Figure 4 . 3D Schematic model (view to the northwest) of the
North Sulawesi Subduction Zone. The gray plate represents the Celebes
Sea plate. The blue slab represents the Sangihe slab. Arrows indicate
velocity. GPS velocities of North Arm of Sulawesi are from Socquet et
al. (2006)
5 Conclusions
The main conclusions we may draw form this study include the following:
1.Our numerical experiments demonstrate the crucial role that the
buoyancy of the down-going plate itself plays in trench retreat as a
passive margin transitions into an active margin, even though the
initial stage is dominated by the external force.
2.The Sangihe slab reduces the space that is available for subduction,
inhibiting spontaneous subduction and slowing down trench retreat on the
eastern side of the Celebes Sea, which well explains the clockwise
rotation of the North Arm of Sulawesi.
Acknowledgments
M. D., T. Y. H., and J. Z. acknowledge financial support from the
National Natural Science Foundation of China (91858212, 41906056, and
42076068) and the International Partnership Program of the Bureau of
International Cooperation of the Chinese Academy of Sciences
(132A11KYSB20180020). CC. L. was supported by the Isaac Newton Trust in
Cambridge and GCRF (G102642). The authors also thank the Computational
Infrastructure for Geodynamics (geodynamics.org), which is funded by the
NSF under awards EAR-0949446 and EAR-1550901, for supporting the
development of ASPECT.
Data Availability Statement
The version of ASPECT is available athttps://doi.org/10.5281/zenodo.5131909.
All data that this numerical study is based on can be found in Table S1.
References
Advokaat, E. L., Hall, R., White, L. T., Watkinson, I. M., Rudyawan, A.,
& BouDagher-Fadel, M. K. (2017). Miocene to recent extension in NW
Sulawesi, Indonesia, Journal of Asian Earth Sciences , 147 ,
378-401.https://doi.org/10.1016/j.jseaes.2017.07.023
Alsaif, M., F. Garel, F. Gueydan, & D. R. Davies (2020). Upper plate
deformation and trench retreat modulated by subduction-driven shallow
asthenospheric flows. Earth and Planetary Science Letters ,532 ,https://doi.org/10.1016/j.epsl.2019.116013
Bangerth, W., Dannberg, J., Gassmoeller, R., & Heister, T. 2020. ASPECT
v2.2.0. (version v2.2.0). Zenodo.https://doi.org/10.5281/ZENODO.3924604
Engdahl, E. R., Di Giacomo, D.,Sakarya, B., Gkarlaouni, C. G.,
Harris,J., & Storchak, D. A. (2020). ISC-EHB1964-2016, an improved data
set for studies of Earth structure and global seismicity. Earth
and Space Science , 7 , e2019EA000897.https://doi.org/10.1029/2019EA000897
Faccenna, C., Giardini, D., Davy, P., &Argentieri, A. (1999).
Initiation of subduction at Atlantic-type margins: Insights from
laboratory experiments. Journal of Geophysical Research ,104 , 2749-2766.https://doi.org/10.1029/1998JB900072
Fauzi M. F., Anggraini, A, Riyanto, A., Ngadmanto, D., Suryanto, W.,
2021. Crustal thickness estimation in Indonesia using receiver function
method, IOP Conf. Series: Earth and Environmental Science 873 (2021)
012086.https://doi.org/10.1088/1755-1315/873/1/012086.
Fuchs, Sven; Norden, Ben; International Heat Flow Commission (2021): The
Global Heat Flow Database: Release 2021. GFZ Data Services.https://doi.org/10.5880/fidgeo.2021.014
Funiciello, F., C. Faccenna, A. Heuret, S. Lallemand, E. Di Giuseppe, &
T. W. Becker (2008). Trench migration, net rotation and slab–mantle
coupling. Earth and Planetary Science Letters , 271 (1-4),
233-240.https://doi.org/doi:10.1016/j.epsl.2008.04.006
Gaina, C., & Müller, D. (2007). Cenozoic tectonic and depth/age
evolution of the Indonesian gateway and associated back-arc basins,Earth-Science Reviews , 83 (3-4), 177-203.https://doi.org/10.1016/j.earscirev.2007.04.004
Glerum, A., Thieulot, C., Fraters,
M., Blom, C., & Spakman, W. (2018). Nonlinear viscoplasticity in
ASPECT: benchmarking and applications to subduction, Solid Earth ,9 (2), 267-294.https://doi.org/10.5194/se-9-267-2018
Global Volcanism Program, 2013. Volcanoes of the World, v. 4.9.4 (17 Mar
2021). Venzke, E (ed.). Smithsonian Institution. Downloaded 23 Apr 2021.https://doi.org/10.5479/si.GVP.VOTW4-2013.
