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Abstract 24 

 Climate change and nitrogen (N) pollution are altering biogeochemical and 25 

ecohydrological processes in dryland watersheds, increasing N export, and threatening water 26 

quality. While simulation models are useful for projecting how N export will change in the 27 

future, most models ignore biogeochemical “hotspots” that develop in drylands as moist 28 

microsites become hydrologically disconnected from plant roots when soils dry out. These 29 

hotspots enable N to accumulate over dry periods and rapidly flush to streams when soils wet up. 30 

To better project future N export, we developed a framework for representing hotspots using the 31 

ecohydrological model RHESSys. We then conducted a series of virtual experiments to 32 

understand how uncertainties in model structure and parameters influence N export. Modeled N 33 

export was sensitive to the abundance of hotspots in a watershed, increasing linearly and then 34 

reaching an asymptote with increasing hotspot abundance, which occurred because resource 35 

inputs eventually became limiting with increasing hotspot and decreasing vegetation cover. Peak 36 

streamflow N also increased and then decreased with an increasing soil moisture threshold 37 

required for subsurface flow from hotspots to reestablish. Finally, N export was generally higher 38 

when water diffused out of hotspots slowly because prolonged moisture availability enabled 39 

more N to accumulate over dry periods, which leached more rapidly at the onset of rain. In a case 40 

study, we found that when hotspots were modeled explicitly, peak streamflow nitrate export 41 

increased by 29%, enabling us to better capture the timing and magnitude of N losses observed 42 

in the field. N export further increased in response to interannual variability in precipitation, 43 

particularly when multiple dry years were followed by a wet year. This modeling framework can 44 

improve projections of N export in watersheds where hotspots play an increasingly important 45 

role in water quality. 46 
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1 Introduction 47 

 Climate change and atmospheric nitrogen (N) deposition from urbanization and fossil 48 

fuel combustion are accelerating biogeochemical cycling in dryland ecosystems and increasing N 49 

loading in streams, which can pose a major threat to water quality (Borer & Stevens, 2022; Fenn 50 

et al., 2003). However, the extent to which deposited N is exported to streams remains difficult 51 

to predict, in part because models are limited in their ability to capture hotspots—defined as 52 

wetter microsites in the soil that have disproportionately high rates of biogeochemical cycling—53 

which can strongly influence N fluxes in dryland soils (McClain et al., 2003). For example, the 54 

already increased water availability and decreased plant N uptake in hotspots can increase net N 55 

mineralization and nitrification rates, enabling inorganic N to accumulate over relatively dry 56 

periods and rapidly flush to streams when soils wet up (McClain et al., 2003; Parker & Schimel, 57 

2011). This can occur even when plants are N-limited because precipitation pulses can mobilize 58 

accumulated N more quickly than plants are able to take it up (Homyak et al., 2014). As the 59 

global distribution of drylands expands with climate warming (Seager et al., 2018), and as 60 

urbanization increases rates of N deposition (Borer & Stevens, 2022), it is critical to better 61 

account for the mechanisms driving N export in models (Gustine et al., 2022; Schimel, 2018).   62 

 Hotspots can range in size from microsites within soil aggregates (at the scale of microns; 63 

Ebrahimi & Or, 2018) to islands of fertility within landscape patches (at the scale of individual 64 

plants or plant communities; Osborne et al., 2020). While landscape models may effectively 65 

represent islands of fertility by parameterizing plant physiological processes that promote 66 

resource heterogeneity—for example, transpiration-driven nutrient accumulation beneath woody 67 

plant canopies in savannas; (Ridolfi et al., 2008)—representing the role of microscale 68 

biogeochemical hotspots is much more challenging at watershed scales. For one, soil moisture 69 
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and subsurface transport processes are often oversimplified and not fully integrated into 70 

landscape-scale N-cycling models (Ouyang et al., 2017; Poblador et al., 2017; Schmidt et al., 71 

