ξχ

(i)[2]
∣∣
∂Bw = −n ·∇ξχ

(i)[2]
∣∣
∂Be

χ(i)[2]
∣∣
∂Bs = χ(i)[2]

∣∣
∂Bn n ·∇ξχ

(i)[2]
∣∣
∂Bs = −n ·∇ξχ

(i)[2]
∣∣
∂Bn

Simulation Initial Conditions

Pore-scale Mass Transport Homogenized Mass Transport

c
(1)
ϵ = H (−x) for (x, y) ∈ Bϵ, t = 0 ⟨c(i)⟩Y = ⟨c(i)ϵ ⟩Wϵ(x) for (x, y) ∈ Ω, t = 0

c
(2)
ϵ = H (x) for (x, y) ∈ Bϵ, t = 0

In a similar manner as before, the pore-scale, averaged pore-scale, and homogenized model results478

for the first and second solutes are presented in Figures 5 and 6, respectively. The qualitative compar-479

isons found in Figures 5(a) and 6(a) between averaged pore-scale and homogenized solutions show match-480

ing profiles along the x-direction, even at simulation times as early as t = t1 = 0.625×10−4. For simi-481

lar reasons as before, we note that the results in Figures 5(a) and 6(a) are independent of y, and the ini-482

tial conditions of the homogenized model (displayed at t = t0) show a sharp slope around x = 0 due483

to the averaging of the discontinuous pore-scale initial conditions using equation (22a).484

To provide quantitative comparisons, Figures 5(b) and 6(b) show the absolute errors between the485

averaged pore-scale and homogenized solutions along the x-direction calculated using equation (24). De-486

spite considering early times, the absolute errors remain below the upper error limits denoted by the red487

dotted lines for all times. In this regard, we compare our results with those of Bourbatache et al. (Bourbatache488

et al., 2021), who reported discrepancies between their macroscopic and microscopic models for the same489

problem at early simulation times, and offer the generalized closure form strategy as a solution to deriv-490

ing homogenized models in the moderately reactive regime. Ultimately, finding the absolute errors within491

the error limits predicted by homogenization theory provides confidence in the validity of the general-492

ized closure form strategy.493

Finally, contours of the pore-scale solutions at various times are presented in Figures 5(c) and 6(c).494

While the initial discontinuous concentration profiles are seen at t = t0, the reactive and diffusive mech-495

anisms of the problem can be seen at t = t1 through small gradients around the cylinders in the satu-496

rated regions and through the diffusion of the discontinuity in the initial concentration profiles, respec-497

tively. These mechanisms continue to act into t = t2 until the concentration profiles evolve towards uni-498

form steady-states, as in t = t3.499

With the numerical results presented in Figures 5 and 6, we again find that the generalized closure500

form strategy provides valid homogenized models for moderately reactive systems where diffusive and re-501

–20–



manuscript submitted to Water Resources Research

Figure 4. The numerical results of the closure problems for each solute in the system of two species undergoing

linear heterogeneous reactions. (a) The resulting closure solutions χ(1)[1] and χ(1)[2]. From left to right: [χ(1)[1]]1

the ξ-component of χ(1)[1], [χ(1)[1]]2 the η-component of χ(1)[1], and χ(1)[2]. (b) The resulting closure solutions

χ(2)[1] and χ(2)[2]. From left to right: [χ(2)[1]]1 the ξ-component of χ(2)[1], [χ(2)[1]]2 the η-component of χ(2)[1], and

χ(2)[2].

active terms are of similar orders, even at early times. Therefore, we offer this method as a more gen-502

eral approach to the classical homogenization procedure.503

5 Conclusion504

To summarize Part 1 of this series, we introduced a strategy for generalizing the closure form that505

increases the applicability of classical homogenization theory with only slight deviation from the tradi-506

tional procedure. As detailed in Appendix A and Appendix B, this strategy involves considering ordered507

solution forms as linear combinations of closure terms, which are chosen based on the equation for which508

closure is sought. As a result, multiple closure problems can be defined for a single homogenized equa-509

tion, whereas classical homogenization theory typically consist of only one closure problem per homog-510

enized equation. In our first problem, we considered a linear heterogeneous reaction with a moderate re-511

action rate, which cannot be handled by classical homogenization theory, and provided a demonstration512

for how our strategy can be implemented to homogenize the system. An analysis of the homogenized model513

then followed, where we emphasized that additional contributions to the effective velocity were found due514

to interactions between diffusive and reactive fluxes. These contributions do not vanish for Pe = 0 and515

indicate an early onset of coupling between diffusion and reaction, despite the effective reaction rate be-516

ing independent of diffusion and the effective dispersion tensor being independent of reaction. We then517

validated our homogenized model, and ultimately the generalized closure form strategy, by numerically518

solving the model and comparing the solution to the averaged pore-scale solution. Upon finding the ab-519

solute error within the upper error limit predicted by homogenization theory, we deemed the strategy and520

our homogenized model valid.521
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Figure 5. The numerical results of the first concentration in the system involving two species undergoing lin-

ear heterogeneous reactions. (a) The Wϵ(x)-averaged and Y -averaged concentration profiles from the pore-scale

(symbols) and homogenized (lines) models, respectively, at various times along the x-direction. (b) The absolute

error between the averaged concentration profiles of ⟨c(1)ϵ ⟩Wϵ(x) and ⟨c(1)⟩Y at various times along the x-direction.

The upper error limit predicted by the homogenized model is displayed by the red dotted line. (c) Contour plots

of the pore-scale concentration field c
(1)
ϵ at various times. Here, t0 = 0, t1 = 0.625 × 10−4, t2 = 9.375 × 10−4, and

t3 = 28.125× 10−4.

In the second problem, we applied the generalized closure form strategy to a system previously in-522

vestigated by Bourbatache et al. (Bourbatache et al., 2021) with advection, which consisted of two species523

undergoing linear heterogeneous reactions in the moderately reactive regime. After detailing the homog-524

enization procedure using the generalized closure form strategy in Appendix B, we obtained a homog-525

enized model consisting of terms that induce emergent behaviors through nontrivial couplings. The new526

effective parameters that appeared with these emergent terms rely on the closure variables of both so-527

lutes, which indicates an inherent coupling between the new effective parameters and the behavior of the528

different system components. Ultimately, this furthers the argument that macroscopic equations do not529

always take the form of their microscopic counterpart and can be nontrivial. Upon numerically solving530

the homogenized model and comparing its solution to the averaged pore-scale solution, we again found531

qualitative and quantitative evidence that the homogenized model captures the behavior of the averaged532

pore-scale solution within the upper error limit predicted by homogenization theory, even for early times.533

This further validates the presented generalized closure form strategy.534

In light of the numerical evidence validating the nontrivial homogenized models and their effective535

parameters, we deem the generalized closure form strategy valid and offer it as a standard homogeniza-536

tion method that generalizes the classical approach. As we will demonstrate in Part 2 of this series, an537

algorithmic procedure can be developed for efficient implementation of the strategy using automated (sym-538

bolic) upscaling frameworks like Symbolica. By encoding this procedure, automated frameworks will be539

capable of automatically defining closure forms and closure problems based on the provided equations,540

with no a priori postulations of closure forms and no human interference. We believe this ability will be541
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Figure 6. The numerical results of the second concentration in the system involving two species undergoing

linear heterogeneous reactions. (a) The Wϵ(x)-averaged and Y -averaged concentration profiles from the pore-scale

(symbols) and homogenized (lines) models, respectively, at various times along the x-direction. (b) The absolute

error between the averaged concentration profiles of ⟨c(2)ϵ ⟩Wϵ(x) and ⟨c(2)⟩Y at various times along the x-direction.

