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Abstract: Drought-busting events in the Colorado River Basin, such as the “Miracle May” of 34 

2015 that greatly alleviated an unprecedented water shortage, have been observed for more than 35 

a century. But while such events are much prayed for in times of drought, they have not been 36 

well researched or even characterized. In this study, conducted in collaboration with water 37 

managers from across the basin, we propose a definition for “miracle events” that reflects real-38 

world, actionable relevance. The resulting characterization offers a framework by which to 39 

quantify the frequency and strength of extreme dry-to-wet springtime transitions. While limited 40 

by uncertainties in model simulations and the myriad hydrological futures these simulations seek 41 

to project, and thus requiring cautious interpretation, this study finds that such transitions may 42 

become less frequent and less powerful under climate warming. 43 

 44 
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1. Introduction 49 

  50 

In early 2015, the Colorado River Basin (CRB) faced an unprecedented water shortage. In the 51 

“Four Corners” states of Utah, Arizona, New Mexico and Colorado, which comprise the majority 52 

of the basin’s territory, three-quarters of the total landmass were in “abnormally dry” conditions, 53 

which had persisted—or became worse—since 2012 without a single month of reprieve. From a 54 

near-capacity high of 1,216 feet above sea level in 1998, Lake Mead, the largest reservoir in the 55 

United States, had fallen to a historic low, plummeting more than 140 feet. Officials from the 56 

U.S. Bureau of Reclamation estimated that Colorado River Compact allocations were deficient in 57 

the order of 1.2 million acre-feet per year. And water managers across the region were imposing 58 

historic curtailments. But in spring of 2015 a nearly threefold increase in the basin’s average 59 

precipitation flipped the river system from severe shortage to flooding status in a matter of 60 

weeks, and water managers rejoiced at the “Miracle May,” which boosted the basin’s water 61 

storage and alleviated the immediate concerns about shortages. 62 

 63 

This wasn’t the first “miracle” event, so dubbed because the anomalously strong rainfall had not 64 

been predicted during springtime water planning. The term appears to have been coined in 1991, 65 

when California was experiencing its worst drought since the Dust Bowl before a “Miracle 66 

March” brought record-breaking spring snowfall that tripled the mountain snowpack. Other 67 

winter-to-spring, dry-to-wet transitions that replenished the water supply at critical moments of 68 

need are reflected in the historical record, including the prodigious precipitation events in 1915, 69 

1945 and 1976.  70 

 71 

Facing repeated, prolonged drought events across the West in recent decades (Sullivan et al., 72 

2019; Udall and Overpeck, 2017) alongside growing demand for water that continues to cut 73 

away at the CRB’s finite supply (Rajagopalan et al., 2009; Woodhouse et al., 2021), water 74 

managers may be allured by the opportunity to know whether climate models can project such 75 

seemingly abrupt and extreme dry-to-wet springtime transitions, particularly when faced with the 76 

prospect of a warming world. Under future warming scenarios, the contribution of Upper Basin 77 

snowmelt, which comprises about 92% of the runoff for the entire CRB, could fall by one-third 78 

(Lukas and Payton, 2020; Li et al., 2017). A warmer climate is also likely to produce a low-to-no 79 

snow future in the CRB, which consequently impacts streamflow and water supply (Siirila-80 

Woodburn et al., 2021; Woodhouse et al., 2021; Lukas and Payton, 2020). As these futures begin 81 

to emerge, phenomena that at one time seemed like unforeseeable and wondrous events may be 82 

an important part of the scientific process of water management and planning—if, that is, the 83 

frequency and intensity of these events can actually be predicted.  84 

   85 

Thus far, however, springtime miracle precipitation events in the CRB have not been 86 

quantitatively defined nor universally characterized. Thus, to understand the drivers of critical 87 

dry-to-wet springtime transitions, how representable they are in climate models, and how they 88 

might evolve in response to global climate change, a scientific definition that reflects real-world 89 

management relevance must first be developed. 90 

  91 

Since a common definition for extreme dry-to-wet transition events does not exist, and no 92 

specific criteria have previously been developed, this research tests different metrics with a 93 

variety of drought indices to create what we have dubbed the “Miracle Index.” Utilizing multiple 94 



datasets to evaluate historical dry-to-wet transitions, and the extent to which a warmer climate 95 

may impact similar situations in the future, the “Miracle Index” quantifies events that begin with  96 

at least four consecutive anomalously dry months followed by at least three consecutive 97 

anomalously wet months, hinged at a “month zero,” as shown in Figure 1.  98 

  99 

As this index is not just intended for conceptual but also practical use, regional water managers 100 

have been involved from the point of conception, and the research questions that drove this study 101 

were based on their input during a series of meetings aimed at understanding how miracle events 102 

might be relevant to water management (see Section 2.1). These questions include: How can 103 

extreme dry-to-wet transitions factor into water management? How often do these events occur? 104 

