Figure 4 . 3D Schematic model (view to the northwest) of the North Sulawesi Subduction Zone. The gray plate represents the Celebes Sea plate. The blue slab represents the Sangihe slab. Arrows indicate velocity. GPS velocities of North Arm of Sulawesi are from Socquet et al. (2006)
5 Conclusions
The main conclusions we may draw form this study include the following:
1.Our numerical experiments demonstrate the crucial role that the buoyancy of the down-going plate itself plays in trench retreat as a passive margin transitions into an active margin, even though the initial stage is dominated by the external force.
2.The Sangihe slab reduces the space that is available for subduction, inhibiting spontaneous subduction and slowing down trench retreat on the eastern side of the Celebes Sea, which well explains the clockwise rotation of the North Arm of Sulawesi.
Acknowledgments
M. D., T. Y. H., and J. Z. acknowledge financial support from the National Natural Science Foundation of China (91858212, 41906056, and 42076068) and the International Partnership Program of the Bureau of International Cooperation of the Chinese Academy of Sciences (132A11KYSB20180020). CC. L. was supported by the Isaac Newton Trust in Cambridge and GCRF (G102642). The authors also thank the Computational Infrastructure for Geodynamics (geodynamics.org), which is funded by the NSF under awards EAR-0949446 and EAR-1550901, for supporting the development of ASPECT.
Data Availability Statement
The version of ASPECT is available athttps://doi.org/10.5281/zenodo.5131909. All data that this numerical study is based on can be found in Table S1.
References
Advokaat, E. L., Hall, R., White, L. T., Watkinson, I. M., Rudyawan, A., & BouDagher-Fadel, M. K. (2017). Miocene to recent extension in NW Sulawesi, Indonesia, Journal of Asian Earth Sciences , 147 , 378-401.https://doi.org/10.1016/j.jseaes.2017.07.023
Alsaif, M., F. Garel, F. Gueydan, & D. R. Davies (2020). Upper plate deformation and trench retreat modulated by subduction-driven shallow asthenospheric flows. Earth and Planetary Science Letters ,532 ,https://doi.org/10.1016/j.epsl.2019.116013
Bangerth, W., Dannberg, J., Gassmoeller, R., & Heister, T. 2020. ASPECT v2.2.0. (version v2.2.0). Zenodo.https://doi.org/10.5281/ZENODO.3924604
Engdahl, E. R., Di Giacomo, D.,Sakarya, B., Gkarlaouni, C. G., Harris,J., & Storchak, D. A. (2020). ISC-EHB1964-2016, an improved data set for studies of Earth structure and global seismicity. Earth and Space Science , 7 , e2019EA000897.https://doi.org/10.1029/2019EA000897
Faccenna, C., Giardini, D., Davy, P., &Argentieri, A. (1999). Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments. Journal of Geophysical Research ,104 , 2749-2766.https://doi.org/10.1029/1998JB900072
Fauzi M. F., Anggraini, A, Riyanto, A., Ngadmanto, D., Suryanto, W., 2021. Crustal thickness estimation in Indonesia using receiver function method, IOP Conf. Series: Earth and Environmental Science 873 (2021) 012086.https://doi.org/10.1088/1755-1315/873/1/012086.
Fuchs, Sven; Norden, Ben; International Heat Flow Commission (2021): The Global Heat Flow Database: Release 2021. GFZ Data Services.https://doi.org/10.5880/fidgeo.2021.014
Funiciello, F., C. Faccenna, A. Heuret, S. Lallemand, E. Di Giuseppe, & T. W. Becker (2008). Trench migration, net rotation and slab–mantle coupling. Earth and Planetary Science Letters , 271 (1-4), 233-240.https://doi.org/doi:10.1016/j.epsl.2008.04.006
Gaina, C., & Müller, D. (2007). Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins,Earth-Science Reviews , 83 (3-4), 177-203.https://doi.org/10.1016/j.earscirev.2007.04.004
Glerum, A., Thieulot, C., Fraters, M., Blom, C., & Spakman, W. (2018). Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth ,9 (2), 267-294.https://doi.org/10.5194/se-9-267-2018
Global Volcanism Program, 2013. Volcanoes of the World, v. 4.9.4 (17 Mar 2021). Venzke, E (ed.). Smithsonian Institution. Downloaded 23 Apr 2021.https://doi.org/10.5479/si.GVP.VOTW4-2013.