Goren, L., Aharonov, E., Mulugeta, G., Koyi, H. A., & Mart, Y. (2008).
Ductile deformation of passive margins: A new mechanism for subduction
initiation, Journal of Geophysical Research: Solid Earth ,113 (B8). https://doi.org/10.1029/2005jb004179
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., Müller, R. D.
(2003). Catastrophic initiation of subduction following forced
convergence across fracture zones. Earth and Planetary Science
Letters , 212, 15-30.https://doi.org/10.1016/S0012-821X(03)00242-5
Hall, R. & Spakman, W. (2015). Mantle structure and tectonic history of
SE Asia. Tectonophysics 658, 14-45.https://doi.org/10.1016/j.tecto.2015.07.003
Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the
Indonesian region and the Indian Ocean, Tectonophysics ,570-571 , 1-41.https://doi.org/10.1016/j.tecto.2012.04.021
Hall, R. (2019). The subduction initiation stage of the Wilson cycle,Geological Society , London , Special Publications ,470 (1), 415-437.https://doi.org/10.1144/SP470.3
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H.,
Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction
zone geometry model, Science , 362 (6410), 58-61.https://doi.org/10.1126/science.aat4723
Heister, T. Dannberg, J., Gassmöller, R., & Bangerth, W. (2017). High
Accuracy Mantle Convection Simulation through Modern Numerical
Methods-II: Realistic Models and Problem. Geophysical Journal
International , 210 , 833-851.https://doi.org/10.1093/gji/ggx195
Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle
wedge: a view from the experimentalists. in Inside the Subduction
Factory (ed. Eiler, J.) Vol. 183 of Geophysical Monograph (American
Geophysical Union, 2003).
Holt, A. F., Becker, T. W., & Buffett, B. A. (2015). Trench migration
and overriding plate stress in dynamic subduction models.Geophysical Journal International , 201 , 172-192.https://doi.org/10.1093/gji/ggv011
Hu, J., & Gurnis, M. (2020). Subduction Duration and Slab Dip.Geochemistry, Geophysics, Geosystems , 21 , e2019GC008862.https://doi.org/10.1029/2019GC008862
Kopp, C., Flueh, E. R., & Neben, S. (1999). Rupture and accretion of
the Celebes Sea crust related to the North Sulawesi subduction combined
interpretation of reflection and refraction seismic measurements.Journal of Geodynamics, 27 (3), 309-325.https://doi.org/10.1016/S0264-3707(98)00004-0
Kreemer, C.,Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion
and Global Strain Rate Model. Geochemistry, Geophysics,
Geosystems , 15 , 3849-3889.https://doi.org/10.1002/2014GC005407
Kronbichler, M., Heister, T., & Bangerth, W. (2012). High Accuracy
Mantle Convection Simulation through Modern Numerical Methods.Geophysical Journal
International , 191 , 12–29.https://doi.org/10.1111/j.1365-246X.2012.05609.x
Lai, C.-K., Xia, X.-P., Hall, R., Meffre, S., Tsikouras, B., Rosana
BalangueTarriela, M. I., et al. (2021). Cenozoic evolution of the Sulu
Sea arc-basin system: An overview. Tectonics, 40, e2020TC006630.https://doi.org/10.1029/2020TC006630
Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships
between slab dip, back-arc stress, upper plate absolute motion, and
crustal nature in subduction zones. Geochemistry, Geophysics,
Geosystems , 6 , Q09006.https://doi.org/10.1029/2005GC000917
Leng, W., & Gurnis, M. (2015). Subduction initiation at relic arcs.Geophysical Research Letters , 42 (17), 7014-7021.https://doi.org/10.1002/2015gl064985
Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F.
H. R., do Nascimento, A. F., & Ferreira, J. M. (2013). Testing the
influence of far-field topographic forcing on subduction initiation at a
passive margin. Tectonophysics, 608 , 517-524.https://doi.org/10.1016/j.tecto.2013.08.035
Marques, F. O., Cabral, F. R., Gerya, T. V., Zhu, G. &May, D. A.
(2014). Subduction initiates at straight passive margins.Geology , 42 , 331-334.https://doi.org/10.1130/G35246.1
Mueller, S., & Phillips, R. J. (1991). On The initiation of subduction,Journal of Geophysical Research , 96 (B1), 651-665.https://doi.org/10.1029/90jb02237
Mustafar, M. A., Simons, W. J. F., Tongkul, F., Satirapod, C., Omar, K.