The upper error limit predicted by the homogenized model is displayed by the red dotted line. (c) Contour plots

of the pore-scale concentration field c
(2)
ϵ at various times. Here, t0 = 0, t1 = 0.625 × 10−4, t2 = 9.375 × 10−4, and

t3 = 28.125× 10−4.

invaluable for further development, generalization, and utilization of automated upscaling frameworks542

that utilize symbolic computing.543
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Appendix A Homogenization of a Linear Heterogeneous Reaction: One-Species548

In this Appendix, we provide the detailed derivation of the homogenized system (19) from the pore-549

scale system (14). The strategy to construct a more general closure form for c1 (equation (17)) is also550

explicitly discussed.551

A1 Homogenization552

Upon expanding the spatial operators, temporal operators, and dependent variables using equations553

(10), (12), and system (13), we simplify system (14) to554

ϵ−2

[
∂c0
∂τ2

+∇ξ ·
(
Pe(s)u0c0 −D∇ξc0

)]
+ϵ−1

[
∂c0
∂τ1

+
∂c1
∂τ2

+∇x ·
(
Pe(s)u0c0 −D∇ξc0

)
+∇ξ ·

(
Pe(s)u1c0 + Pe(s)u0c1 −D∇xc0 −D∇ξc1

)]
+ϵ0

[
∂c0
∂t

+
∂c1
∂τ1

+
∂c2
∂τ2

+∇x ·
(
Pe(s)u1c0 + Pe(s)u0c1 −D∇xc0 −D∇ξc1

)
+∇ξ ·

(
Pe(s)u2c0 + Pe(s)u1c1 + Pe(s)u0c2 −D∇xc1 −D∇ξc2

)]
= O (ϵ) for x ∈ Ω, ξ ∈ B,

(A1a)

subject to555

ϵ−1 [−n ·D∇ξc0] + ϵ0 [−n ·D (∇xc0 +∇ξc1)] + ϵ [−n ·D (∇xc1 +∇ξc2)]

= ϵ0
[
Da(s)

(
c0 − θ(s)

)]
+ ϵ
[
Da(s)c1

]
+O

(
ϵ2
)

for x ∈ Ω, ξ ∈ Γ,
(A1b)

where Pe(s) ≡ Peϵ ∼ O(ϵ0), Da(s) ≡ Da ∼ O(ϵ0), and θ(s) ≡ θ ∼ O(ϵ0) are used to track where the di-556

mensionless numbers appear in the final homogenized model. In addition to the mass transport equation,557

we find it useful to simplify equation (6b) using equations (10) and (13b), such that558

ϵ−1 [∇ξ · u0] + ϵ0 [∇x · u0 +∇ξ · u1] + ϵ [∇x · u1 +∇ξ · u2] = O
(
ϵ2
)

for x ∈ Ω, ξ ∈ B. (A2)

We now create a system of differential equations from system (A1) by considering the terms at each or-559

der of ϵ independently.560

A11 Terms of Order O
(
ϵ−2

)
561

After collecting the leading order terms in system (A1), we gain562

∂c0
∂τ2

+∇ξ ·
(
Pe(s)u0c0 −D∇ξc0

)
= 0 for x ∈ Ω, ξ ∈ B, (A3a)

subject to the leading order boundary condition (i.e., at O(ϵ−1))563

−n ·D∇ξc0 = 0 for x ∈ Ω, ξ ∈ Γ. (A3b)

By applying the averaging operator ⟨·⟩B (equation (11)) to equation (A3a), we implement the divergence564

theorem on both the diffusive and advective flux terms. While the boundary condition (equation (A3b))565

is applied through the diffusive flux, we enforce the no-slip condition and consider that u0 and c0 are pe-566

riodic in ξ to simplify the advective flux and gain567

∂⟨c0⟩B
∂τ2

= 0 for x ∈ Ω. (A4)
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As shown in equation (A4), if our hypotheses regarding the magnitudes of the dimensionless parameters568

and periodicity of the system are correct, we find that the zeroth order average concentration should not569

vary on the smallest time scale according to homogenization theory (i.e., vary with τ2(t)). We empha-570

size that this is not a limitation of homogenization theory, but rather a result of upholding our initial hy-571

potheses and remaining within the applicability conditions considered. This highlights the importance572

of ensuring that the dynamics of a system do not violate the underlying hypotheses at any time; other-573

wise, the homogenized model will be invalid for analyzing the system.574

After briefly analyzing equation (A2) to obtain ∇ξ · u0 = 0 from the O(ϵ−1) terms, we rewrite575

system (A3) as576

∂c0
∂τ2

+ Pe(s)u0 ·∇ξc0 −∇ξ · (D∇ξc0) = 0 for x ∈ Ω, ξ ∈ B, (A5a)

subject to577

−n ·D∇ξc0 = 0 for x ∈ Ω, ξ ∈ Γ. (A5b)

Considering initial conditions for c0 that are independent of ξ, we find c0 to be independent of τ2. It then578

follows from the homogeneity of the system that c0 is independent of ξ, and therefore c0 ≡ c0(t,x, τ1(t)).579

This coincides with the familiar leading order result of classical homogenization theory, where the fastest580

time variable (i.e., τ2(t)) is typically not introduced for the sake of brevity.581

A12 Terms of Order O(ϵ−1)582

At the following order, we collect terms from system (A1) to write583

∂c0
∂τ1

+
∂c1
∂τ2

+∇x ·
(
Pe(s)u0c0 −D∇ξc0

)
+∇ξ ·

(
Pe(s)u1c0 + Pe(s)u0c1 −D∇xc0 −D∇ξc1

)
= 0 for x ∈ Ω, ξ ∈ B,

(A6a)

subject to the boundary condition (i.e., at O(ϵ0))584

−n ·D (∇xc0 +∇ξc1) = Da(s)
(
c0 − θ(s)