Goren, L., Aharonov, E., Mulugeta, G., Koyi, H. A., & Mart, Y. (2008). Ductile deformation of passive margins: A new mechanism for subduction initiation, Journal of Geophysical Research: Solid Earth ,113 (B8). https://doi.org/10.1029/2005jb004179
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., Müller, R. D. (2003). Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters , 212, 15-30.https://doi.org/10.1016/S0012-821X(03)00242-5
Hall, R. & Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics 658, 14-45.https://doi.org/10.1016/j.tecto.2015.07.003
Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean, Tectonophysics ,570-571 , 1-41.https://doi.org/10.1016/j.tecto.2012.04.021
Hall, R. (2019). The subduction initiation stage of the Wilson cycle,Geological Society , London , Special Publications ,470 (1), 415-437.https://doi.org/10.1144/SP470.3
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model, Science , 362 (6410), 58-61.https://doi.org/10.1126/science.aat4723
Heister, T. Dannberg, J., Gassmöller, R., & Bangerth, W. (2017). High Accuracy Mantle Convection Simulation through Modern Numerical Methods-II: Realistic Models and Problem. Geophysical Journal International , 210 , 833-851.https://doi.org/10.1093/gji/ggx195
Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. in Inside the Subduction Factory (ed. Eiler, J.) Vol. 183 of Geophysical Monograph (American Geophysical Union, 2003).
Holt, A. F., Becker, T. W., & Buffett, B. A. (2015). Trench migration and overriding plate stress in dynamic subduction models.Geophysical Journal International , 201 , 172-192.https://doi.org/10.1093/gji/ggv011
Hu, J., & Gurnis, M. (2020). Subduction Duration and Slab Dip.Geochemistry, Geophysics, Geosystems , 21 , e2019GC008862.https://doi.org/10.1029/2019GC008862
Kopp, C., Flueh, E. R., & Neben, S. (1999). Rupture and accretion of the Celebes Sea crust related to the North Sulawesi subduction combined interpretation of reflection and refraction seismic measurements.Journal of Geodynamics, 27 (3), 309-325.https://doi.org/10.1016/S0264-3707(98)00004-0
Kreemer, C.,Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems , 15 , 3849-3889.https://doi.org/10.1002/2014GC005407
Kronbichler, M., Heister, T., & Bangerth, W. (2012). High Accuracy Mantle Convection Simulation through Modern Numerical Methods.Geophysical Journal International , 191 , 12–29.https://doi.org/10.1111/j.1365-246X.2012.05609.x
Lai, C.-K., Xia, X.-P., Hall, R., Meffre, S., Tsikouras, B., Rosana BalangueTarriela, M. I., et al. (2021). Cenozoic evolution of the Sulu Sea arc-basin system: An overview. Tectonics, 40, e2020TC006630.https://doi.org/10.1029/2020TC006630
Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems , 6 , Q09006.https://doi.org/10.1029/2005GC000917
Leng, W., & Gurnis, M. (2015). Subduction initiation at relic arcs.Geophysical Research Letters , 42 (17), 7014-7021.https://doi.org/10.1002/2015gl064985
Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F. H. R., do Nascimento, A. F., & Ferreira, J. M. (2013). Testing the influence of far-field topographic forcing on subduction initiation at a passive margin. Tectonophysics, 608 , 517-524.https://doi.org/10.1016/j.tecto.2013.08.035
Marques, F. O., Cabral, F. R., Gerya, T. V., Zhu, G. &May, D. A. (2014). Subduction initiates at straight passive margins.Geology , 42 , 331-334.https://doi.org/10.1130/G35246.1
Mueller, S., & Phillips, R. J. (1991). On The initiation of subduction,Journal of Geophysical Research , 96 (B1), 651-665.https://doi.org/10.1029/90jb02237
Mustafar, M. A., Simons, W. J. F., Tongkul, F., Satirapod, C., Omar, K. M., & Visser, P. N. A. M. (2017). Quantifying deformation in North Borneo with GPS. Journal of Geodesy , 91 , 1241-1259.https://doi.org/10.1007/s00190-017-1024-z
Nikolaeva, K., Gerya, T. V., Marques, F. O. (2010). Subduction initiation at passive margins: Numerical modeling. Journal of Geophysical Research, 115 , B03406.https://doi.org/10.1029/2009JB006549
Nikolaeva, K., Gerya, T. V., Marques, F. O. (2011). Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology 39 , 463-466.https://doi.org/10.1130/G31972.1
Nugraha, A. M. S., Hall, R., & BouDagher-Fadel, M. (2022). The Celebes Molasse: A revised Neogene stratigraphy for Sulawesi, Indonesia.Journal of Asian Earth Sciences , 228, 105140.https://doi.org/10.1016/j.jseaes.2022.105140
Rangin, C., & Silver, E. A. (1991). Neogene tectonic evolution of the Celebes-Sulu basins: new insights from leg 124 drilling.Proceeding of the Ocean Drilling Program, Scientific Result ,124 , 51-63.