Can climate models predict these miracle events? Would past dry-to-wet transitions have 105 

happened without a warmer climate? How will miracle events change in the future? Will 106 

projected changes impact water management? 107 

  108 

2. Data and Methodology 109 

  110 

This study introduces a definition for extreme springtime dry-to-wet transitions (hereafter 111 

“miracle events”) using common precipitation and drought indices, with an emphasis on creating 112 

a metric that is relevant and useful to water managers in the CRB. To this end, we incorporate 113 

the past experiences and future needs of water managers, based on a series of stakeholder 114 

discussions, into our analysis of various drought indices, which have been chosen to better 115 

understand how miracle events might be differentially characterized, with the intention of 116 

arriving at an index that balances scientific value and utility.   117 

 118 

2.1. Stakeholders Discussions and Survey Data 119 

  120 

Co-production is a process that involves iterative and continual engagement between scientists 121 

and decision-makers (in this case water managers) to collaboratively develop actionable science 122 

(Jagannathan et al 2020, Kirchhoff et al. 2013). For this research, we used co-production 123 

principles and approaches to develop a research plan, finalize research methods, and engage in 124 

an iterative process based on feedback about the management relevance of key scientific results. 125 

We engaged water managers from five different state and federal agencies located in Colorado 126 

and Utah, and seven water management professionals from these agencies, who are also co-127 

authors of this paper, participated in iterative engagements with project scientists throughout the 128 

course of the research.  129 

 130 

Upon approval from Lawrence Berkeley National Laboratory’s Human Subjects Committee 131 

Institutional Review Board for key engagements, three focus group discussions and three surveys 132 

were conducted, interspersed by informal conversations and discussions over the course of two 133 

years. The first focus group discussion aimed to co-produce the questions, approach and 134 

potential outputs of the research. Subsequent focus groups were conducted to elicit iterative 135 

feedback on interim results and approach. The surveys were intended to gather written feedback 136 

on further directions for the work. Through these discussions and surveys, the managers and 137 

scientists co-developed several components of the research, such as the key metrics of interest, 138 

the spatial domain that is most decision-relevant, the uncertainty range, and the interpretation of 139 

climate model projections. Notably, this feedback resulted in a broadening of the scope of the 140 



research from only looking at specific events (such as the “Miracle May” of 2015 and similar 141 

“miracle months”) to looking at the transitory periods that are centered on such events. 142 

 143 

2.2. Observational data 144 

  145 

To develop a definition of historical miracle events, we explored datasets including precipitation, 146 

Palmer Drought Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI), and 147 

Standardized Precipitation Index (SPI, Guenang and Kamga, 2014) to analyze how these indices 148 

change due to miracle precipitation in the Upper Basin and Lower Basin (UB and LB, 149 

respectively). The observational data used in this study were downloaded from the U.S. National 150 

Climatic Data Center for the Colorado Basin (Vose et al., 2014, 151 

https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/) and assessed in different timescales (e.g. 1-, 152 

3-, 6-, 12-, 24- month) from 1895 to 2019. Here, SPI3 means a running three month mean of SPI 153 

representing the end month, and so forth, as we considered short-term, seasonal, and long-term 154 

SPI analyses to see the change in drought in the CRB at different timescales. In this regard, SPI3 155 

depicts semi-persistent moisture conditions and provides a seasonal estimation of precipitation. 156 

Note that evaporative effect is not considered here due to the difficulty in deriving the 157 

Standardized Precipitation-Evapotranspiration Index (SPEI) from model outputs. 158 

 159 

While we initially analyzed both the UB and LB, based on stakeholder feedback we decided to 160 

focus on the upper basin, which is the totality of the river network north of Lee’s Ferry in 161 

northern Arizona, because the vast majority of natural flow of the Colorado River comes from 162 

that segment of the CRB (Lukas and Payton, 2020). This decision was reviewed, and affirmed, 163 

after it became clear that miracle events are significantly more common in the UB (as discussed 164 

below).       165 

 166 

2.3 Climate modeling data 167 

  168 

Based on feedback from water managers, we used both Coupled Model Intercomparison Project 169 

Phases 5 and 6 (CMIP5 and CMIP6) of IPCC global simulation data to investigate modeling 170 

relevance and analyze projected miracle events. One limitation to the use of both phases of these 171 

climate projections is that the CMIP5 data used here have been bias-corrected and statistically 172 

downscaled, with a horizontal resolution of 0.125 degree (produced by the Bureau of 173 

Reclamation CMIP5-BCSD; Reclamation, 2013; Maurer et al., 2007), while the CMIP6 data 174 

were obtained from http://climexp.knmi.nl/ with the default 1.25-degree horizontal resolution 175 

and without statistical downscaling or bias correction (CMIP6 downscaling datasets are not yet 176 

available). Thus, comparisons between the two sets of climate projections are limited. However, 177 

the stakeholders preferred to have all possible information sources to consider when it comes to 178 

future projections.  179 

 180 

Each model of CMIP5 used in this study was driven by historical forcings (observations of 181 

aerosols, greenhouse gasses, and solar irradiance) from 1950 to 2005, with the follow-on period 182 

of 2006-2100 driven by forcings from Representative Concentration Pathway 8.5 (RCP8.5) 183 