)
for x ∈ Ω, ξ ∈ Γ. (A6b)

Again, we apply the averaging operator ⟨·⟩B (equation (11)) to equation (A6a), implement the divergence585

theorem, and apply the boundary condition (equation (A6b)) and no-slip condition to the equation. We586

also consider that u0, u1, and c1 are periodic in ξ to simplify the equation to587

∂c0
∂τ1

+
∂⟨c1⟩B
∂τ2

+ Pe(s)⟨u0⟩B ·∇xc0 +Da(s)
|Γ|
|B|

(
c0 − θ(s)

)
= 0 for x ∈ Ω. (A7)

As shown, equation (A7) describes how c0 and ⟨c1⟩B vary with fast time variables τ1(t) and τ2(t), respec-588

tively.589

Now, we return to equation (A2) and conclude that ∇x · u0 = 0 from the O(ϵ0) terms after ap-590

plying the averaging operator ⟨·⟩B, the divergence theorem, and assuming u1 is periodic in ξ with the591

no-slip condition. Ultimately, this leads to ∇ξ · u1 = 0 as well. After subtracting equation (A7) from592

equation (A6a), we gain593

∂c1
∂τ2

− ∂⟨c1⟩B
∂τ2

+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc0 −Da(s)
|Γ|
|B|

(
c0 − θ(s)

)
+Pe(s)u0 ·∇ξc1 −D∇ξ · (∇xc0 +∇ξc1) = 0 for x ∈ Ω, ξ ∈ B,

(A8)

subject to the boundary condition previously presented in equation (A6b). Here, we note that through594

brief analysis of equations (A8) and (A6b), the traditionally used closure form c1 = χ·∇xc0+c1, where595
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χ ≡ χ(ξ) is the closure variable and c1 ≡ c1(t,x, τ (t)) = ⟨c1⟩B is the average of the first-order con-596

centration over B (which implies ⟨χ⟩B = 0), cannot be used to separate scales and create a valid clo-597

sure problem, i.e., a problem where the only independent variable is ξ. This is due to the reaction terms598

that exist in both the equation and boundary condition, which are not dotted with ∇xc0. However, due599

to the linearity of equations (A8) and (A6b), we can simply assume a solution of the form c1 = c
[1]
1 +600

c
[2]
1 and linearly separate the system to consider the terms multiplied by (c0−θ(s)) and the terms dot-601

ted with ∇xc0 independently. In doing so, we obtain602

∂c
[1]
1

∂τ2
− ∂⟨c[1]1 ⟩B

∂τ2
+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc0 + Pe(s)u0 ·∇ξc

[1]
1

−D∇ξ ·
(
∇xc0 +∇ξc

[1]
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(A9a)

subject to603

−n ·D
(
∇xc0 +∇ξc

[1]
1

)
= 0 for x ∈ Ω, ξ ∈ Γ, (A9b)

which considers the terms dotted by ∇xc0, and604

∂c
[2]
1

∂τ2
− ∂⟨c[2]1 ⟩B

∂τ2
−Da(s)

|Γ|
|B|

(
c0 − θ(s)

)
+ Pe(s)u0 ·∇ξc

[2]
1 −D∇2

ξc
[2]
1 = 0 for x ∈ Ω, ξ ∈ B, (A10a)

subject to605

−n ·D∇ξc
[2]
1 = Da(s)

(
c0 − θ(s)

)
for x ∈ Ω, ξ ∈ Γ, (A10b)

which considers the terms multiplied by (c0−θ(s)). By assuming different closure forms for c
[1]
1 and c

[2]
1 ,606

two closure problems can be created (i.e., one from system (A9) and one from system (A10)) to accom-607

modate all terms in equations (A8) and (A6b). Here, we let608

c
[1]
1 = χ[1] ·∇xc0 + c

[1]
1 , (A11a)

c
[2]
1 =

(
c0 − θ(s)

)
χ[2] + c

[2]
1 , (A11b)

where χ[1] ≡ χ[1](ξ) is the vector closure variable for c
[1]
1 , χ[2] ≡ χ[2](ξ) is the scalar closure variable609

for c
[2]
1 , c

[1]
1 ≡ c

[1]
1 (t,x, τ (t)) = ⟨c[1]1 ⟩B is the average of the first component to the first-order concen-610

tration over B, and c
[2]
1 ≡ c

[2]
1 (t,x, τ (t)) = ⟨c[2]1 ⟩B is the average of the second component to the first-611

order concentration over B. Similar to before, we note that ⟨χ[1]⟩B = 0 and ⟨χ[2]⟩B = 0. We also note612

that due to the lack of dependency on τ2 in the equations, we find it suitable to assume c
[1]
1 and c

[2]
1 are613

the only parts of c
[1]
1 and c

[2]
1 that depend on τ2. Upon substituting equation (A11a) into system (A9)614

and equation (A11b) into system (A10), we can write the closure problems as615

Pe(s) (u0 − ⟨u0⟩B) + Pe(s)u0 ·∇ξχ
[1] −D∇ξ ·

(
I+∇ξχ

[1]
)
= 0 for ξ ∈ B, (A12a)

subject to616

−n ·D
(
I+∇ξχ

[1]
)
= 0 for ξ ∈ Γ, (A12b)

and617

−Da(s)
|Γ|
|B|

+ Pe(s)u0 ·∇ξχ
[2] −D∇2

ξχ
[2] = 0 for ξ ∈ B, (A13a)
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subject to618

−n ·D∇ξχ
[2] = Da(s) for ξ ∈ Γ. (A13b)

From the derived closure problems, we physically interpret χ[2] as a function that provides correction to619

the reactive flux due to the presence of microscopic geometry and high advection, similar to how χ[1] pro-620

vides correction to the diffusive flux. Finally, we note that the full closure form of c1 to be used through-621

out the rest of the homogenization procedure is written as622

c1 = χ[1] ·∇xc0 +
(
c0 − θ(s)

)
χ[2] + c1, (A14)

where c1 ≡ c
[1]
1 +c

[2]
1 . As demonstrated, linearly separating equations (A8) and (A6b) and generalizing623

the assumed closure form of c1 as a linear combination of closure terms allows for valid closure problems624

to be created in scenarios where the traditionally assumed closure form fails.625

A13 Terms of Order O(ϵ0)626

Finally, we collect terms of O(ϵ0) from system (A1) to write627

∂c0
∂t

+
∂c1
∂τ1

+
∂c2
∂τ2

+∇x ·
(
Pe(s)u1c0 + Pe(s)u0c1 −D∇xc0 −D∇ξc1

)
+∇ξ ·

(
Pe(s)u2c0 + Pe(s)u1c1 + Pe(s)u0c2 −D∇xc1 −D∇ξc2

)
= 0 for x ∈ Ω, ξ ∈ B,

(A15a)

subject to the boundary condition (i.e., at O(ϵ))628

−n ·D (∇xc1 +∇ξc2) = Da(s)c1 for x ∈ Ω, ξ ∈ Γ. (A15b)

