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Abstract 10 

Ozone (O3) levels in East China suffered from rapid increases during the COVID-19 period. To 11 

clarify the reason for the O3 increase, a continuous campaign was performed in a typical industrial 12 

city in North China Plain (NCP). Meanwhile, the machine-learning technique and the box model 13 

were employed to reveal the mechanisms of O3 increase from the perspective of meteorology and 14 

photochemical process, respectively. The result suggested that the ambient O3 level in Tangshan 15 

increased from 18.7 ± 4.63 to 45.6 ± 8.52 μg/m3 (143%) after COVID-19 lockdown, and the 16 

emission reduction and meteorology contributed to 77% and 66% of this increment, respectively. 17 

The higher wind speed (WS) coupled with regional transport played a significant role on O3 increase 18 

(30.8 kg/s). The O3 sensitivity verified that O3 production was highly volatile organic compounds 19 

(VOC)-sensitive (Relative incremental reactivity (RIR): 0.75), while the NOx showed the negative 20 

impact on O3 production in Tangshan (RIR: -0.59). It suggested that the control of VOCs rather than 21 

NOx might be more effective in reducing O3 level in Tangshan because it was located on the VOC-22 

limited regime. Besides, both of ozone formation potential (OFP) analysis and observation-based 23 

model (OBM) demonstrated that the alkenes (36.3 ppb) and anthropogenic oxygenated volatile 24 

organic compounds (OVOCs) (15.2 ppb) showed the higher OFP compared with other species, and 25 

their reactions released a large number of HO2 and RO2 radicals. Moreover, the concentrations of 26 

these species did not experience marked decreases after COVID-19 lockdown, which were major 27 

contributors to O3 increase during this period. This study underlines the necessity of controlling 28 

alkenes and OVOCs in NCP.  29 

Plain summary 30 
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In order to prevent the spread of COVID-19 pandemic, Chinese government imposed strict 31 

lockdown measures to restraint human activities since 23 January 2020. Primary emissions of air 32 

pollutants experienced dramatic decreases. However, the O3 concentrations in Tangshan during this 33 

period suffered from substantial increases (143%). On the one hand, the regional transport of 34 

surrounding area promoted local O3 elevation (30.8 kg/s). On the other hand, the decreases of VOC 35 

concentrations especially alkenes and OVOCs were smaller than NOx, and Tangshan was located in 36 

the VOC-limited regime. The overlapping effect led to the dramatic increase of ambient O3 level in 37 

Tangshan. Therefore, the combined emission reduction of NOx and VOCs especially alkenes and 38 

OVOCs is beneficial to mitigate O3 pollution. 39 

1. Introduction 40 

In December 2019, a tragic coronavirus (COVID-19) has spread worldwide causing over 6.33 41 

million deaths as of this writing. In order to combat the further spread of COVID-19, Chinese 42 

government imposed many unconventional and stringent control measures. Nearly all of the 43 

provinces launched full-lockdown responses from 23 January to the early February, 2020.  44 

During this period, many strict lockdown measures including the shutdown of industries and 45 

non-essential businesses, curfews, and quarantines necessarily resulted in the reduction of 46 

anthropogenic pollutant emissions. In turn, the dramatic decreases of primary emissions led to 47 

marked changes of air pollutant concentrations. For instance, Zhao et al. (2020) reported that the 48 

concentrations of PM2.5, PM10, SO2, and NO2 across China decreased by 13.7%, 21.8%, 4.6%, and 49 

46.1%, respectively. Compared with aerosols and gaseous precursors, the concentration decreases 50 

of secondary inorganic ions were not remarkable. Li et al. (2021b) confirmed that the sulfate level 51 

in Tangshan only decreased by 6% after COVID-19 lockdown. Surprisingly, marginal increases in 52 

O3 were observed in many cities across East China (e.g., Wuhan, Shanghai), which seems to be in 53 

contrast to the changes of most other air pollutants (Saha et al., 2022; Venter et al., 2020). As a 54 

photochemical product, elevated O3 levels often enhanced the atmospheric oxidation capacity (AOC) 55 

and exerted hazardous impacts on human health and ecosystem (Liu et al., 2022). The exploration 56 

of key driving forces for O3 pollution has become a hot topic for scientific community. During 57 

COVID-19 period, VOCs and NOx levels experienced substantial changes due to strict emission 58 

control measures, and both of these compositions further affected radical chemistry and O3 change 59 

(Goldberg et al., 2022; Nussbaumer et al., 2022). It provided us an unprecedent opportunity to fill 60 



the knowledge gap about the responses of O3 and radical chemistry to the drastic changes of 61 

precursor emissions, which facilitated the optimization of emission control strategy.  62 