(Freychet et al., 2015). We used historical precipitation from an ensemble of 81 simulations from 184 

30 global climate models of CMIP5 and an ensemble of 69 simulations from 28 models for 185 

CMIP6. The CMIP6 includes shared socio-economic pathway (SSP) projections intended for 186 

https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/
http://climexp.knmi.nl/
http://climexp.knmi.nl/


exploration of future climate conditions under various scenarios of population change, economic 187 

growth, urbanization, technological development, and other factors that may influence emissions 188 

and other climate-impacting physical processes (Mishra et al. 2020; Zhai et al. 2020). The 189 

current study focuses on the SSP585 scenario, which assumes high radiative forcing (8.5 W m-2) 190 

by the end of the century. SPI at different timescales was calculated to evaluate the dry, wet and 191 

miracle events in both climate models. Historical (1850–2014) and future projected (2015–2100) 192 

precipitation under different scenarios were used to derive SPI.  193 

  194 

2.4 Regional pseudo-global warming simulation 195 

  196 

The Pacific Northwest National Laboratory (PNNL) developed high-resolution pseudo global 197 

warming (PGW) simulations using the Weather Research and Forecasting (WRF, Skamarock et 198 

al., 2008) model. These simulations (hereafter PNNL-WRF) cover the Western U.S. with a grid 199 

spacing of 6-km. The PNNL-WRF output includes a control simulation of 30 years driven by 200 

boundary conditions from the North American Regional Reanalysis (NARR) during 1981 to 201 

2020 (Chen et al. 2018). For future projections, five PGW simulations were produced by PNNL-202 

WRF by adding the NARR boundary conditions to the mean monthly perturbations derived from 203 

the climate change signals simulated by five CMIP5 models (CanESM2, CESM1-CAM5, 204 

GFDL-ESM2M, HadGEM2-ES, and MPI-ESM-MR) for the period of 2041-2070 following a 205 

high-end scenario (RCP8.5) relative to the historical simulations for 1981-2010 from the same 206 

five CMIP5 models. The PGW simulations provide a direct comparison for how historical 207 

climate events may behave under warmer conditions. 208 

  209 

3. Characterizing springtime miracle events 210 

  211 

Different datasets were used to evaluate and define the extreme dry-to-wet transitions in the 212 

CRB. “Month 0” is defined as a month following at least four consecutive winter months of 213 

drought conditions and preceding at least three consecutive wet months that reverse the drought 214 

situation through the impending summer. For standardized indices like PDSI and SPI, this 215 

definition means a persistent sign reversal happening in month 0 as illustrated in Figure 1. 216 

Snowpack metrics are not being considered here because the “miracle season” coincides with the 217 

snowmelt season, such that even if the increased precipitation added snow on the mountains, it 218 

would not last long. (Rainfall in May could accelerate snowmelt; this is discussed later.) Since 219 

different drought indices may yield different results, we analyzed many indices and, in 220 

collaboration with stakeholders, have chosen to display the results from three: PDSI, SPI3 and 221 

SPI6.  222 

 223 

The miracle events that are described by each of these indices do reveal some divergence, as 224 

shown in Figure 2. Despite these differences, however, there is a 50% overlap between the 225 

miracle events identified using the three indices. In the UB, both PDSI and SPI3 produced 11 226 

miracle events (Figures 2a and 2b) while SPI6 (Figure 2c) produced 13 miracle events. Of note, 227 

the LB produced fewer than five miracle events regardless of the index used (result not shown). 228 

 229 

Based on all the miracle events identified by PDSI, SPI3 and SPI6, we constructed a composite, 230 

shown in Figure 3. A notable caveat to this discussion is that there is ongoing debate as to which 231 

indices best characterize different types of drought, such as meteorological drought vs. 232 



hydrological drought (Slette et al., 2019), and both PDSI and SPI are meteorological drought 233 

indices.  234 

 235 

To validate the depiction of these events and examine the long-term behavior of drought with 236 

respect to a miracle event, we also plotted a key hydrological index, the PHDI, as well as SPI1 237 

(one month) and SPI24 (two years). While PDSI considers longer-term dryness that will affect 238 

streamflow, PHDI offers a mechanism by which to assess how much precipitation is needed to 239 

end a drought. The SPI1 histogram reveals the subseasonal behavior of precipitation with respect 240 

to month 0, and the result in Fig. 3 suggests a prolonged precipitation change that is of seasonal 241 

or longer term. This result indicates that the hydroclimatic change associated with an extreme 242 

dry-to-wet transition is a seasonal anomaly that may be part of seasonal-to-interannual or even 243 

longer variations. This inference is supported by the PHDI, which shows a more delayed 244 

response, suggesting replenished water storage following month 0. 245 

 246 

3.1 Relevant climatic anomalies 247 

  248 

The CRB has experienced some persistent climate anomalies in recent decades, and we also 249 

looked at how these anomalies have changed. In response to stakeholder interest, we analyzed 250 

the frequency of “wet-wet” anomalies from a wet winter to a wet spring, based on December-251 