After substituting in the solution for c1 (equation (A14)), we again apply the averaging operator ⟨·⟩B (equa-629

tion (11)) to equation (A15a) and implement the divergence theorem to incorporate the boundary con-630

dition (equation (A15b)) and apply the no-slip condition. Further simplifications regarding the period-631

icity of the dependent variables in ξ are also made to write equation (A15a) as632

∂c0
∂t

+
∂c1
∂τ1

+
∂⟨c2⟩B
∂τ2

+

[
Pe(s)

(
⟨u1⟩B + ⟨u0χ

[2]⟩B
)
+Da(s)

|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩B

]
·∇xc0

+Pe(s)⟨u0⟩B ·∇xc1

−∇x ·
[(

DI+D⟨∇ξχ
[1]⟩B − Pe(s)⟨u0 ⊗ χ[1]⟩B

)
·∇xc0

]
+Da(s)

|Γ|
|B|

[(
c0 − θ(s)

)
⟨χ[2]⟩Γ + c1

]
= 0 for x ∈ Ω.

(A16)

We now add equations (A4), (A7), and (A16), and make the substitutions Pe(s) = Peϵ, Da(s) = Da,633

and θ(s) = θ, to obtain634

ϵ−2 ∂c0
∂τ2

+ ϵ−1

(
∂c0
∂τ1

+
∂c1
∂τ2

)
+

∂c0
∂t

+
∂c1
∂τ1

+
∂⟨c2⟩B
∂τ2

+Pe [⟨u0⟩B ·∇xc0 + ϵ (⟨u1⟩B ·∇xc0 + ⟨u0⟩B ·∇xc1)]

+

[
Da

|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩B + Peϵ⟨u0χ

[2]⟩B
]
·∇xc0

−∇x ·
[(

DI+D⟨∇ξχ
[1]⟩B − Peϵ⟨u0 ⊗ χ[1]⟩B

)
·∇xc0

]
+Da

|Γ|
|B|

[
(c0 − θ) ⟨χ[2]⟩Γ +

(
1

ϵ
c0 + c1

)
− 1

ϵ
θ

]
= 0 for x ∈ Ω.

(A17)
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Considering the expansions635

∂⟨c⟩B
∂t

= ϵ−2 ∂c0
∂τ2

+ ϵ−1

(
∂c0
∂τ1

+
∂c1
∂τ2

)
+

∂c0
∂t

+
∂c1
∂τ1

+
∂⟨c2⟩B
∂τ2

+O (ϵ) , (A18a)

Pe⟨u⟩B ·∇x⟨c⟩B = Pe [⟨u0⟩B ·∇xc0 + ϵ (⟨u1⟩B ·∇xc0 + ⟨u0⟩B ·∇xc1)] +O (ϵ) , (A18b)

⟨c⟩B = c0 + ϵc1 +O
(
ϵ2
)
, (A18c)

⟨u⟩B = u0 +O (ϵ) , (A18d)

obtained using equations (10), (12), and system (13), we can simplify equation (A17) to write the homog-636

enized model in system (19) as637

ϕ
∂⟨c⟩Y
∂t

+U ·∇x⟨c⟩Y −∇x · (D ·∇x⟨c⟩Y ) + R
(
ϕ⟨c⟩Y − ϕ2θ

)
= O (ϵ) for x ∈ Ω, (A19a)

U = Pe⟨u⟩Y + ϕDa
|Γ|
|B|

⟨χ[1]⟩Γ −D⟨∇ξχ
[2]⟩Y + Peϵ⟨uχ[2]⟩Y , (A19b)

D = ϕDI+D⟨∇ξχ
[1]⟩Y − Peϵ⟨u⊗ χ[1]⟩Y , (A19c)

R = Da
|Γ|
|B|

[
ϵ−1 + ⟨χ[2]⟩Γ

]
, (A19d)

where χ[1] is found by solving system (A12), χ[2] is found by solving system (A13), and we have used ⟨·⟩B =638

ϕ−1⟨·⟩Y to convert the averaging operators. We emphasize that these equations are valid when Pe ∼ O(ϵ−1),639

Da ∼ O(ϵ0), and θ ∼ O(ϵ0).640

With the homogenized model, we reiterate that generalizing the closure form as a linear combina-641

tion of closure terms allowed the moderately reactive case considered to be homogenized. While the clas-642

sical treatment of heterogeneous reactions is limited to slow reaction rates (i.e., Da ≤ O(ϵ)) (Municchi643

& Icardi, 2020), we were able to linearly separate the inhomogeneous terms of equations (A8) and (A6b)644

such that two valid closure problems could be defined with an appropriate closure form for c1. The ho-645

mogenization procedure could then be completed with little deviation from the classical treatment.646

Appendix B Homogenization of a Linear Heterogeneous Reaction: Two-Species647

In this Appendix, we provide the detailed derivation of the homogenized system (30) from the pore-648

scale system (26). Again, the strategy to construct general closure forms for c
(1)
1 and c

(2)
1 (system (29))649

is explicitly discussed in detail.650

B1 Homogenization651

Upon expanding the spatial operators, temporal operators, and dependent variables using equations652

(10), (12), and system (13), we simplify system (26) to653
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ϵ−2

[
∂c

(1)
0

∂τ2
+∇ξ ·

(
Pe(s)u0c

(1)
0 −D(1)∇ξc

(1)
0

)]

+ϵ−1

[
∂c

(1)
0

∂τ1
+

∂c
(1)
1

∂τ2
+∇x ·

(
Pe(s)u0c

(1)
0 −D(1)∇ξc

(1)
0

)
+∇ξ ·

(
Pe(s)u1c

(1)
0 + Pe(s)u0c

(1)
1 −D(1)∇xc

(1)
0 −D(1)∇ξc

(1)
1

)]
+ϵ0

[
∂c

(1)
0

∂t
+

∂c
(1)
1

∂τ1
+

∂c
(1)
2

∂τ2
+∇x ·

(
Pe(s)u1c

(1)
0 + Pe(s)u0c

(1)
1 −D(1)∇xc

(1)
0 −D(1)∇ξc

(1)
1

)
+∇ξ ·

(
Pe(s)u2c

(1)
0 + Pe(s)u1c

(1)
1 + Pe(s)u0c

(1)
2 −D(1)∇xc

(1)
1 −D(1)∇ξc

(1)
2

)]
= O (ϵ) for x ∈ Ω, ξ ∈ B,

(B1a)