It was well known that the O3 level was often affected by the comprehensive impacts of 63 

meteorological conditions, precursor emissions, and photochemical processes (Li et al., 2022). 64 

Therefore, it is essential to distinguish the contributions of meteorological parameters and emission 65 

change firstly, and then to figure out the O3 formation mechanisms and sensitivity. Unfavorable 66 

meteorological condition was often considered to be the key factor for the O3 increase (Yin et al., 67 

2021; Zhang et al., 2022b). Gong et al. (2018) revealed that daily maximum temperature was major 68 

driving factor responsible for the national O3 pollution. Besides, RH, WS, and solar radiation also 69 

played significant roles on the O3 pollution especially in summer and autumn (Chen et al., 2019). 70 

To date, some researchers have employed chemical transport models (CTMs) and statistical models 71 

to distinguish the contributions of meteorological conditions and emission changes to O3 pollution. 72 

Zhao et al. (2020) utilized Weather Research and Forecasting (WRF) model and the Community 73 

Multiscale Air Quality (CMAQ) model to reveal that the contribution of meteorological factor to O3 74 

increase in some megacities (e.g., Beijing, Shanghai, Guangzhou) during COVID-19 period ranged 75 

from 15% to 65%. Later on, Wang et al. (2020b) applied machine-learning models to assess the 76 

contribution of meteorological condition to O3 pollution in six megacities of China and the result 77 

was in good agreement with study based on CTMs. Unfortunately, these pioneering studies did not 78 

analyze the independent impact of each meteorological parameter on O3 increase during the 79 

pandemic and the dominant meteorological factor were scarcely revealed. Furthermore, the 80 

contribution of regional transport to O3 pollution at the fine scale was also less quantified. Compared 81 

with the simple separation of meteorology and emission, the detailed assessment was favorable to 82 

the effective implementation of O3 pollution prevention policy under the circumstance of different 83 

meteorological conditions.   84 

Apart from the impact of meteorological factors, the photochemical processes played important 85 

roles on the ambient O3. As a novel technique to analyze the reasons of O3 pollution, OBMs have 86 

been widely applied to investigate O3-VOC-NOx relationships and radical chemistry. The method 87 

about O3 sensitivity to VOCs and NOx also have been established to uncover O3 formation 88 

mechanisms and pollution control strategies. Up to date, many studies have employed this advanced 89 

technique to determine the key formation pathways of ambient O3. Liu et al. (2019) analyzed the 90 



budget of ambient O3 in Hong Kong in the autumn of 2007, 2013, and 2016 and found the 91 

contribution of HO2 + NO only accounted for 56 ± 1 % of the total O3 production. However, Liu et 92 

al. (2022) estimated that the contribution ratio of HO2 + NO reached 68 ± 4 % in the autumn of 93 

Xiamen. The O3 formation pathway varied greatly in different cities and seasons, which might be 94 

strongly dependent on primary emission, the ratio of volatile organic compounds and nitrogen 95 

oxides (VOC/NOx), AOC, and radical chemistry. Up to date, most of the current studies focused on 96 

the O3 formation mechanisms and radical chemistry in summer and autumn, while few studies 97 

clarified the reasons for O3 pollution events in winter. In fact, winter also suffered from substantial 98 

increase of O3 concentration such as COVID-19 period. Unfortunately, only Zhang et al. (2022a) 99 

applied this method to determine the source-sink mechanism of atmospheric O3 during COVID-19 100 

period. Moreover, this study ignored the contributions of alkanes and most alkenes to O3 pollution. 101 

Although the OFP value of alkanes was generally lower than alkenes and oxygenated volatile 102 

organic compounds (OVOCs), the absolute concentrations of ambient alkanes were often largely 103 

higher than alkenes and OVOCs. Thus, the neglect of alkanes might underestimate the ozone 104 

production and could mislead the diagnosis of ozone sensitivity regimes. In addition, most of the 105 

previous studies focused on O3 pollution analysis in megacities (e.g., Beijing and Hong Kong) and 106 

coastal cities (e.g., Xiamen), whereas the impact of emission reduction on O3 pollution and radical 107 

chemistry in a heavy industrial city still remained unknown. 108 

As a typical heavy industrial city in NCP, Tangshan possessed many energy-intensive 109 

industries including coal-fired power plants, non-ferrous smelting industries, and cement factories. 110 

According to previous estimates, the anthropogenic VOC emissions in Tangshan reached about 2.35 111 