February and March-May seasons, using the SPI3 drought index for the CRB. “Dry-dry” 252 

anomalies are also defined similarly. These persistent anomalies (“wet-wet” and “dry-dry”) 253 

account for most of the historical years, reflecting the lower-frequency nature of hydroclimatic 254 

variation in this region (Wang et al. 2018). Figure 4 shows the historical distribution of the 255 

tendency in SPI3 based on the count of each type of anomaly within a 15-year bin. Both the UB 256 

and LB have experienced an increasing trend in the frequency of dry-dry anomalies, meaning 257 

that both winter and spring have become drier in recent years, echoing the worsened drought 258 

situation as reported in the literature. The increased dry-dry anomalies and decreased wet-wet 259 

anomalies are present in the lower CRB (Figure 4b); however only the trends in dry-dry 260 

anomalies are statistically significant (p<.01, Figure 4).  261 

 262 

By considering all possible combinations of dry-wet, wet-wet, dry-dry, and wet-dry situations 263 

shown in Figures 4c and 4d, we found that the UB has more extreme miracle events than the 264 

lower basin. This difference is conspicuous in the pie-charts (Figure 4c and 4d) and it is worth 265 

noting that this form of graphic depiction was well received by the water managers as an 266 

informative piece of climate analysis. We further looked at the historical precipitation and 267 

drought strength (PDSI) over the two basins and found that annual precipitation has been 268 

decreasing in both basins (Figure S1). Both basins show a similar inter-annual variability of 269 

precipitation and drought. Both basins also show a significant decrease in precipitation and, 270 

subsequently, PDSI. Note that the decreasing rate of PDSI is more profound than that of 271 

precipitation in both basins, reflecting the known compound effect of the declining snowpack 272 

and drying soil on precipitation deficit in the CRB (BOR 2013). Figure S2 shows that the wet-273 

wet situation has decreased while the dry-dry anomalies have become more frequent in recent 274 

years, consistent with SPI3 (Figure 4). 275 

  276 

3.2 Climate projections 277 

  278 



We analyzed the CMIP5/6 data to assess the future of extreme dry-to-wet transitions using SPI3 279 

criteria. SPI was found to be preferable to PDSI for model-based analyses as the latter has not 280 

been found to be accurately reflected in CMIP projections (Yang, et al., 2020). (The choice of 281 

SPI3 is further discussed in Section 4.) As shown in Figure 5, the models produce extreme dry-282 

to-wet transitions in numbers that are similar to observations, with around one event every ten 283 

years. The uncertainty among the individual models/ensembles is quite large, as shown by the 284 

error bars for both CMIP5 and CMIP6, and the frequency of miracle events is also consistently 285 

higher in CMIP5 than CMIP6. This difference could result from the fact that the CMIP5 used in 286 

this analysis is a downscaled and bias-corrected dataset and can capture the UB’s dry-to-wet 287 

spring transitions better than the coarser-CMIP6 data without bias correction.   288 

 289 

Both models, however, produce a similarly decreasing frequency of extreme dry-to-wet 290 

springtime transitions in a warming climate, with CMIP5 projecting a ~50% decrease and 291 

CMIP6 projecting a ~15% decrease from the most recent decade (2009-2019) to the final decade 292 

of this century. Notably, both models project relatively steady miracle events through the mid-293 

century, roughly in line with past observations, at which point a gradual decline in these extreme 294 

transitions is suggested (Figure 5). The main reason for the decreasing miracle numbers may be 295 

twofold. First, while the models project increased annual precipitation as the climate warms, the 296 

same models project decreasing May-June precipitation; this may result from the enhanced and 297 

poleward shift of the North Pacific Subtropical High during April-June, diverging moisture away 298 

from the southwestern US (Song et al. 2018a). Second, CMIP5 projects that the frequency of 299 

drought (dry-dry) will mildly decrease in the future (Fig. S3a) while the occurrence of 300 

anomalously wet seasons will increase (wet-wet; Fig. S3c). However, CMIP6 suggests a 301 

significant decreasing trend in drought frequency (Fig. S3b) in conjunction with a ~50% increase 302 

in wet-wet (Fig. S3d). In other words, less drought and more precipitation during the winter-to-303 

spring transition may reduce the possibility of reaching the miracle event criteria, especially in 304 