2007; Zhang et al., 2018). When models do incorporate coupled hydrological-biogeochemical 72 

processes, they often reduce spatial heterogeneity by averaging soil hydraulic parameters across 73 

a basin (Crow et al., 2012; Lin et al., 2015; Tague, 2009; Zhu et al., 2012, 2015). As a result, 74 

these models do not capture the role of soil microsites that remain wetter than bulk soils for at 75 

least some time into the dry season. While more detailed representation of soil heterogeneity is 76 

needed, at least three key uncertainties remain in scaling microsite processes across an entire 77 

watershed: (1) how hotspots are distributed across watersheds (McClain et al., 2003) (2) the 78 

amount of precipitation required to reestablish hydrological connection between hotspots and 79 

bulk soils and to generate subsurface flow (Zhu et al., 2018), and (3) how the physical 80 

parameters governing fine-scale water diffusion from hotspots are distributed across a watershed 81 

(Clark et al., 2017).  82 

 A common modeling approach to represent the effects of fine-scale spatial heterogeneity 83 

on large-scale hydrologic fluxes is to incorporate distributions of sub-grid state variables that 84 

influence large-scale fluxes (i.e., statistical-dynamical flux parameterizations occurring within a 85 

grid cell; the smallest spatially explicit model unit; Clark et al., 2017; Wood et al., 1992). For 86 

example, Burke et al. (2021) developed an approach using the ecohydrological model RHESSys, 87 

which uses a distribution of aspatial, sub-grid vegetation patches that interact to influence grid-88 

scale ecohydrological processes. For N-cycling, an approach that can represent microscale soil 89 

aggregates and their distinctive moisture, nitrogen and carbon availability can enable microscale 90 

hotspots function to be included in hillslope to watershed-scale models. By representing these 91 

microsites as ‘aspatial’ modeling units—where the exact location within a larger modeling 92 
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unit—is unspecified, this approach can better capture spatial heterogeneity without requiring 93 

detailed spatial information at sub-grid scales or increasing computational costs. To better 94 

predict how climate change modifies N retention and export, we developed a framework for 95 

modeling belowground hotspots and their interactions with soil moisture and subsurface flow by 96 

expanding the Burke et al. (2021) aspatial approach. This new framework allows us to represent 97 

hotspots explicitly across the landscape and test uncertainties related to hotspots distribution and 98 

connectivity.  99 

Our new modeling framework enables N to accumulate in microscale hotspots—100 

represented aspatially within 10-meter resolution grid cells—which contain sufficient moisture 101 

for decomposition to occur but are hydrologically disconnected from roots when the soils dry 102 

out. These micro-scale hotspot patches slowly lose water through diffusion and evaporation over 103 

the course of the dry season and can become hydrologically reconnected to the surrounding 104 

vegetated patches when soils wet up. Using this framework, we conducted a set of virtual 105 

experiments in a dryland, chaparral watershed in southern California to characterize model 106 

sensitivity to three key sources of uncertainty: (1) the area percentage of hotspots within the 107 

watershed, (2) the length of time it takes for water to diffuse from hotspots during periods of 108 

drought, and (3) the moisture conditions under which hydrological connectivity between hotspot 109 

and non-hotspot locations reestablishes. Finally, we used field observations of N export to 110 

optimize the parameters controlling N dynamics and then with an optimized model, we 111 

investigated how precipitation patterns can influence hotspot effects on N export. This case study 112 

demonstrates how our modeling framework can be used to improve theoretical understanding of 113 

the role biogeochemical hotspots play in N cycling and retention in drylands. 114 
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2 Methods 115 

2.1 Study area  116 

 Model simulations were conducted in the Bell 4 basin (0.14 km2), which is part of the 117 

USDA Forest Service San Dimas Experimental Forest located northeast of Los Angeles, 118 

California (34°12´N, 117°47´E; Figure 1). Elevations in Bell 4 range from 700 to 1024 meters. 119 

The topography is characterized by steep slopes with steep channel gradients. Soils are shallow, 120 

coarse-textured sandy loams, which are weathered from granite (Chaney et al., 2016; Dunn et al., 121 

1988) and classified as Typic Xerorthents (Soil Survey Staff, 2022). The region has hot, dry 122 

summers (June to September around 14±18 mm precipitation, daily average temperature 23±4 123 