× 105 t yr−1 (Zhou et al., 2014). Li et al. (2019) further estimated OFP of these released VOCs and 112 

found the total OFP in Tangshan (> 150 Gg-O3/grid) in 2017 was significantly higher than those in 113 

most cities over China. Hence, it is highly imperative to clarify local O3 formation mechanisms and 114 

radical chemistry. Major aims of this study are to clarify (1) the VOCs and O3 pollution 115 

characteristics after COVID-19 lockdown; (2) the impact of meteorological condition on O3 116 

increase in Tangshan; (3) AOC and radical chemistry during pandemic period; and (4) the O3 117 

formation mechanisms and sensitivity. The results are expected to offer scientific evidence for 118 

formulating refined ozone management policy. 119 

2. Materials and methods 120 



2.1 Field measurement 121 

The field campaign about the observation of hourly meteorological factors, VOCs, O3, and 122 

other gaseous pollutants was performed at a supersite in Tangshan during 1 January-7 February, 123 

2020 (Figure S1). The sampling site was located in the center of urban, Tangshan. It is surrounded 124 

by residential and commercial areas. Some energy-intensive industries were around 50 kilometers 125 

away from this supersite. The meteorological factors including air temperature (T), P, RH, WS, and 126 

wind direction (WD) were measured by a weather station with a sonic anemometer (150WX, Airmar, 127 

USA). O3, SO2, NO2, and CO levels were measured by commercial trace gas analyzer TEI 49i, 43i, 128 

42i, and 48i (Thermo Fisher Scientific, USA), respectively. The HONO concentration was measured 129 

by Monitoring Aerosols and Gases in Ambient Air (MARGA; ADI 2080). A gas chromatography-130 

mass spectrometer (GC-FID/MS) was applied to monitor at least 50 species of VOC concentrations 131 

with a 1 h time resolution (Table S1). The quality assurance of O3, SO2, NO2, and CO was performed 132 

based on HJ 630-2011 specifications. The limits of detection (LODs), precisions and accuracies of 133 

the VOC analyses were 4-9 ppt, 2%, and 5%, respectively. All of these techniques have been widely 134 

used in previous studies, and some detailed descriptions have been documented in our companion 135 

paper (Li et al., 2021).  136 

2.2 Deweathered model 137 

The ambient O3 concentration was affected by the comprehensive impacts of meteorological 138 

conditions and emissions. In order to distinguish the separate contributions of emission and 139 

meteorology, a random forest (RF) approach was utilized to serve as the site-specific modeling 140 

platform (Chen et al., 2018). The hourly O3 level was regarded as the dependent variables, while 141 

the meteorological factors including T, P, RH, WS, and WD, and time predictors (year, day of year 142 

(DOY), day of week (DOW), hour) served as the independent variables. The 10-fold cross-143 

validation algorithm was applied to examine the performance of this approach. The original dataset 144 

was randomly classified into a training dataset (90% of the original dataset) for developing the RF 145 

model and the remained 10% was regarded as the test dataset. After the establishment of the RF 146 



model, the deweathered algorithm was used to estimate the O3 level at a specific time point (e.g., 147 

2020/02/05 16:00). The difference of observed O3 level and deweathered O3 level was treated as the 148 

concentrations contributed by meteorology. Some typical statistical indexes such as R2 value, RMSE, 149 

and MAE could be treated as the major criteria to evaluate the modelling performance. In general, 150 

the RF model with the R2 value higher than 0.50 was considered to be the reliable result. In our 151 

study, some hyperparameters such as the number of trees (ntree), number of samples (nsample) and 152 

the minimal node size in RF model was set as 500, 500, and 5. 153 

2.3 GAM model 154 

The RF model cannot assess the isolated impact of each meteorological parameter on ambient 155 

O3 concentration. Therefore, the GAM model was further applied to quantify the isolated effect. 156 

The detailed algorithm of the GAM model was as follows: 157 

( ) ( )i ig a f X= +μ       (1) 158 

where μ=E(Y|X1,X2……Xm); g(μ) represents the contiguous function; fp is the smooth function; 159 

Xp denotes the independent variables. 160 

2.4 GEOS-Chem model 161 

In order to assess the impact of regional transport on O3 pollution in Tangshan, the GEOS-162 

Chem model (v12-01) driven by GEOS‐FP assimilated meteorological data was employed to 163 

simulate the ambient O3 level during 1 January-7 February, 2020. The GEOS‐Chem model included 164 

detailed ozone‐NOx‐VOC‐PM‐halogen tropospheric chemistry. The nested grid version of the 165 

model with a horizontal resolution of 0.25° × 0.3125° was used. The anthropogenic emission 166 

inventory in 2019 was collected from Community Emissions Data System (CEDS)(Hoesly et al., 167 