ϵ−2

[
∂c

(2)
0

∂τ2
+∇ξ ·

(
Pe(s)u0c

(2)
0 −D(2)∇ξc

(2)
0

)]

+ϵ−1

[
∂c

(2)
0

∂τ1
+

∂c
(2)
1

∂τ2
+∇x ·

(
Pe(s)u0c

(2)
0 −D(2)∇ξc

(2)
0

)
+∇ξ ·

(
Pe(s)u1c

(2)
0 + Pe(s)u0c

(2)
1 −D(2)∇xc

(2)
0 −D(2)∇ξc

(2)
1

)]
+ϵ0

[
∂c

(2)
0

∂t
+

∂c
(2)
1

∂τ1
+

∂c
(2)
2

∂τ2
+∇x ·

(
Pe(s)u1c

(2)
0 + Pe(s)u0c

(2)
1 −D(2)∇xc

(2)
0 −D(2)∇ξc

(2)
1

)
+∇ξ ·

(
Pe(s)u2c

(2)
0 + Pe(s)u1c

(2)
1 + Pe(s)u0c

(2)
2 −D(2)∇xc

(2)
1 −D(2)∇ξc

(2)
2

)]
= O (ϵ) for x ∈ Ω, ξ ∈ B,

(B1b)

subject to654

ϵ−1
[
−n ·D(1)∇ξc

(1)
0

]
+ ϵ0

[
−n ·D(1)

(
∇xc

(1)
0 +∇ξc

(1)
1

)]
+ ϵ
[
−n ·D(1)

(
∇xc

(1)
1 +∇ξc

(1)
2

)]
= ϵ0

[
Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0

]
+ ϵ
[
Da

(1,s)
SL c

(1)
1 −Da

(2,s)
SL c

(2)
1

]
+O

(
ϵ2
)

for x ∈ Ω, ξ ∈ Γ,
(B1c)

ϵ−1
[
−n ·D(2)∇ξc

(2)
0

]
+ ϵ0

[
−n ·D(2)

(
∇xc

(2)
0 +∇ξc

(2)
1

)]
+ ϵ
[
−n ·D(2)

(
∇xc

(2)
1 +∇ξc

(2)
2

)]
= ϵ0

[
Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0

]
+ ϵ
[
Da

(2,s)
SL c

(2)
1 −Da

(1,s)
SL c

(1)
1

]
+O

(
ϵ2
)

for x ∈ Ω, ξ ∈ Γ,
(B1d)

where Pe(s) ≡ Peϵ ∼ O(ϵ0), Da
(1,s)
SL ≡ Da

(1)
SL ∼ O(ϵ0), and Da

(2,s)
SL ≡ Da

(2)
SL ∼ O(ϵ0) are used to track655

where the dimensionless numbers appear in the final homogenized model. Similar to before, we simplify656

equation (6b) using equations (10) and (13b), such that657

ϵ−1 [∇ξ · u0] + ϵ0 [∇x · u0 +∇ξ · u1] + ϵ [∇x · u1 +∇ξ · u2] = O
(
ϵ2
)

for x ∈ Ω, ξ ∈ B. (B2)

We now create a system of differential equations from system (B1) by considering the terms at each or-658

der of ϵ independently.659

B11 Terms of Order O
(
ϵ−2

)
660

After collecting the leading order terms in system (B1), we gain661

∂c
(1)
0

∂τ2
+∇ξ ·

(
Pe(s)u0c

(1)
0 −D(1)∇ξc

(1)
0

)
= 0 for x ∈ Ω, ξ ∈ B, (B3a)
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∂c
(2)
0

∂τ2
+∇ξ ·

(
Pe(s)u0c

(2)
0 −D(2)∇ξc

(2)
0

)
= 0 for x ∈ Ω, ξ ∈ B, (B3b)

subject to the leading order boundary conditions (i.e., at O(ϵ−1))662

−n ·D(1)∇ξc
(1)
0 = 0 for x ∈ Ω, ξ ∈ Γ, (B3c)

−n ·D(2)∇ξc
(2)
0 = 0 for x ∈ Ω, ξ ∈ Γ. (B3d)

Similar to before, we apply the averaging operator ⟨·⟩B (equation (11)) to equations (B3a)-(B3b) and im-663

plement the divergence theorem on both the diffusive and advective flux terms. While the boundary con-664

ditions (equations (B3c)-(B3d)) are applied through the diffusive flux, we enforce the no-slip condition665

and consider that u0 and c0 are periodic in ξ to simplify the advective flux and gain666

∂⟨c(1)0 ⟩B
∂τ2

= 0 for x ∈ Ω, (B4a)

∂⟨c(2)0 ⟩B
∂τ2

= 0 for x ∈ Ω. (B4b)

Again, we find these equations to be results of upholding the initial hypotheses regarding the magnitudes667

of the dimensionless parameters and the periodicity of the system. Then, considering ∇ξ·u0 = 0 from668

the O(ϵ−1) terms of equation (B2), initial conditions that are independent of ξ, and the homogeneity of669

the system, we find c
(1)
0 = c

(1)
0 (t,x, τ1(t)) and c

(2)
0 = c

(2)
0 (t,x, τ1(t)).670

B12 Terms of Order O(ϵ−1)671

At the following order, we collect terms from system (B1) to write672

∂c
(1)
0

∂τ1
+

∂c
(1)
1

∂τ2
+∇x ·

(
Pe(s)u0c

(1)
0 −D(1)∇ξc

(1)
0

)
+∇ξ ·

(
Pe(s)u1c

(1)
0 + Pe(s)u0c

(1)
1 −D(1)∇xc

(1)
0 −D(1)∇ξc

(1)
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(B5a)

∂c
(2)
0

∂τ1
+

∂c
(2)
1

∂τ2
+∇x ·

(
Pe(s)u0c

(2)
0 −D(2)∇ξc

(2)
0

)
+∇ξ ·

(
Pe(s)u1c

(2)
0 + Pe(s)u0c

(2)
1 −D(2)∇xc

(2)
0 −D(2)∇ξc

(2)
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(B5b)

subject to the boundary conditions (i.e., at O(ϵ0))673

−n ·D(1)
(
∇xc

(1)
0 +∇ξc

(1)
1

)
= Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0 for x ∈ Ω, ξ ∈ Γ, (B5c)

−n ·D(2)
(
∇xc

(2)
0 +∇ξc

(2)
1

)
= Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0 for x ∈ Ω, ξ ∈ Γ. (B5d)

Again, we apply the averaging operator ⟨·⟩B (equation (11)) to equations (B5a)-(B5b), implement the674

divergence theorem, and apply the boundary conditions (equations (B5c)-(B5d)) and no-slip condition675

to the equations. In doing so, we consider u0, u1, and c1 as periodic in ξ to simplify the system to676