°C) and cool, moist winters (696±380 mm precipitation, daily average temperature 14±5 °C); 124 

mean annual precipitation is around 710±402 mm. Vegetation cover is mainly mixed chaparral 125 

with chamise (Adenostoma fasciculatum), ceanothus (Ceanothus spp.), and black sage (Salvia 126 

mellifera) on south-facing slopes; ceanothus and California laurel (Umbellularia californica) on 127 

north-facing slopes; and some live oak (Quercus agrifolia) along riparian areas (Wohlgemuth, 128 

2006).  129 
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Lin et al., 2015). RHESSys has been parameterized and validated in several watersheds across 144 

the western USA (Burke et al., 2021; Garcia et al., 2016; Ren et al., 2021, 2022; Tague, 2009), 145 

including in several chaparral watersheds (e.g., Chen et al., 2020; Hanan et al., 2017, 2021; 146 

Meentemeyer & Moody, 2002).  147 

There are four layers for vertical soil moisture processes, including a surface detention 148 

store, a root zone store, an unsaturated store below the root zone, and a saturated store. The 149 

vertical hydrologic processes also include canopy layers, snowpack, and litter moisture stores. 150 

Rain throughfall from multiple canopy layers and a litter layer provide potential infiltration. 151 

Then the surface detention storage receives water from canopy throughfall and snowmelt at a 152 

daily time step. Following precipitation and throughfall, water infiltrates into the soil following 153 

the Phillip (1957) infiltration equation. At a daily timestep, ponded water that has not infiltrated 154 

is added to detention storage and any water that is above detention storage capacity generates 155 

overland flow.  156 

Infiltration updates one of three possible stores: a saturated store when the water table 157 

reaches the surface, a rooting zone store, or an unsaturated store for unvegetated patches. A 158 

portion of infiltrated water can bypass the rooting zone and unsaturated store through 159 

macropores. This bypass flow (carrying N) is added to a deeper groundwater store at the 160 

subbasin scale (Figure 2). Water drains vertically from the unsaturated store or root zone store 161 

based on hydraulic conductivity. Capillary rise moves water from the saturated zone to the root 162 

zone or unsaturated store based on Eagleson (1978). Lateral fluxes can occur through both 163 

shallow subsurface flow between patches and through bypass flow that contributes to a deeper 164 

hillslope-scale groundwater flow model. Shallow subsurface saturated flow between patches 165 

follows topography and changes with saturation deficit and transmissivity.  166 
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𝑓௣ு =  ଴.ହ଺ା௔௥௖௧௔௡ (గ × ଴.ସହ× (ିହା௣ு))గ                         Eq (2) 183 

The soil moisture scalar (𝑓ுమை ) is calculated as: 184 

𝑓ுమை = (ఏି௕௔ି௕)ௗ(್షೌೌష೎)(ఏି௖௔ି௖)ௗ         Eq (3) 185 

where a, b, c, and d are parameters related to soil texture based on Parton et al. (1996) and 𝜃 is 186 

volumetric soil moisture.  187 

The temperature scalar (𝑓 ) is calculated as:  188 

𝑓 = 0.06 + 0.13𝑒𝑥𝑝଴.଴଻்ೞ೚೔೗             Eq (4) 189 

where Tsoil is the surface soil temperature in degrees C. 190 

The ammonium concentration available for nitrification is calculated as: 191 

𝑓ேுర = 1.0 −  𝑒𝑥𝑝[ି଴.଴ଵ଴ହ∗ேுర೎೚೙೎]        Eq (5) 192 

where 𝑁𝐻ସ௖௢௡௖ is the soil ammonium concentration in the fast-cycling soil layer.  193 

 N loss includes subsurface lateral flow of ammonium, nitrate, and dissolved organic N 194 

(DON) and denitrification. Denitrification is calculated based on a maximum denitrification rate 195 

(𝑅ேைయ), and is modified by soil moisture (𝑓ுమை), and soil respiration (𝑓௛௥஼ைమ): 196 