2018). Then, the emission inventory in 2020 was calculated based on that in 2019 and updated 168 

adjustment factor proposed by (Doumbia et al., 2021). Natural emissions include open biomass 169 

burning, lightning, and soil release. Open fire emissions from GFED4 in 2019 were used for both 170 

of 2019 and 2020 simulations(Van Der Werf et al., 2017). Lightning NOX emission was constrained 171 

by the average of LIS/OTD satellite observations from 1995 to 2013(Hudman et al., 2012; Murray 172 

et al., 2012). The contributions of regional transport to ambient O3 before and after COVID-19 173 



lockdown could be quantified based on this model.  174 

2.5 Observation-based chemical box model 175 

In our study, OBM coupled with MCM v3.3.1 was applied to investigate the O3 formation 176 

mechanisms and the radical chemistry. More than 6700 chemical species and 17,000 reactions were 177 

included in this model. The observation parameters of the gaseous pollutants including O3, SO2, CO, 178 

HONO, NO, NO2, and VOCs, and meteorological parameters including T, RH, and P were utilized 179 

to constrain the model. In addition, the photolysis frequencies (J values) were also incorporated into 180 

the model, which was calculated as a function of solar zenith angle and altitude based on 181 

Tropospheric Ultraviolet and Visible (TUV) model. Before each simulation, the model was run for 182 

5 d as spin-up to ensure the stable state and modelling reliability. AOC was estimated based on the 183 

following equations: 184 

1
iY X i

i

AOC k Y X−

=

=     (2) 185 

where Yi represents the targeted pollutants (e.g., CH4, VOCs, and CO), X represents key oxidants 186 

(OH, NO3, and O3), and kYi-X denotes the rate constants for the reactions of Yi and X.  187 

The production reaction of O3 includes RO2+NO and HO2+NO, while the removal reaction of 188 

O3 involves O3 photolysis, O3+HO2, O3+OH, NO2+OH, NO3+VOCs, and O3+VOCs. The net O3 189 

production was equaled to the difference of P(O3) and L(O3). The detailed equations are as follows: 190 
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3 3 3( ) ( ) ( )N O P O L O= −     (5) 193 

where ki is the related reaction rate constant. P(O3), L(O3), and N(O3) denote the production, loss, 194 

and net production rate of ambient O3. 195 

As the quotient of O3 change ratio and precursor change ratio, RIR is defined to diagnose the 196 

O3 sensitivity to precursors. The detailed equation is as follows: 197 

3 3( ) / ( )

/

P O P O
RIR

Y Y


=


  (6) 198 

Where RIR reflects the relative incremental reactivity;   denotes the increase rate; Y represents 199 

the precursor of O3 formation. 200 



The index of agreement (IOA) was defined as an index to evaluate the modelling performance 201 

of OBM-master chemical mechanism (MCM). In general, the result could be considered to be robust 202 

when the IOA value was higher than 0.70. The IOA in our study reached 0.78. Thus, the performance 203 

of the OBM-MCM was acceptable. The detailed algorithm of IOA was introduced in Liu et al. (2019) 204 

and Liu et al. (2022). 205 

3. Results and discussion 206 

3.1 Overview of observations 207 

The temporal variations of meteorological parameters are depicted in Figure 1. During the 208 

whole observation period, the prevailing WD was northwestly. The hourly average T remained 209 

stable characteristic, while RH, P, and WS increased from 58.4%, 1019 hPa, and 0.91 m/s to 60.4%, 210 

1023 hPa, and 1.26 m/s after COVID-19 lockdown, respectively (Table S2). Compared with the pre-211 

lockdown period, the concentrations of SO2, CO, NO, NO2, and total VOCs (TVOCs) decreased by 212 

0.92%, 2.49%, 85.2%, 41.2%, and 41.5% during COVID-19 period, respectively. However, the O3 213 

concentration increased by 143% after COVID-19 lockdown. Nearly all of the gaseous pollutants 214 

except O3 displayed decreasing trend after COVID-19 lockdown. It was assumed that many strict 215 

lockdown measures such as partial or complete closure of international borders and nonessential 216 

businesses, and restricted citizen mobility largely reduced the precursor emissions (Goldberg et al., 217 

2020; Venter et al., 2020). Besides, the increased RH and WS were beneficial to the secondary 218 

transformation from NOx to NO3
-, and the diffusion and advection of NOx, respectively (Huang et 219 

al., 2021; Li et al., 2021b). Both of these meteorological conditions promoted the decrease of 220 

ambient NOx concentration. Compared with NOx and TVOCs, SO2 and CO levels suffered from 221 

slight decreases. It was supposed that home order largely increased the residential emission 222 