∂c
(1)
0

∂τ1
+

∂⟨c(1)1 ⟩B
∂τ2

+ Pe(s)⟨u0⟩B ·∇xc
(1)
0 +

|Γ|
|B|

(
Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0

)
= 0 for x ∈ Ω, (B6a)
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∂c
(2)
0

∂τ1
+

∂⟨c(2)1 ⟩B
∂τ2

+ Pe(s)⟨u0⟩B ·∇xc
(2)
0 +

|Γ|
|B|

(
Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0

)
= 0 for x ∈ Ω. (B6b)

Similar to before, system (B6) describes how the zeroth and averaged first order concentrations vary with677

fast time variables τ1(t) and τ2(t), respectively. It is worth noting that a steady state can exist (i.e., when678

∂c
(i)
0 /∂τ1 = 0 and ∂⟨c(i)1 ⟩B/∂τ2 = 0 for i ∈ {1, 2}), but is not required for all times, as implied by equa-679

tion (30) in the work of Bourbatache et al. (Bourbatache et al., 2020). This difference is a result of con-680

sidering additional time scales in the derivation.681

Returning to equation (B2), we apply the averaging operator ⟨·⟩B and the divergence theorem to682

the O(ϵ0) terms, and assume u1 is periodic in ξ with the no-slip condition to conclude that ∇x ·u0 =683

0. Ultimately, this lead to ∇ξ·u1 = 0 as well. Then, we subtract equation (B6a) from equation (B5a),684

and equation (B6b) from equation (B5b) to gain685

∂c
(1)
1

∂τ2
− ∂⟨c(1)1 ⟩B

∂τ2
+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc

(1)
0 − |Γ|

|B|

(
Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0

)
+Pe(s)u0 ·∇ξc

(1)
1 −∇ξ ·

(
D(1)∇xc

(1)
0 +D(1)∇ξc

(1)
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(B7a)

∂c
(2)
1

∂τ2
− ∂⟨c(2)1 ⟩B

∂τ2
+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc

(2)
0 − |Γ|

|B|

(
Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0

)
+Pe(s)u0 ·∇ξc

(2)
1 −∇ξ ·

(
D(2)∇xc

(2)
0 +D(2)∇ξc

(2)
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(B7b)

subject to the boundary conditions in equations (B5c)-(B5d). Due to the linearity of the system, we again686

assume solutions of the form c
(i)
1 = c

(i)[1]
1 + c

(i)[2]
1 , for i ∈ {1, 2}, and linearly separate the systems.687

While the separated equations for c
(i)[1]
1 and c

(i)[2]
1 may be found in Appendix C, we provide the assumed688

solution forms as689

c
(1)
1 = χ(1)[1] ·∇xc

(1)
0 +

(
Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0

)
χ(1)[2] + c

(1)
1 , (B8a)

c
(2)
1 = χ(2)[1] ·∇xc

(2)
0 +

(
Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0

)
χ(2)[2] + c

(2)
1 , (B8b)

and the closure problems for the four closure variables as690

Pe(s) (u0 − ⟨u0⟩B) + Pe(s)u0 ·∇ξχ
(i)[1] −D(i)∇ξ ·

(
I+∇ξχ

(i)[1]
)
= 0 for ξ ∈ B, (B9a)

subject to691

−n ·D(i)
(
I+∇ξχ

(i)[1]
)
= 0 for ξ ∈ Γ, (B9b)

and692

−|Γ|
|B|

+ Pe(s)u0 ·∇ξχ
(i)[2] −D(i)∇2

ξχ
(i)[2] = 0 for ξ ∈ B, (B10a)

subject to693

−n ·D(i)∇ξχ
(i)[2] = 1 for ξ ∈ Γ. (B10b)
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B13 Terms of Order O(ϵ0)694

Finally, we collect terms of O(ϵ0) from system (B1) to write695

∂c
(1)
0

∂t
+

∂c
(1)
1

∂τ1
+

∂c
(1)
2

∂τ2
+∇x ·

(
Pe(s)u1c

(1)
0 + Pe(s)u0c

(1)
1 −D(1)∇xc

(1)
0 −D(1)∇ξc

(1)
1

)
+∇ξ ·

(
Pe(s)u2c

(1)
0 + Pe(s)u1c

(1)
1 + Pe(s)u0c

(1)
2 −D(1)∇xc

(1)
1 −D(1)∇ξc

(1)
2

)
= 0 for x ∈ Ω, ξ ∈ B,

(B11a)

∂c
(2)
0

∂t
+

∂c
(2)
1

∂τ1
+

∂c
(2)
2

∂τ2
+∇x ·

(
Pe(s)u1c

(2)
0 + Pe(s)u0c

(2)
1 −D(2)∇xc

(2)
0 −D(2)∇ξc

(2)
1

)
+∇ξ ·

(
Pe(s)u2c

(2)
0 + Pe(s)u1c

(2)
1 + Pe(s)u0c

(2)
2 −D(2)∇xc

(2)
1 −D(2)∇ξc

(2)
2

)
= 0 for x ∈ Ω, ξ ∈ B,

(B11b)

subject to the boundary conditions (i.e., at O(ϵ))696

−n ·D(1)
(
∇xc

(1)
1 +∇ξc

(1)
2

)
= Da

(1,s)
SL c

(1)
1 −Da

(2,s)
SL c

(2)
1 for x ∈ Ω, ξ ∈ Γ, (B11c)

−n ·D(2)
(
∇xc

(2)
1 +∇ξc

(2)
2

)
= Da

(2,s)
SL c

(2)
1 −Da

(1,s)
SL c

(1)
1 for x ∈ Ω, ξ ∈ Γ. (B11d)

After substituting in the solutions for c
(i)
1 (system (B8)), we again apply the averaging operator ⟨·⟩B (equa-697

tion (11)) to equations (B11a)-(B11b), and implement the divergence theorem to incorporate the bound-698

ary conditions (equations (B11c)-(B11d)) and the no-slip condition. Further simplifications regarding the699

periodicity of the dependent variables in ξ are also made to write700

∂c
(1)
0

∂t
+

∂c
(1)
1

∂τ1
+

∂⟨c(1)2 ⟩B
∂τ2

+
[
Pe(s)

(
⟨u1⟩B +Da

(1,s)
SL ⟨u0χ

(1)[2]⟩B
)