𝑁ௗ௘௡௜௧௥௜௙ = 𝑅ேைయ × 𝑓ுమை × 𝑓௛௥஼ைమ         Eq (6) 197 

The maximum denitrification rate is calculated as:   198 

𝑅ேைଷ = 0.0011 +  ௔ ௧௔௡ (గ×଴.଴଴ଶ×൬ ಿೀయ_ೞ೚೔೗ಿೞ೚೔೗శ಴ೞ೚೔೗ିଵ଼଴൰)గ                                Eq (7) 199 
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where NO3_soil is the available nitrate (kg N m-2) in soil and Nsoil and Csoil are soil N (kg N m-2) 200 

and C (kg C m-2) amounts, respectively.  201 

The soil moisture limitation is calculated as:  202 

𝑓ுమை =  ௔௕( ೎್೏×ഇ)                   Eq (8) 203 

𝜃, a, b, c, and d are defined in Eq 3 above.  204 

The effect of soil respiration is calculated as: 205 

𝑓௛௥஼ைమ =  ଴.଴଴ଶସଵା మబబ೐(య.ఱ×೓ೝ) − 0.00001                 Eq (9) 206 

where hr is total daily respiration (g N m-2 day-1). 207 

 Nitrate enters the soil through infiltration from the surface detention store. Nitrate in the 208 

soil is transported by subsurface flow in the saturated zone, while in the unsaturated soil, there is 209 

no lateral nitrate transport (Chen et al., 2020; Tague & Band, 2004). The amount of nitrate in the 210 

unsaturated soil, including root accessible unsaturated soil, is maintained through the balance of 211 

input processes (nitrification and N-deposition) and loss through plant-uptake, denitrification, 212 

and export. The vertical distribution of current soil nitrate within the unsaturated zone determines 213 

the proportion that is flushed by rising water tables (saturated zone water). The vertical 214 

distribution of nitrate in the soil profile of the unsaturated zone is assumed to follow an 215 

exponential decay function, where the surface layer has more nitrate and deeper soil has less. 216 

The available nitrate at soil depth z is calculated as:  217 

𝑁𝑂ଷ_௦௢௜௟(𝑧) = 𝑁𝑂ଷ_௦௨௥௙௔௖௘ × 𝑒𝑥𝑝ିே೏೐೎ೌ೤ ×௭   Eq (10) 218 
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where NO3_surface is nitrate at soil surface and Ndecay is a soil specific parameter that defines the 219 

rate of nitrate decay. When water is moving between the unsaturated zone and the saturated 220 

zone, through downward leaching or upward capillary rise, nitrate moves with water based on its 221 

concentration.  222 

 Nitrate export follows the flushing hypothesis (Chen et al., 2020). As the water table 223 

rises, more N becomes available for flushing. The total soil nitrate export (NO3_out) is calculated 224 

as the integration of soil nitrate below the water table:  225 

𝑁𝑂ଷ_௢௨௧ = ׬   ௭ೞ௭೘ೌೣ ௤೥ௌ೥ 𝑁𝑂ଷ_௦௢௜௟𝑁𝑂ଷ_௠௢௕௜௟௘         Eq (11) 226 

where zmax is the maximum water table depth, zs is current water table depth, qz is the net lateral 227 

transport of water from the patch at depth Z; Sz is the soil water content (in meters) and NO3_mobile 228 

is a parameter that defines the portion of nitrate that is mobile (related to soil type). For example, 229 

sandy soils have lower surface area available for cation retention than finer soils, therefore 230 

causing higher 𝑁𝑂ଷି  mobility (Hallaq, 2010; Hassink, 1994; Witheetrirong et al., 2011). Mobile 231 

surface N can also be transported to deep groundwater through preferential flow paths.  232 