(Doumbia et al., 2021; Saha et al., 2022; Zheng et al., 2020), which might offset the decreases of 223 

vehicle and industrial emissions. There are many reasons accounting for the substantial increase of 224 

ambient O3 concentration. Based on the rough analysis, the ratio of VOC/NOx during the business-225 

as-usual period was around 0.74, which could be defined as the VOC-limited region (Li et al., 226 

2021a). After COVID-19 lockdown period, the decreasing trend of NOx (59.1%) was much higher 227 

than that of TVOCs (41.2), which aggravated the rebound of O3 concentration. In addition, the 228 

increased P might exacerbate O3 pollution though T remained stable during COVID-19 period (Chen 229 

et al., 2019; Dong et al., 2020; Wang et al., 2022). 230 



The analysis of TVOC variation alone cannot reveal the O3 increase after COVID-19 lockdown, 231 

the detailed variations of VOC species was necessary. During the whole observation period, alkanes 232 

dominated the TVOC concentration with the hourly average concentration of 34.7±10.6 ppbv. 233 

Following alkanes, the alkenes and OVOCs accounted for 20.3% and 13.2% of TVOC 234 

concentrations, respectively (Figure 2 and S2). Compared with the business-as-usual period, the 235 

concentrations of alkanes, alkenes, aromatics, OVOCs, and other VOC species decreased by 44.5%, 236 

28.0%, 50.4%, 40.9%, and 48.3% after COVID-19 lockdown, respectively. The most significant 237 

drop was found in aromatics, which was similar to the result of Changzhou (Jensen et al., 2021). It 238 

might be associated with the drastic decreases in industrial activities and traffic volumes, which 239 

were major sources of ambient aromatics. As the key indicators of vehicular exhaust and industrial 240 

emission (Song et al., 2020; Zhang et al., 2016), the concentrations of toluene and benzene decreased 241 

by 62.8% and 68.6%, respectively. The result also demonstrated that the substantial decreases of 242 

traffic and industrial emissions were responsible for the significant aromatic decreases. However, 243 

the contribution ratios of VOC species suffered from different variation characteristics. The 244 

contribution ratio of alkanes, alkenes, aromatics, OVOCs, and other VOC species accounting for 245 

TVOC concentrations changed from 55.3%, 18.7%, 4.59%, 13.1%, and 8.23% to 52.5%, 23.0%, 246 

3.90%, 13.3%, and 7.27%, respectively. The result of the increase of alkenes ratio and the decrease 247 

of aromatics ratio was in good agreement with that in Nanjing (Wang et al., 2021). The increase of 248 

fraction of alkenes to TVOCs after COVID-19 lockdown might be linked with the emission source. 249 

It was well known that the alkenes might be derived from gasoline evaporation and petrochemical 250 

industries (Wang et al., 2021; Wang et al., 2020a). Some necessary petrochemical industries were 251 

not closed during the pandemic, which caused the slight decreases of alkenes concentrations.   252 

3.2 The impact of meteorology on ambient O3 253 

3.2.1 The isolated contribution of meteorology and emission to ambient O3 254 

Deweathered O3 concentration was estimated based on RF model after the normalization of 255 

meteorological parameters. The difference of observed O3 level and normalized O3 level represented 256 

the O3 concentration contributed by meteorology. As shown in Figure 3, the observed and 257 

normalized O3 concentrations increased from 18.7 ± 4.63 and 25.0 ± 5.75 μg/m3 to 45.6 ± 8.52 258 

μg/m3 and 44.3 ± 7.93 μg/m3 after COVID-19 lockdown, respectively. The ambient O3 level 259 

increased by 143% during COVID-19 period, and the emission reduction and meteorology 260 



contributed to 77% and 66% of this increment, respectively. The result suggested that the excessive 261 

NOx emission reduction and the increase of VOC/NOx ratio in the VOC-limited region might be the 262 

major factors for the substantial increase of ambient O3 level during the pandemic. In addition, the 263 

unfavorable meteorological conditions especially the increase of P and WS aggravated the O3 264 

pollution (Dong et al., 2020; Ning et al., 2020; Shu et al., 2020). 265 

3.2.2 The effect of each meteorological parameter on O3 pollution 266 

Although the machine-learning model can quantify the overall contribution of meteorological 267 

conditions to O3 pollution, the impact of each meteorological parameter on ambient O3 level still 268 

remained unknown. Therefore, the generalized additive model (GAM) was employed to capture the 269 

complex nonlinear relationships between O3 and its influencing factors. All of these explanatory 270 

variables including T, RH, P, and WS exerted significant nonlinear impacts on O3 level at the level 271 

of p < 0.01 and degrees of freedom > 1, indicating that each factor displayed statistical significance. 272 