+Da
(1,s)
SL

|Γ|
|B|

⟨χ(1)[1]⟩Γ −Da
(1,s)
SL D(1)⟨∇ξχ

(1)[2]⟩B
]
·∇xc

(1)
0 + Pe(s)⟨u0⟩B ·∇xc

(1)
1

−Da
(2,s)
SL

[
|Γ|
|B|

⟨χ(2)[1]⟩Γ −D(1)⟨∇ξχ
(1)[2]⟩B + Pe(s)⟨u0χ

(1)[2]⟩B
]
·∇xc

(2)
0

−∇x ·
[(

D(1)I+D(1)⟨∇ξχ
(1)[1]⟩B − Pe(s)⟨u0 ⊗ χ(1)[1]⟩B

)
·∇xc

(1)
0

]
+Da

(1,s)
SL

|Γ|
|B|

[
Da

(1,s)
SL ⟨χ(1)[2]⟩Γ +Da

(2,s)
SL ⟨χ(2)[2]⟩Γ

]
c
(1)
0

−Da
(2,s)
SL

|Γ|
|B|

[
Da

(1,s)
SL ⟨χ(1)[2]⟩Γ +Da

(2,s)
SL ⟨χ(2)[2]⟩Γ

]
c
(2)
0

+Da
(1,s)
SL

|Γ|
|B|

c
(1)
1 −Da

(2,s)
SL

|Γ|
|B|

c
(2)
1 = 0 for x ∈ Ω,

(B12a)
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∂c
(2)
0

∂t
+

∂c
(2)
1

∂τ1
+

∂⟨c(2)2 ⟩B
∂τ2

+
[
Pe(s)

(
⟨u1⟩B +Da

(2,s)
SL ⟨u0χ

(2)[2]⟩B
)

+Da
(2,s)
SL

|Γ|
|B|

⟨χ(2)[1]⟩Γ −Da
(2,s)
SL D(2)⟨∇ξχ

(2)[2]⟩B
]
·∇xc

(2)
0 + Pe(s)⟨u0⟩B ·∇xc

(2)
1

−Da
(1,s)
SL

[
|Γ|
|B|

⟨χ(1)[1]⟩Γ −D(2)⟨∇ξχ
(2)[2]⟩B + Pe(s)⟨u0χ

(2)[2]⟩B
]
·∇xc

(1)
0

−∇x ·
[(

D(2)I+D(2)⟨∇ξχ
(2)[1]⟩B − Pe(s)⟨u0 ⊗ χ(2)[1]⟩B

)
·∇xc

(2)
0

]
+Da

(2,s)
SL

|Γ|
|B|

[
Da

(2,s)
SL ⟨χ(2)[2]⟩Γ +Da

(1,s)
SL ⟨χ(1)[2]⟩Γ

]
c
(2)
0

−Da
(1,s)
SL

|Γ|
|B|

[
Da

(2,s)
SL ⟨χ(2)[2]⟩Γ +Da

(1,s)
SL ⟨χ(1)[2]⟩Γ

]
c
(1)
0

+Da
(2,s)
SL

|Γ|
|B|

c
(2)
1 −Da

(1,s)
SL

|Γ|
|B|

c
(1)
1 = 0 for x ∈ Ω.

(B12b)

We now add equations (B4a), (B6a), and (B12a) together, and equations (B4b), (B6b), and (B12b) to-701

gether. Upon making the substitutions Pe(s) = Peϵ, Da
(1,s)
SL = Da

(1)
SL, and Da

(2,s)
SL = Da

(2)
SL, we obtain702

ϵ−2 ∂c
(1)
0

∂τ2
+ ϵ−1

(
∂c

(1)
0

∂τ1
+

∂c
(1)
1

∂τ2

)
+

∂c
(1)
0

∂t
+

∂c
(1)
1

∂τ1
+

∂⟨c(1)2 ⟩B
∂τ2

+Pe
[
⟨u0⟩B ·∇xc

(1)
0 + ϵ

(
⟨u1⟩B ·∇xc

(1)
0 + ⟨u0⟩B ·∇xc

(1)
1

)]
+Da

(1)
SL

[
|Γ|
|B|

⟨χ(1)[1]⟩Γ −D(1)⟨∇ξχ
(1)[2]⟩B + Peϵ⟨u0χ

(1)[2]⟩B
]
·∇xc

(1)
0

−Da
(2)
SL

[
|Γ|
|B|

⟨χ(2)[1]⟩Γ −D(1)⟨∇ξχ
(1)[2]⟩B + Peϵ⟨u0χ

(1)[2]⟩B
]
·∇xc

(2)
0

−∇x ·
[(

D(1)I+D(1)⟨∇ξχ
(1)[1]⟩B − Peϵ⟨u0 ⊗ χ(1)[1]⟩B

)
·∇xc

(1)
0

]
+Da

(1)
SL

|Γ|
|B|

[
Da

(1)
SL⟨χ

(1)[2]⟩Γ +Da
(2)
SL⟨χ

(2)[2]⟩Γ
]
c
(1)
0

−Da
(2)
SL

|Γ|
|B|

[
Da

(1)
SL⟨χ

(1)[2]⟩Γ +Da
(2)
SL⟨χ

(2)[2]⟩Γ
]
c
(2)
0

+ϵ−1Da
(1)
SL

|Γ|
|B|

[
c
(1)
0 + ϵc

(1)
1

]
− ϵ−1Da

(2)
SL

|Γ|
|B|

[
c
(2)
0 + ϵc

(2)
1

]
= 0 for x ∈ Ω,

(B13a)

ϵ−2 ∂c
(2)
0

∂τ2
+ ϵ−1

(
∂c

(2)
0

∂τ1
+

∂c
(2)
1

∂τ2

)
+

∂c
(2)
0

∂t
+

∂c
(2)
1

∂τ1
+

∂⟨c(2)2 ⟩B
∂τ2

+Pe
[
⟨u0⟩B ·∇xc

(2)
0 + ϵ

(
⟨u1⟩B ·∇xc

(2)
0 + ⟨u0⟩B ·∇xc

(2)
1

)]
+Da

(2)
SL

[
|Γ|
|B|

⟨χ(2)[1]⟩Γ −D(2)⟨∇ξχ
(2)[2]⟩B + Peϵ⟨u0χ

(2)[2]⟩B
]
·∇xc

(2)
0

−Da
(1)
SL

[
|Γ|
|B|

⟨χ(1)[1]⟩Γ −D(2)⟨∇ξχ
(2)[2]⟩B + Peϵ⟨u0χ

(2)[2]⟩B
]
·∇xc

(1)
0

−∇x ·
[(

D(2)I+D(2)⟨∇ξχ
(2)[1]⟩B − Peϵ⟨u0 ⊗ χ(2)[1]⟩B

)
·∇xc

(2)
0

]
+Da

(2)
SL

|Γ|
|B|

[
Da

(2)
SL⟨χ

(2)[2]⟩Γ +Da
(1)
SL⟨χ

(1)[2]⟩Γ
]
c
(2)
0

−Da
(1)
SL

|Γ|
|B|

[
Da

(2)
SL⟨χ

(2)[2]⟩Γ +Da
(1)
SL⟨χ

(1)[2]⟩Γ
]
c
(1)
0

+ϵ−1Da
(2)
SL

|Γ|
|B|

[
c
(2)
0 + ϵc

(2)
1

]
− ϵ−1Da

(1)
SL

|Γ|
|B|

[
c
(1)
0 + ϵc

(1)
1

]
= 0 for x ∈ Ω.