Rey, P., Coltice, N. & Flament, N. (2014). Spreading continents kick-started plate tectonics. Nature , 513 , 405–408.https://doi.org/10.1038/nature13728
Rutter, E. H. & Brodie, K. H. (2004). Experimental grain size-sensitive flow of hotpressed Brazilian quartz aggregates. Journal of Structural Geology, 26 , 2011–2023.https://doi.org/10.1016/j.jsg.2004.04.006
Rybacki, E., Gottschalk, M., Wirth, R. & Dresen, G. (2006). Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research: Solid Earth , 111 , 3663.https://doi.org/10.1029/2005JB003663
Schellart, W. P. (2008), Subduction zone trench migration: Slab driven or overriding-plate-driven? Physics of the Earth and Planetary Interiors , 170 (1-2), 73-88,https://doi.org/10.1016/j.pepi.2008.07.040
Sharples, W., Jadamec, M. A., Moresi, L. N., & Capitanio, F. A. (2014). Overriding plate controls on subduction evolution, Journal of Geophysical Research: Solid Earth , 119 (8), 6684-6704.https://doi.org/10.1002/2014jb011163
Silver, E. A., Mccaffrey, R., & Smith, R. B. (1983). Collision, Rotation, and the Initiation of Subduction in the Evolution of Sulawesi, Indonesia. Journal of Geophysical Research , 88 , 9407-9418.https://doi.org/10.1029/JB088iB11p09407
Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., et al. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data, Journal of Geophysical Research , 111 (B8).https://doi.org/10.1029/2005jb003963
Stern, R. J. (2004). Subduction initiation: spontaneous and induced,Earth and Planetary Science Letters , 226 (3-4), 275-292.https://doi.org/10.1016/s0012-821x(04)00498-4
Stern, R. J., & Gerya, T. (2018). Subduction initiation in nature and models: A review, Tectonophysics , 746 , 173-198. https://doi.org/10.1016/j.tecto.2017.10.014
Turcotte, D. L., Ahern, J. L. & Bird, J. M. (1977). The state of stress at continental margins. Tectonophysics, 42 , 1-28.https://doi.org/10.1016/0040-1951(77)90014-2
Turcotte, D. L., & Schubert, G. (2014). Geodynamics. Cambridge, UK: Cambridge University Press.
Weissel, J.K. 1980. Evidence for Eocene oceanic crust in the Celebes Basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Geophysical Monograph Series, 23, 37-47.
Zhang, J., Hao, T., Dong, M., Xu, Y., Wang, B., Ai, Y., & Fang, G. (2021). Investigation of geothermal structure of the Sulawesi, using gravity and magnetic method. Science China Earth Sciences ,64 , 278-293.https://doi.org/10.1007/s11430-020-9659-3
Zhong, X., & Li, Z. H. (2019). Forced Subduction Initiation at Passive Continental Margins: Velocity‐Driven Versus Stress‐Driven,Geophysical Research Letters , 46 (20), 11054-11064.https://doi.org/10.1029/2019gl084022
Zhou, X., Li, Z. H., Gerya, T. V. & Stern, R. J. (2020). Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness. Science Advances , 6 , eaaz1048.https://doi.org/10.1126/sciadv.aaz1048