The F values could reflect the importance of these variables, and these explanatory variables 273 

followed the order of WS (31.6) > T (24.6) > RH (16.3) > P (3.59). As depicted in Figure S3, T and 274 

RH showed positive and negative correlations with O3 concentrations, respectively. The result was 275 

in good agreement with Liu et al. (2022). Atmospheric O3 generally showed the higher 276 

concentrations when P was higher than 1025 hPa or lower than 1018 hPa. Among all of these 277 

meteorological parameters, WS showed the highest variable importance, and the higher WS was 278 

favorable for O3 regional transport. The GEOS-Chem modelling result also suggested that the 279 

average O3 flux induced by regional transport after COVID-19 lockdown reached 30.8 kg/s, while 280 

the mean O3 flux before pandemic only reached -5.62 kg/s. The contribution from regional transport 281 

changed from negative effect to positive effect after COVID-19 lockdown, which largely increased 282 

O3 level during this period. Overall, the combined effects of regional transport and local 283 

photochemical production might be responsible for the O3 increase.  284 

3.3 Chemistry perspective 285 

3.3.1 OFP variations of VOC species after COVID-19 lockdown 286 

The VOC species showed distinct reactivities, and thus the OFP value was applied to assess 287 

the contribution of active VOCs to ambient O3 formation. The OFP value equals to the concentration 288 

of each VOC species multiplying the ozone formation potential coefficient (MIR). It should be noted 289 

that the OFP value did not represent the absolute concentration of ambient O3, it only reflected the 290 



potential O3 from the VOC degradation. The temporal variations of VOC species are depicted in 291 

Figure 4. The total OFP value decreased from 77.2±37.6 to 49.5±26.8 ppb after COVID-19 292 

lockdown, indicating marked decreases of VOC reactivities due to drastic lockdown measures. 293 

Among all of VOC species, the OFP of aromatics (62.6%) experienced the most dramatic decrease 294 

owing to the decline of vehicle and industrial emissions (Doumbia et al., 2021). However, the OFP 295 

values of alkenes and OVOCs only suffered from 31.1% and 34.0% decreases during the pandemic, 296 

respectively. Therefore, the contribution ratios of alkenes and OVOCs to total OFP increased from 297 

55.6% and 23.7% during pre-lockdown period to 59.8% and 24.4% after COVID-19 lockdown, 298 

respectively. At first, alkenes and OVOCs were mainly generated from gasoline evaporation and 299 

secondary formation, respectively (Louie et al., 2013; Maji et al., 2020). Both of these VOC species 300 

were not sensitive to lockdown measures compared with alkanes and aromatics, both of which were 301 

mainly sourced from vehicle emission (Harrison et al., 2021; Mozaffar and Zhang, 2020). 302 

Furthermore, the secondary formation could largely compensate for the decrease in primary 303 

emissions of OVOCs (Huang et al., 2019). Moreover, the enhanced regional transport coupled with 304 

increased AOC was also beneficial to the secondary formation of OVOCs (Huang et al., 2020; Wu 305 

et al., 2020).  306 

Overall, it should be noted that the VOC/NOx ratio increased from 0.69 to 1.07 after COVID-307 

19 lockdown because the NOx emission suffered from more dramatic decrease during the pandemic. 308 

Meanwhile, the ambient O3 level also exhibited remarkable increase during the same period. The 309 

result suggested that the control of VOCs rather than NOx might be more effective in reducing ozone 310 

level in Tangshan. We further analyzed the contributions of various VOC species to O3 level, and 311 

found the increases in the contributions of alkenes and OVOCs to TVOCs largely elevated ambient 312 

O3 level. Therefore, the effective control of alkenes and OVOCs emissions facilitated the O3 313 

pollution alleviation. 314 

3.3.2 AOC and radical chemistry after COVID-19 lockdown 315 

In order to further explain the reason for O3 increase, two cases including pre-lockdown and 316 

lockdown periods were selected to analyze the detailed formation/removal mechanisms of O3 and 317 

radicals The IOA value of MCM reached 0.81, indicating the modelling performance was reliable 318 

(Chen et al., 2020). The simulated daytime OH concentration displayed a remarkable increase from 319 