CMIP6, but the reduction in May-June precipitation also can diminish the likelihood of miracle 305 

events. This may appear to be contradictory to what some researchers have projected will be a 306 

low-to-no snow future in the western United States (Siirila-Woodburn et al. 2021), and the 307 

discrepancy speaks to the large uncertainty that still plagues the current generation of climate 308 

models. While there are still many questions to answer about the capability of these models to 309 

accurately capture the forces that would lead to changes in miracle events, it is intriguing that 310 

both sets of models project a declining frequency of miracle events after mid-century in the 311 

upper CRB as an integrated effect of the changing characteristics of wet and dry seasons. This 312 

has led us to perform the next analysis. 313 

  314 

3.3 Pseudo–global warming scenario 315 

  316 

Using PNNL-WRF PGW simulations, we assessed the effect of climate warming on miracle 317 

events. As shown in Figure 6, the control simulation produces a frequency of dry-to-wet 318 

transitions that is similar to observations, with one to two events per decade. Applying the 319 

RCP8.5 level of warming to the historical period decreases the frequency of miracle events 320 

(Figure 6), a result that is consistent with our CMIP projection analysis.  321 

 322 

We further diagnosed the precipitation change in the PGW simulation and found that most of the 323 

months during the year would receive more precipitation than the control run, except for May 324 



(Figure S4), again consistent with the CMIP projections. The PGW simulation lends further 325 

support to the implication of fewer miracle events under continuously warming climate 326 

conditions. The spring (May/June) drying consistently found in CMIP5/6 and the PGW 327 

simulations in the UB has been revealed by Gao et al. (2015) based on regional climate 328 

simulations and by Song et al. (2018a) from CMIP5 simulations. They attributed the robust 329 

spring drying in the southwestern U.S. to increased moisture divergence by the North Pacific 330 

Subtropical High (NPSH), which is enhanced by future warming. Song et al. (2018a) found that 331 

under global warming, the NPSH is enhanced due to larger land-sea thermal contrast, but more 332 

importantly the seasonal march of the subtropical high (and monsoon onset) is delayed and this 333 

directly enhances the NPSH in spring more than summer (Song et al., 2018b). Therefore, the 334 

seasonally dependent change in the NPSH accentuates the spring drying that contributes to the 335 

reduced likelihood of extreme dry-to-wet transition in the UB. 336 

 337 

The change in SPI3 between the control and PGW simulations (Figure S5) shows that the 338 

strength of dry-to-wet transition is reduced in a warmer climate, compounded by weaker SPI3 339 

before and during month 0. The strength of an extreme dry-to-wet transition can be assessed by 340 

averaging SPI3 from the four months before month 0 (dry index) and subtracting the mean SPI3 341 

of the three wet months in and after month 0 (wet index), and the difference between these 342 

indices implies a miracle event’s strength. With additional warming, miracle strength declines 343 

37% over the historical climate control run (Table 1). Thus, a warmer climate may not only 344 

reduce the frequency of extreme springtime dry-to-wet transitions but the strength of such 345 

miracle events, too. 346 

  347 

3.4 Stakeholder engagement 348 

  349 

Stakeholders were essential to formulating the management-relevant research questions upon 350 

which this study was centered. At the onset of this research, the water managers indicated a 351 

desire to better understand miracle events, as this knowledge could inform reservoir operations, 352 

flood control planning, irrigation operations, and municipal use, as well as other water users in 353 

the basin. The key stakeholder questions relevant to these desires were: What constitutes a 354 

miracle event? What are the metrics of such an event? Can miracle events be predicted? Do 355 

different modeling approaches yield different answers? Will the likelihood of miracle events 356 

change in the future?  357 

 358 

In addition to a specific focus on miracle events, the water managers also suggested that a 359 

broader understanding of dry-to-wet winter-to-spring transitions would be additionally relevant 360 

for decision-making. Their questions related to a more general understanding of drought-busting 361 

spring weather included: To what extent are dry winters and wet springs correlated? What do 362 

observations and climate models suggest about how often dry winters are followed by wet 363 

springs? How might these conditions change in the future? What are the dynamical drivers at 364 

play?  365 

 366 

In the initial engagements, water managers identified several miracle events that were of 367 

relevance to their regions, with a particular interest in the miracle events that occurred in 1992 368 

and 2015. They also suggested that the UB and LB should be considered separately and informed 369 

the decision to focus on the UB, given its dominant role in the Colorado River water supply. In 370 



our ongoing discussions, the managers also pointed out that spatial scales play a significant role 371 

in defining miracle events, as conditions in one region may be very different from events in 372 

another. For example, the managers suggested that while the May 2015 event was significant for 373 

most localities within the CRB, other regions, such as the area managed by Denver Water, were 374 

not as greatly affected.   375 

 376 

Stakeholder input was also key to our decision to examine miracle events using several indices, 377 

as their work necessarily incorporates multiple perspectives. The managers expressed a general 378 

preference for the indices that showed the “Miracle May” of 2015, as this basin-wide event was 379 

immediately and intuitively familiar. This event was reflected in both the PDSI and SPI3 380 

analyses and was one of the factors that helped inform our decision to examine the elements of 381 