 Recent improvements to RHESSys enable users to account for fine-scale (within patch) 233 

heterogeneity (e.g., different types of vegetation cover and associated soil layers that may share 234 

water within a single patch; see Burke et al. 2021 for details). These are referred to as "aspatial 235 

patches." When running RHESSys using the aspatial patch framework, “patch families” become 236 

the smallest spatially explicit model unit, and aspatial patches (nested within a patch family) are 237 

the smallest aspatial model unit. Note that an aspatial patch within a patch family is used to 238 

represent a distribution of a given vegetation type (e.g., trees or shrubs) based on observed (or 239 

hypothetical) distributions. It can, but does not necessarily, represent a single stand or clump 240 
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of vegetation cover; vegetation from a single aspatial patch within a patch family does not have a 241 

defined distribution in RHESSys, so the assumption is that biophysical interactions, such as the 242 

extent to which a given cover type shares water, are more important than their physical location 243 

within the finest grid cell. Because there are no physical locations of aspatial patches within a 244 

patch family, within patch heterogeneity can be modeled without explicitly parameterizing and 245 

modeling fine scale spatial units that would be both computationally prohibitive and nearly 246 

impossible to parameterize with measured data.  247 

Local water routing between aspatial patches inside a patch family is based on root access 248 

to shared storages of water (Figure 3). Local routing allocates water between aspatial patches 249 

based on user defined rules. Local routing within the patch family occurs in addition to 250 

traditional hillslope routing which moves water laterally based on elevation gradients. Most 251 

commonly, water is distributed among aspatial patches as a function of relative differences 252 

between their rooting and unsaturated zone water contents and mediated by gaining and losing 253 

coefficients defined for each cover type.  254 

In this framework, an aspatial patch will gain water if its water content is below the patch 255 

family mean and will lose water if it is above the mean, with the rate of water transfer controlled 256 

by sharing coefficients: loss coefficients (sh_l) and gain coefficients (sh_g). sh_l multiplies the 257 

water fluxes out of a patch and sh_g multiplies the water fluxes into a patch. Sharing coefficients 258 

are used to capture the integrated effects of uncertain, fine-scale variation in root distributions, 259 

and how root distributions and forest structure interact with fine-scale soil drainage 260 

characteristics. Nitrate and dissolved organic C are exchanged along with water during local 261 

routing.  262 
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2.3 Model development 263 

To enable RHESSys to account for biogeochemical hotspots, we expanded the aspatial 264 

patch framework to incorporate “hotspot” aspatial patches within each patch family. These 265 

hotspot aspatial patches represent a distribution of unvegetated microsites where biogeochemical 266 

cycling can be hydrologically disconnected, as soils dry out, from aspatial patches that contain 267 

plant roots (Figure 3). To model hotspot aspatial patches (hereafter called hotspots), we 268 

implemented three key model developments: (1) model algorithms that enable hotspots to access 269 

soil and litter C and N from neighboring non-hotspot patches for decomposition and 270 

biogeochemical cycling, and (2) algorithms and parameters that control the moisture conditions 271 

under which hotspots are hydrologically disconnected from other aspatial patches in the saturated 272 

zone, (3) parameters that control water diffusion in the unsaturated and/or root zone between 273 

hotspot and non-hotspot patches as soils dry out.  274 

Research has shown that N-rich microsites can occur in unvegetated locations where 275 

there is less N uptake and less water demand from plants (Zhu et al., 2018). In the original 276 

RHESSys framework, unvegetated patches were used to represent large (e.g., 10 to 30-meter 277 

resolution) areas with no vegetation. Without vegetation inputs, these patches did not develop C 278 

and N stores to support microbial biogeochemical cycling. To generate hotspots, we 279 

implemented a litter sharing scheme that moves litter from vegetated aspatial patches to hotspots 280 

at an annual timestep to coincide with litter fall (Figure 3). Because we assume that hotspot 281 

aspatial patches occur at fine scales across a given 10-meter resolution patch family, it is 282 

reasonable to assume that they have access to plant litter for decomposition and N cycling from 283 

other aspatial patches within the patch family. The amount of litter shared (CNshare) is a function 284 

of the mean litter C and N content of the patch family (CNmean), where the amount of C and N in 285 
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a hotspot patch after litter sharing (CNhotspot) cannot be above the patch family mean (Eq 12). To 286 

enable N cycling in hotspots, hotspots also have access to 1% of the slow cycling (i.e., protected 287 