M., & Visser, P. N. A. M. (2017). Quantifying deformation in North
Borneo with GPS. Journal of Geodesy , 91 , 1241-1259.https://doi.org/10.1007/s00190-017-1024-z
Nikolaeva, K., Gerya, T. V., Marques, F. O. (2010). Subduction
initiation at passive margins: Numerical modeling. Journal of
Geophysical Research, 115 , B03406.https://doi.org/10.1029/2009JB006549
Nikolaeva, K., Gerya, T. V., Marques, F. O. (2011). Numerical analysis
of subduction initiation risk along the Atlantic American passive
margins. Geology 39 , 463-466.https://doi.org/10.1130/G31972.1
Nugraha, A. M. S., Hall, R., & BouDagher-Fadel, M. (2022). The Celebes
Molasse: A revised Neogene stratigraphy for Sulawesi, Indonesia.Journal of Asian Earth Sciences , 228, 105140.https://doi.org/10.1016/j.jseaes.2022.105140
Rangin, C., & Silver, E. A. (1991). Neogene tectonic evolution of the
Celebes-Sulu basins: new insights from leg 124 drilling.Proceeding of the Ocean Drilling Program, Scientific Result ,124 , 51-63.
Rey, P., Coltice, N. & Flament, N. (2014). Spreading continents
kick-started plate tectonics. Nature , 513 , 405–408.https://doi.org/10.1038/nature13728
Rutter, E. H. & Brodie, K. H. (2004).
Experimental grain size-sensitive
flow of hotpressed Brazilian quartz aggregates. Journal of
Structural Geology, 26 , 2011–2023.https://doi.org/10.1016/j.jsg.2004.04.006
Rybacki, E., Gottschalk, M., Wirth, R. & Dresen, G. (2006). Influence
of water fugacity and activation volume on the flow properties of
fine-grained anorthite aggregates. Journal of Geophysical
Research: Solid Earth , 111 , 3663.https://doi.org/10.1029/2005JB003663
Schellart, W. P. (2008), Subduction zone trench migration: Slab driven
or overriding-plate-driven? Physics of the Earth and Planetary
Interiors , 170 (1-2), 73-88,https://doi.org/10.1016/j.pepi.2008.07.040
Sharples, W., Jadamec, M. A., Moresi, L. N., & Capitanio, F. A. (2014).
Overriding plate controls on subduction evolution, Journal of
Geophysical Research: Solid Earth , 119 (8), 6684-6704.https://doi.org/10.1002/2014jb011163
Silver, E. A., Mccaffrey, R., & Smith, R. B. (1983). Collision,
Rotation, and the Initiation of Subduction in the Evolution of Sulawesi,
Indonesia. Journal of Geophysical Research , 88 , 9407-9418.https://doi.org/10.1029/JB088iB11p09407
Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito,
D., et al. (2006). Microblock rotations and fault coupling in SE Asia
triple junction (Sulawesi, Indonesia) from GPS and earthquake slip
vector data, Journal of Geophysical Research , 111 (B8).https://doi.org/10.1029/2005jb003963
Stern, R. J. (2004). Subduction initiation: spontaneous and induced,Earth and Planetary Science Letters , 226 (3-4), 275-292.https://doi.org/10.1016/s0012-821x(04)00498-4
Stern, R. J., & Gerya, T. (2018). Subduction initiation in nature and
models: A review, Tectonophysics , 746 , 173-198.
https://doi.org/10.1016/j.tecto.2017.10.014
Turcotte, D. L., Ahern, J. L. & Bird, J. M. (1977). The state of stress
at continental margins. Tectonophysics, 42 , 1-28.https://doi.org/10.1016/0040-1951(77)90014-2
Turcotte, D. L., & Schubert, G.
(2014). Geodynamics. Cambridge, UK: Cambridge University Press.
Weissel, J.K. 1980. Evidence for Eocene oceanic crust in the Celebes
Basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of
Southeast Asian Seas and Islands. American Geophysical Union,
Geophysical Monograph Series, 23, 37-47.
Zhang, J., Hao, T., Dong, M., Xu, Y., Wang, B., Ai, Y., & Fang, G.
(2021). Investigation of geothermal structure of the Sulawesi, using
gravity and magnetic method. Science China Earth Sciences ,64 , 278-293.https://doi.org/10.1007/s11430-020-9659-3
Zhong, X., & Li, Z. H. (2019). Forced Subduction Initiation at Passive
Continental Margins: Velocity‐Driven Versus Stress‐Driven,Geophysical Research Letters , 46 (20), 11054-11064.https://doi.org/10.1029/2019gl084022
Zhou, X., Li, Z. H., Gerya, T. V. & Stern, R. J. (2020). Lateral
propagation-induced subduction initiation at passive continental margins
controlled by preexisting lithospheric weakness. Science
Advances , 6 , eaaz1048.https://doi.org/10.1126/sciadv.aaz1048