SPI3 in the CMIP models. Managers also indicated a desire to better understand how and why 382 

results differ between CMIP versions, as they have recently begun updating their plans to reflect 383 

the relatively recent release of CMIP6 data.  384 

 385 

The managers expressed a desire to gain a broader understanding of the patterns of wet-wet, wet-386 

dry, dry-dry, and dry-wet winter-to-spring transitions, and the pie-charts showing these results 387 

(Figure 4) were consistently flagged as being most useful for drought planning, reservoir 388 

releases, inter- and intra-state water storage management, and demand management 389 

programming. The managers noted the utility of knowledge such as the fact that wet winters are 390 

generally more likely to be followed by wet springs, and dry winters are generally more likely to 391 

be followed by dry springs. These stakeholders further expressed that it was additionally helpful 392 

to understand how these patterns might hold up in the future, a question that was answered in 393 

part by all three sets of climate projections indicating a decreasing trend of miracle events as the 394 

climate warms. As one manager noted, “if we know the miracle spring signal is decreasing, we 395 

know that a miracle spring is less likely to save us.”  396 

  397 

4. Discussion and Summary 398 

 399 

It may not be possible to perfectly define the conditions that constitute a “miracle.” This is 400 

ultimately a phenomenon to which water managers and climate researchers alike might apply  401 

Justice Potter Stewart’s famous standard of “I know it when I see it.” But as “miracle” has 402 

become an increasingly common colloquial description of rapidly drought-ending precipitation 403 

events, we believe there is great value in a good-faith attempt to define the kinds of conditions 404 

that are embraced within that shorthand description.  405 

 406 

The principal challenge in this endeavor is selecting the right metrics to define a miracle event. 407 

As previously noted, as even the definition of “drought” is subject to broad interpretation, it 408 

makes sense that the variables constituting a “drought-busting” event might be similarly rife 409 

grounds for debate. Indeed, stakeholders suggested many different ways that one might arrive at 410 

a “miracle index,” including the application of data related to snow water equivalent 411 

calculations, streamflows, and reservoir levels. As these variables were difficult to derive in 412 

climate projections, and as stakeholder consensus that a simple-to-assess and relatively easy-to-413 

model equation would offer the broadest potential actionability, SPI3 emerged as the key index 414 

upon which to base our analysis, with PDSI and SPI6 playing supporting roles to offer a holistic 415 



picture of past and future miracle events. Future work should consider SPEI and other 416 

hydrological drought indices. 417 

 418 

Thus defined, there is tremendous potential in further exploration of miracle events, most notably 419 

in the realms of spatiality and consequentiality. Just like miracles of the unquantifiable sort, after 420 

all, a miracle event may not have equal benefits across an entire basin, or even sub-regions of 421 

that basin. An extreme dry-to-wet transition during spring may mitigate a given winter drought 422 

in summa, but the impact of that transition may result in vastly differing effects on agriculture 423 

and ecology from place to place, most notably when it comes to fires and floods. This is perhaps 424 

best reflected in the “Miracle May” event of 2015, which saved the CRB from a severe water 425 

shortage but also resulted in massive flooding in Texas (Wang et al. 2015).  426 

 427 

Given that each miracle event affects different watersheds in different ways, every such event 428 

will be felt and examined in different ways. This may complicate the path to a holistic analysis. 429 

The implication of the presented research, however, offers a starting point for additional 430 

examinations of this phenomenon to understand its climatological characteristics and provides 431 

valuable clues about the future of extreme dry-to-wet springtime transitions. It may be true, as is 432 

often said, that “miracles never cease,” but our analysis suggests that, in a warming world, 433 

miracle events in the CRB may soon begin to slow down and weaken.  434 

 435 

Acknowledgement:  436 

This research is supported by the U.S. Department of Energy, Office of Science, Office of 437 

Biological and Environmental Research program under Award Number DE-SC0016605. 438 

 439 

Open Research 440 

PDSI and SPI data was used in this study can be freely accessed from 441 

https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/,CMIP5 downscaled and bias corrected data 442 

are freely available at https://gdo-443 

dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Projections:%20Complete%20A444 

rchives. CMIP6 data are generated at 445 

https://climexp.knmi.nl/selectfield_cmip6.cgi?id=someone@somewhere. The regional climate 446 

model (PNNL-WRF) data are available upon request by email to Lai-Yung Ruby Leung 447 

(ruby.leung@pnnl.gov).  448 

https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Projections:%20Complete%20Archives
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Projections:%20Complete%20Archives
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Projections:%20Complete%20Archives
https://climexp.knmi.nl/selectfield_cmip6.cgi?id=someone@somewhere
mailto:ruby.leung@pnnl.gov


REFERENCES 449 

 450 

Chen, X., L.R. Leung, Y. Gao, Y. Liu, M. Wigmosta, and M. Richmond. 2018. “Predictability of 451 

Extreme Precipitation in Western U.S. Watersheds Based on Atmospheric River 452 

Occurrence, Intensity, and Duration.” Geophys. Res. Lett., 45, doi: 453 

10.1029/2018GL079831. 454 

Freychet, N., Hsu, H.-H, Chou, C., and Wu, C.-H., 2015: Asian Summer Monsoon in CMIP5 455 