or passive) soil organic C and N pools from the vegetated patch families. The litter C and N 288 

routing is described as  289 

𝐶𝑁௦௛௔௥௘ = (∑  ೙ೡ೐೒೔సభ ൫஼ேೡ೐೒_೔ି ஼ே೘೐ೌ೙൯ ×௖௢௘௙_௟௜௧௧௘௥)௡೓೚೟ೞ೛೚೟      Eq (12) 290 

𝐶𝑁௛௢௧௦௣௢௧_௔௙௧௘௥ = 𝑚𝑖𝑛 (𝐶𝑁௛௢௧௦௣௢௧_௕௘௙௢௥௘ + 𝐶𝑁௦௛௔௥௘ ,  𝐶𝑁௠௘௔௡)               Eq (13) 291 

           𝐶𝑁௩௘௚_௔௙௧௘௥_௜ = 𝐶𝑁௩௘௚_௜ − ൫𝐶𝑁௩௘௚_௜ −  𝐶𝑁௠௘௔௡൯ × 𝑐𝑜𝑒𝑓_𝑙𝑖𝑡𝑡𝑒𝑟                     Eq (14) 292 

where, nveg is the number of non-hotspot patches in a patch family, CNveg is the amount of litter C 293 

and N in a non-hotspot patch, nhotspot is the number of hotspot patches in a patch family. 294 

Coef_litter is the sharing coefficient parameter that controls the amount of litter sharing. Hotspot 295 

patches can also be assigned a finer soil texture (e.g., loam), which can hold more water than 296 

non-hotspot patches. In the current model, non-hotspot patches were comprised of sandy loam 297 

(based on the POLARIS database; Chaney et al., 2016).  298 

 To control subsurface hydrologic flow from hotspots to vegetated patches, we set up a 299 

soil moisture threshold for non-hotspot patches ( 𝜃௧௛), above which, water flows into them from 300 

the saturated zone in hotspots. In other words, when non-hotspot patches dry down, they become 301 

hydrologically disconnected from hotspots and they become reconnected when soils wet up 302 

(Figure 3c & Eq 15).  303 

ቊ𝜃௩௘௚ >  𝜃௧௛:  𝑤𝑎𝑡𝑒𝑟 𝑎𝑛𝑑 𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑛 − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑝𝑎𝑡𝑐ℎ𝑒𝑠                            𝜃௩௘௚ ≤   𝜃௧௛:  𝑛𝑜 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 ℎ𝑜𝑡𝑠𝑝𝑜𝑡𝑠 𝑡𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑛𝑜𝑛 − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 𝑝𝑎𝑡𝑐ℎ𝑒𝑠    𝑬𝒒 (𝟏𝟓)                      304 

where  𝜃௩௘௚ is the soil moisture in non-hotspot patches. 305 
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This threshold is used to define a condition where “water films” can form as soils dry 306 

down, which enables microscale biogeochemical cycling while reducing nitrate leaching from 307 

hotspots over the course of the hot, dry summer (Parker & Schimel, 2011). When soils rewet at 308 

the onset of the rainy season, the water table rises, and hydrologic connectivity reestablishes 309 

between hotspot and non-hotspot patches. This can lead to rapid nitrification and nitrate export 310 

before plants become active and gain access to N that accumulated during dry periods of 311 

hydrologic disconnection (Parker & Schimel, 2011). While the thresholds at which hydrologic 312 

connectivity reestablishes are not currently well established, the threshold parameter can be 313 

calibrated to match field observations.  314 

 Although subsurface flow from hotspot patches remains somewhat disconnected during 315 

the dry season, water can still slowly diffuse from hotspots as soils dry out. To account for this, 316 

we developed water sharing coefficients that constrain local routing to and from hotspots and the 317 

unsaturated and rooting zone in the surrounding non-hotspot patches (Figure 3a). During the dry 318 

season (June to November), the default sh_g was set to 0.05 and sh_l was set to 0.9 to simulate 319 

hotspots losing water. During the wet season (December to May), the default sh_g was 0.9 and 320 

sh_l was 0.05 to simulate hotspots gaining water. We rely on sharing coefficients here to capture 321 