0.60±0.41×106 to 1.49±0.98×106 molecules cm-3. It might be associated with the increased regional 320 



transport and solar radiation. Moreover, abundant primary pollutants might react with OH during 321 

business-as-usual period, which decreased the OH level. Meanwhile, we also estimated daytime 322 

AOC before and after COVID-19 lockdown. The result suggested that average daytime AOC 323 

increased from 0.97×106 molecules cm-3 s-1 to 1.34×107 molecules cm-3 s-1. The daytime AOC in the 324 

winter of Tangshan was significantly lower than that in autumn of Xiamen (6.7×107) and summer 325 

of Hong Kong (6.2×107) (Liu et al., 2022; Xue et al., 2016). It was supposed that the solar radiation 326 

in winter was much lower than that in summer and autumn (Jin et al., 2005; Tang et al., 2010). 327 

However, AOC in our study was significantly higher than that during the same period in Changzhou 328 

(Zhang et al., 2022a). As shown in Figure 5, the contribution of OH to AOC reached 85% during 329 

the whole study period, and thus the higher OH concentration in Tangshan was responsible for the 330 

higher AOC compared with Changzhou. 331 

Besides, we further analyzed the reason for OH increase after COVID-19 lockdown from the 332 

perspective of budget. OH was mainly generated from the reaction of HO2 + NO, accounting for 333 

61±10% and 76±15% of the total production during pre-lockdown and lockdown periods, 334 

respectively (Figure 6). Following the reaction of HO2+NO, the processes of HONO photolysis 335 

accounted for 36±9% and 22±7% of the total OH production during two cases, respectively. Other 336 

pathways including O(1D) + H2O, O3 + VOCs, and H2O2 photolysis only accounted minor 337 

contribution (< 5%) to OH formation. From the perspective of temporal variation, the formation rate 338 

from HO2 + NO increased from 0.68×107 during pre-lockdown period to 1.57 ×107 molecules cm-3 339 

s-1 during the pandemic. It might be associated with the excessive reduction of PM2.5 concentration 340 

because aerosol particles generally scavenged HO2 radicals (Shi and Brasseur, 2020). However, 341 

other formation pathways remained relatively stable characteristics after COVID-19 lockdown. The 342 

result indicated that HO2 + NO was considered to be the major pathway for the significant increase 343 

of OH level during the pandemic. 344 

Apart from the analysis of OH formation process, the change of OH loss pathway could also 345 

play an important role on the OH increase. It was well documented that OH was mainly depleted 346 

by four reactions with CO, VOCs, NO, and NO2. All of the loss reactions of OH during pre-347 

lockdown period were in the order of OH + NO (34±9%) > OH + NO2 (23±7%) = OH + VOCs 348 

(23±6%) > OH + CO (20±5%), while the loss pathways of OH after COVID-19 lockdown followed 349 

the order of OH + VOCs (43±11%) = OH + NO2 (22±8%) > OH + CO (18±6%) > OH + NO 350 



(17±3%). It should be noted that the contribution of NO to OH loss experienced dramatic decrease 351 

after COVID-19 lockdown because the strict lockdown measures largely decreased NO emission, 352 

which could be treated as a nonnegligible reason for the OH increase during the pandemic. Besides, 353 

we also found that the contribution ratio of OH + VOCs showed slight increase because the 354 

decreasing ratios of VOC species were relatively lower than those of NOx.  355 

3.3.3   The chemical mechanisms for O3 increase after COVID-19 lockdown 356 

The formation and loss pathways of O3 were depicted in Figure 7. The formation of ambient 357 

O3 was dominated by RO2 + NO and HO2 + NO. In our study, the daytime rate of HO2 + NO during 358 

pre-lockdown period reached 2.34 ± 1.08 ppb h-1, accounting for 61% of the total O3 production. 359 

The result was consistent with many previous studies because OH radical was the initiator of O3 360 

photochemical production. Following the pathway of HO2 + NO, RO2 + NO (1.48 ± 0.63 ppb h-1) 361 

was also an important pathway for the O3 formation, accounting for 39% of the total O3 production. 362 

After COVID-19 lockdown, the daytime rates of HO2+NO and RO2+NO exhibited significant 363 

increases by 61% and 53%, respectively. The loss rates of ambient O3 during pre-lockdown and 364 

lockdown periods showed similar characteristics and they followed the order of NO2 + OH (59% 365 

and 42%) > O3 photolysis (27% and 33%) > RO2 + NO2 (12% and 23%), whereas other pathways 366 

such as O3 + OH, O3 + HO2, O3 + VOCs, and NO3 + VOCs contributed limitedly. Although both of 367 