(B13b)

Considering the expansions703
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∂⟨c(i)⟩B
∂t

= ϵ−2 ∂c
(i)
0

∂τ2
+ ϵ−1

(
∂c

(i)
0

∂τ1
+

∂c
(i)
1

∂τ2

)
+

∂c
(i)
0

∂t
+

∂c
(i)
1

∂τ1
+

∂⟨c(i)2 ⟩B
∂τ2

+O (ϵ) , (B14a)

Pe⟨u⟩B ·∇x⟨c(i)⟩B = Pe
[
⟨u0⟩B ·∇xc

(i)
0 + ϵ

(
⟨u1⟩B ·∇xc

(i)
0 + ⟨u0⟩B ·∇xc

(i)
1

)]
+O (ϵ) , (B14b)

⟨c(i)⟩B = c
(i)
0 + ϵc

(i)
1 +O

(
ϵ2
)
, (B14c)

⟨u⟩B = u0 +O (ϵ) , (B14d)

obtained using equations (10), (12), and system (13), for i ∈ {1, 2}, we can simplify system (B13) to704

write the homogenized system as705

ϕ
∂⟨c(1)⟩Y

∂t
+U(1) ·∇x⟨c(1)⟩Y −V(1) ·∇x⟨c(2)⟩Y −∇x ·

(
D(1) ·∇x⟨c(1)⟩Y

)
= R(2)⟨c(2)⟩Y − R(1)⟨c(1)⟩Y +O (ϵ) for x ∈ Ω,

(B15a)

ϕ
∂⟨c(2)⟩Y

∂t
+U(2) ·∇x⟨c(2)⟩Y −V(2) ·∇x⟨c(1)⟩Y −∇x ·

(
D(2) ·∇x⟨c(2)⟩Y

)
= R(1)⟨c(1)⟩Y − R(2)⟨c(2)⟩Y +O (ϵ) for x ∈ Ω,

(B15b)

where the effective parameters are defined as706

U(i) = Pe⟨u⟩Y +Da
(i)
SL

[
ϕ
|Γ|
|B|

⟨χ(i)[1]⟩Γ −D(i)⟨∇ξχ
(i)[2]⟩Y + Peϵ⟨uχ(i)[2]⟩Y

]
, (B15c)

V(1) = Da
(2)
SL

[
ϕ
|Γ|
|B|

⟨χ(2)[1]⟩Γ −D(1)⟨∇ξχ
(1)[2]⟩Y + Peϵ⟨uχ(1)[2]⟩Y

]
, (B15d)

V(2) = Da
(1)
SL

[
ϕ
|Γ|
|B|

⟨χ(1)[1]⟩Γ −D(2)⟨∇ξχ
(2)[2]⟩Y + Peϵ⟨uχ(2)[2]⟩Y

]
, (B15e)

D(i) = ϕD(i)I+D(i)⟨∇ξχ
(i)[1]⟩Y − Peϵ⟨u⊗ χ(i)[1]⟩Y , (B15f)

R(i) = Da
(i)
SLR, (B15g)

R = ϕ
|Γ|
|B|

[
ϵ−1 +Da

(1)
SL⟨χ

(1)[2]⟩Γ +Da
(2)
SL⟨χ

(2)[2]⟩Γ
]
, (B15h)

for i ∈ {1, 2}. We note that Da
(1)
SL and Da

(2)
SL are left in the homogenized model, but are required to be707

of order O(ϵ0). As shown, we successfully homogenized the system for moderate reaction rates using the708

generalized closure form strategy.709

Appendix C Linearly Separated Systems for c
(i)[1]
1 and c

(i)[2]
1710

In this Appendix, we provide the linearly separated systems from the first order system of differ-711

ential equations (system (B7)) in the second problem.712
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C1 Linearly Separated System for c
(1)[1]
1713

∂c
(1)[1]
1

∂τ2
− ∂⟨c(1)[1]1 ⟩B

∂τ2
+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc

(1)
0 + Pe(s)u0 ·∇xc

(1)[1]
1

−∇ξ ·
(
D(1)∇xc

(1)
0 +D(1)∇ξc

(1)[1]
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(C1)

−n ·D(1)
(
∇xc

(1)
0 +∇ξc

(1)[1]
1

)
= 0 for x ∈ Ω, ξ ∈ Γ, (C2)

C2 Linearly Separated System for c
(1)[2]
1714

∂c
(1)[2]
1

∂τ2
− ∂⟨c(1)[2]1 ⟩B

∂τ2
− |Γ|

|B|

(
Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0

)
+ Pe(s)u0 ·∇xc

(1)[2]
1

−∇ξ ·
(
D(1)∇ξc

(1)[2]
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(C3)

−n ·D(1)∇ξc
(1)[2]
1 = Da

(1,s)
SL c

(1)
0 −Da

(2,s)
SL c

(2)
0 for x ∈ Ω, ξ ∈ Γ, (C4)

C3 Linearly Separated System for c
(2)[1]
1715

∂c
(2)[1]
1

∂τ2
− ∂⟨c(2)[1]1 ⟩B

∂τ2
+ Pe(s) (u0 − ⟨u0⟩B) ·∇xc

(2)
0 + Pe(s)u0 ·∇xc

(2)[1]
1

−∇ξ ·
(
D(2)∇xc

(2)
0 +D(2)∇ξc

(2)[1]
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(C5)

−n ·D(2)
(
∇xc

(2)
0 +∇ξc

(2)[1]
1

)
= 0 for x ∈ Ω, ξ ∈ Γ, (C6)

C4 Linearly Separated System for c
(2)[2]
1716

∂c
(2)[2]
1

∂τ2
− ∂⟨c(2)[2]1 ⟩B

∂τ2
− |Γ|

|B|

(
Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0

)
+ Pe(s)u0 ·∇xc

(2)[2]
1

−∇ξ ·
(
D(2)∇ξc

(2)[2]
1

)
= 0 for x ∈ Ω, ξ ∈ B,

(C7)

−n ·D(2)∇ξc
(2)[2]
1 = Da

(2,s)
SL c

(2)
0 −Da

(1,s)
SL c

(1)
0 for x ∈ Ω, ξ ∈ Γ. (C8)
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