Projections: A Link between the Change in Extreme Precipitation and Monsoon Dynamics. 456 

Journal of Climate, 28, 1477-1493. DOI: https://doi.org/10.1175/JCLI-D-14-00449.1  457 

Gao, Y., L.R. Leung, J. Lu, Y. Liu, M. Huang, and Y. Qian., 2014. “Robust Spring Drying in the 458 

Southwestern U.S. and Seasonal Migration of Wet/Dry Patterns in a Warmer Climate.” 459 

Geophys. Res. Lett., 41(5), 1745-1751, doi:10.1002/2014GL059562. 460 

Guenang G.M. and Kamga F.M., 2014. Computation of the stan-dardized precipitation index 461 

(SPI) and its use to assess drought occurrences in Cameroon over recent decades. Journal 462 

of Applied Meteorology and Climatology 53: 2310-2324. DOI: 10.1175/JAMC-D-14-463 

0032.1. 464 

Jagannathan, K., J.C. Arnott, C. Wyborn, N. Klenk, K.J. Mach, R.H. Mosss and K.D. Sjostrom, 465 

2020: Great expectations? Reconciling the aspiration, outcome, and possibility of co-466 

production. Current Opinion in Environmental Sustainability, 42, 22-29. 467 

Kirchhoff, C.J., M.C. Lemos, and S. Dessai, 2013. Actionable Knowledge for Environmental 468 

Decision Making: Broadening the Usability of Climate Science. Annu. Rev. Environ. 469 

Resour., 38, 393-414. DOI: 10.1146/annurev-environ-022112-112828  470 

Li, D., M.L. Wrzesien, M. Durand, J. Adam, and D.P. Letttenmaier, How much runoff originates 471 

as snow in the western United States, and how will that change in the future? Goephysical 472 

Research Letter, 44, 6163–6172, doi:10.1002/2017GL073551. 473 

Lukas, J., and E. Payton, eds. 2020. Colorado River Basin Climate and Hydrology: State of the 474 

Science. Western Water Assessment, University of Colorado Boulder. DOI: 475 

https://doi.org/10.25810/3hcv-w477. 476 

Maurer, E. P., L. Brekke, T. Pruitt, and P. B. Duffy (2007), 'Fine-resolution climate projections 477 

enhance regional climate change impact studies', Eos Trans. AGU, 88(47), 504. 478 

Mishra, V., U. Bhatia, and Tiwari, A.D., 2020: Bias-corrected climate projections for South Asia 479 

from Coupled Model Intercomparison Project-6. Scientific Data, 7, 338 480 

Rajagopalan, B., Nowak, K., Prairie, J., Hoerling, M., Harding, B., Barsugli, J., Ray, A., Udall, 481 

B., 2009. Water supply risk on the Colorado River: can management mitigate? Water 482 

Resour. Res. 45, W08201. https://doi.org/10.1029/2008WR007652. 483 

Reclamation, 2013. 'Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: 484 

Release of Downscaled CMIP5 Climate Projections, Comparison with preceding 485 

Information, and Summary of User Needs', prepared by the U.S. Department of the 486 

Interior, Bureau of Reclamation, Technical Services Center, Denver, Colorado. 47pp. 487 

Siirila-Woodburn, E.R., A.M. Rhoades, et al. (2021). A low-to-no snow future and its impact on 488 

water resources in the western United States. Nature Reviews Earth & Environment, 2, 489 

800-819.  490 

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., Huang, X-Y.,  491 

  Wang, W., Powers, J.G., 2008. A Description of the Advanced Research WRF Version 3  492 

  (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research.  493 

  doi:10.5065/D68S4MVH 494 

https://doi.org/10.1175/JCLI-D-14-00449.1
https://doi.org/10.25810/3hcv-w477
https://doi.org/10.1029/2008WR007652


Slette, I.J., and co-authors, 2019: How ecologists define drought, and why we should do better. 495 

Global Change Biology, 25, 3193-3200. DOI: 10.1111/gcb.14747. 496 

Song, F., L.R. Leung, J. Lu, and L. Dong. 2018a. “Future Changes in Seasonality of the North 497 

Pacific and North Atlantic Subtropical Highs.” Geophys. Res. Lett., 45, doi: 498 

10.1029/2018GL079940. 499 

Song, F., L.R. Leung, J. Lu, and L. Dong. 2018b. “Seasonally-Dependent Responses of 500 

Subtropical Highs and Tropical Rainfall to Global Warming”. Nature Clim. Change, 8, 501 

787-792, doi:10.1038/s41558-018-0244-4. 502 

Stewart, J., Jacobellis v. Ohio, 378 U.S. 184, 197 (1964) (Stewart, J., concurring). 503 

Sullivan, A., D.D. White, and M. Hanemann, 2019: Designing collaborative governance: 504 