P(O3) and L(O3) displayed increases after COVID-19 lockdown, the increase of total O3 production 368 

was much higher than that of O3 loss. Thus, the net production rate of O3 increased from 2.78 ± 1.29 369 

to 4.58 ± 1.74 ppb h-1 after COVID-19 lockdown, which fully explained the rapid increase of 370 

ambient O3 level during the pandemic. Compared with the previous studies, the net production rate 371 

of O3 was much lower than those in summer or autumn of Xiamen (9.10 ± 5.70 ppb h-1) and 372 

Shanghai (26 ppb h-1), while it was slightly higher than that in winter of Shanghai (~4 ppb h-1). The 373 

difference was strongly dependent on the precursor emissions and photochemical conditions of O3 374 

formation. 375 

To examine the impacts of precursor emissions on O3 production, RIR technique was applied 376 

to diagnose the O3 sensitivity to precursors (Figure 8). First of all, all of the VOCs were classified 377 

into anthropogenic hydrocarbons (AHCs) and biogenic hydrocarbons (BHCs) (e.g., isoprene). 378 

Afterwards, all of AHCs could be further categorized into four groups of alkanes, alkenes, aromatics, 379 

and OVOCs. The O3 production was highly VOC-sensitive especially AHCs-sensitive (RIR: 0.75), 380 



followed by CO (0.21), and BHCs (0.12). However, the NOx showed the negative impact on O3 381 

production in Tangshan (RIR: -0.59). Among all of the AHCs, the contributions to O3 sensitivity 382 

were in the order of alkenes (0.38) > OVOCs (0.27) > alkanes (0.18) > aromatics (0.09). The results 383 

also confirmed that the decreases of alkenes and OVOCs could alleviate O3 pollution effectively. 384 

4. Conclusions 385 

Due to the outbreak of COVID-19, many strict lockdown measures have been widely adopted across 386 

China, leading to dramatic decreases of vehicle and industrial emissions. Therefore, the 387 

concentrations of multiple air pollutants such as SO2, NOx, and CO experienced decreases during 388 

the pandemic, whereas the O3 level suffered from significant increase. To uncover the reason for O3 389 

increase, the precursor concentrations (e.g., VOCs, NOx), meteorological conditions, and relevant 390 

chemical mechanisms have been analyzed. The ambient O3 level increased by 143% during COVID-391 

19 period, and the emission reduction and meteorology contributed to 77% and 66% of this 392 

increment, respectively. Along with the obvious increase of O3 concentration, the VOC/NOx ratio 393 

also increased from 0.69 to 1.07 after COVID-19 lockdown, indicating the control of VOCs rather 394 

than NOx might be more effective in reducing O3 level in Tangshan. In addition, the OFP values of 395 

VOC species were also calculated to assess their contributions to O3 formation. We found that the 396 

alkenes and OVOCs displayed the higher contributions to O3 production. Afterwards, a box model 397 

was applied to further analyze the detailed chemical mechanisms of O3 formation and sensitivity. 398 

The result suggested that increased contributions of HO2+NO and RO2+NO resulted in the 399 

significant increase of O3 concentration. Besides, the O3 sensitivity analysis also demonstrated that 400 

the alkenes and OVOCs played significant roles on the O3 formation. Thus, more efforts should be 401 

devoted to reduce the concentrations of alkenes and OVOCs. 402 
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Figure 1 Temporal variations of meteorological parameters (e.g., T, RH, P) and gaseous pollutants 548 

(e.g., SO2, O3) during the whole observation. The date is shown in the format month/day/year. 549 

 550 

 551 



Figure 2 The OFP contribution ratios of VOC species (a). The absolute concentrations (b) and OFP 552 

values (c) during pre-lockdown and lockdown periods.  553 

 554 



Figure 3 Comparison of observed O3 (green) and normalized O3 concentrations (orange) during 555 

pre-lockdown and lockdown periods (a). The O3 change ratios derived from observation, emission, 556 

and meteorology.  557 
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Figure 4 The temporal variations of absolute concentrations (a) and OFP (b) for VOC species during 561 

the whole sampling period. The yellow and white episodes represent the pre-lockdown and 562 

lockdown periods.  563 
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Figure 5 Hourly variations of model-estimated AOC contributed by O3, OH, and NO3 radical during 567 

pre-lockdown and lockdown periods (Unit: molecules cm-3). 568 
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Figure 6 Daytime variation of OH budget during pre-lockdown and lockdown periods. 571 
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Figure 7 Daytime variation of O3 budget during pre-lockdown and lockdown periods.  574 
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Figure 8 The model-estimated RIR values for major O3 precursor groups and (b) the sub-groups of 577 

anthropogenic VOC species.  578 
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