Insights from the drought contingency planning process for the lower Colorado River 505 

basin. 91, 39-49. https://doi.org/10.1016/j.envsci.2018.10.011. 506 

Udall, B., Overpeck, J., 2017. The twenty‐first century Colorado River hot drought and 507 

implications for the future. Water Resour. Res. 53 (3), 2404–2418. 508 

https://doi.org/10.1002/2016WR019638. 509 

Voss, R.S. et al., 2014: Improved Historical Temperature and Precipitation Time Series for U.S. 510 

Climate Divisions. Journal of Applied Meteorology and Climatology, 53, 1232-1251. DOI: 511 

https://doi.org/10.1175/JAMC-D-13-0248.1  512 

Wang, S.-Y., R. R. Gillies,  O.-Y. Chung, and C. Shen, 2018: Cross-Basin Decadal Climate 513 

Regime connecting the Colorado River and the Great Salt Lake. Journal of 514 

Hydrometeorology, DOI:10.1175/JHM-D-17-0081.1  515 

Wang, S.-Y., W.-R. Huang, H.-H. Hsu, and R. R. Gillies, 2015: Role of strengthened El Nino 516 

teleconnection in the May 2015 floods over the southern Great Plains. Geophysical 517 

Research Letters, DOI: 10.1002/2015GL065211. 518 

Woodhouse, C.A., et al., 2021: Upper Colorado River Basin 20th Century droughts under 21st 519 

warming: Plausible scenarios of the future. Climate Services, 21, 100206. 520 

Yang, Y., Zhang, S., Roderick, M. L., McVicar, T. R., Yang, D., Liu, W., and Li, X.: Comparing 521 

Palmer Drought Severity Index drought assessments using the traditional offline approach 522 

with direct climate model outputs, Hydrol. Earth Syst. Sci., 24, 2921–2930, 523 

https://doi.org/10.5194/hess-24-2921-2020, 2020.  524 

Zhai, J. et al. (2020). Future drought characteristics through a multi-model ensemble from 525 

CMIP6 over South Asia. Atmospheric Research, 246, 105111. 526 

https://doi.org/10.1016/j.atmosres.2020.105111  527 

 528 

 529 
 530 
  531 

https://doi.org/10.1016/j.envsci.2018.10.011
https://doi.org/10.1002/2016WR019638
https://doi.org/10.1175/JAMC-D-13-0248.1
https://doi.org/10.1016/j.atmosres.2020.105111


FIGURES: 532 

 533 

 534 
Figure 1: Schematic of miracle spring events with Colorado River Basins map (inserted). ‘Month 535 

0’ represents the miracle month while negative months are dry and positive months are wet 536 

months. 537 
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 541 
Figure 2: Historical miracle events calculated from different drought indices considering four 542 

consecutive negative drought index followed by three consecutive positive drought index. 543 

Upper panel (a) shows the miracle years based on PDSI (upper panel), middle panel (b) shows 544 

the miracle years based on SPI3, and lower panel (c) based on SPI6. 545 
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  554 
  555 

Figure 3: Average drought indices during Miracle years that is calculated based on PDSI for 556 

Upper basin a) and lower basin b). Bar plot shows the SPI1, dashed line shows the SPI24, black 557 

line shows the PDSI and purple line shows the PHDI. Miracle month is centered at 0 when 558 

drought index (PDSI) changed from negative to positive value. 559 
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 561 
 562 

Figure 4: Average dry and wet frequency based on winter and spring SPI3 value considering the 563 

months from December to May for a) upper and b) lower basins. The right panel c) and d) show 564 

the frequency pie-chart of four different transitions from winter (Dec-Feb) to spring (Mar-May) 565 

for upper and lower basins, respectively.  566 
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 570 
 571 

Figure 5: Miracle spring precipitation frequency (per 10 years) based on observational (green 572 

bars), CMIP5 (orange bars) and CMIP6 (purple bars). Historical period is considered from 1950 573 

while future projections are considered from 2006 for CMIP5 and from 2015 for CMIP6. Error 574 

bars in CMIPs data are based on ±0.8 standard deviation. SPI3 is used to calculate the miracle 575 

spring precipitation. There were no miracle events during 2000-2009 in the observation.  576 
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 579 
 580 

Figure 6: Miracle spring precipitation frequency from regional climate model simulation for the 581 

historical control run (blue bars) and pseudo global warming (PGW run, orange bar) that 582 

utilized climate change signals from 5 global climate models. Error bars in PGW frequency 583 

based on ±0.8 standard deviation. 584 
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Table 1: Dry- and wet-indices from average miracle years based on regional climate model 591 

simulations (PNNL WRF) from control and PGW runs from (1980-2020). Dry index is the total 592 

SPI3 value from four dry months before miracle and wet index is the total SPI3 from following 593 

three wet months. Miracle strength is the difference between dry- and wet-indices and change in 594 

miracle strength is calculated as control miracle strength/PGW miracle strength *100%. 595 
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