“film” dynamics that depend on micro-scale characteristics that are not feasible to explicitly 322 

model but have been documented to influence hot-spot dynamics in field and lab-studies 323 

(Homyak et al., 2016; Parker & Schimel, 2011). To summarize, while soil moisture gradients 324 

control whether routing occurs in the saturated zone between hotspot and non-hotspot patches, 325 

the sharing coefficients control the rate of local water transfer in the unsaturated zone.   326 
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the watershed. Aspatial patches are situated within the 10-meter resolution patch family and 361 

include both vegetated areas and soil aggregates that are isolated from plant roots and may serve 362 

as potential hots spots. In total we delineated 1259 10-meter resolution patch families for Bell 4. 363 

To map landcover, we aggregated 1-meter resolution land cover data from the National 364 

Agriculture Imagery Program (NAIP; collected on June 5, 2016) to 3-meter and classified three 365 

land cover types: chaparral, live oak, and bare ground (Maxwell et al., 2017). We then 366 

overlapped the 10-meter resolution DEM with 3-meter vegetation cover data to classify aspatial 367 

patch distributions in each patch family using a k-means function (Hartigan & Wong, 1979) in R 368 

version 4.3.0 (R Core Team, 2022). This resulted in approximately 11 aspatial patches in each 369 

patch family and 375 different vegetation combinations across the watershed. In total, there were 370 

13716 aspatial patches for Bell 4. We acquired soil texture data from POLARIS (Chaney et al., 371 

2016).  372 

2.5 Model initialization, calibration, and evaluation 373 

 We initialized the soil C and N pools by running the model until the pools stabilized. For 374 

the vegetation C and N pools, we used a target-driven method that allows vegetation in each 375 

patch family to grow until it reaches target leaf area index (LAI) values from remote sensing data 376 

(Hanan et al., 2018). This method enables C and N pools to spin up mechanistically while still 377 

capturing landscape heterogeneity resulting from local resource limitations and disturbance 378 

histories. To construct a map of target LAI values, we chose the clearest available NAIP image 379 

during the growing season (i.e., April 24, 2010). We then calculated NDVI using Eq 16.  380 

𝑁𝐷𝑉𝐼 =  ఘಿ಺ೃି ఘೃఘಿ಺ೃା ఘೃ                                          Eq (16) 381 
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In this equation, 𝜌ேூோ is the reflectance in the near-infrared, and 𝜌ோ is reflectance in the red 382 

(Hanan et al., 2018). We then estimated LAI using a generalized NDVI-LAI model developed by 383 

(Baret et al. 1989; Eq 17).   384 

𝐿𝐴𝐼 =  − ଵ௞  × 𝑙𝑛 ( ே஽௏ூ೘ೌೣିே஽௏ூே஽௏ூ೘ೌೣିே஽௏ூ್ೌ೎ೖ)                          Eq (17)         385 

Here, k is the extinction of solar radiation through a canopy. NDVImax is the maximum NDVI 386 

occurring in the region, and NDVIback is the background NDVI (i.e., from pixels without 387 

vegetation). When NDVI is equal to NDVImax we assign the infinite LAI value as the maximum 388 

observed LAI in this region based on literature (Garson & Lacaze, 2003; McMichael et al., 389 

2004). We obtained k value from Smith et al. (1991) and White et al. (2000). The other 390 

parameters were obtained for each vegetation type (Table 1). 391 

Table 1. Parameters used for calculating LAI from NDVI 392 

Vegetation type k NDVI max NDVI back 

Live oak 0.500 0.379 -0.160 

Chaparral  0.371 0.372 -0.160 

 393 

We used observed streamflow for Bell 4 to calibrate six soil parameters: saturated 394 

hydraulic conductivity (Ksat), the decay of Ksat with depth (m), pore size index (b), air entry 395 

pressure (ϕ), bypass flow to deeper groundwater storage (gw1), and deep groundwater drainage 396 

rates to stream (gw2). We selected the best parameter set by comparing observed and modeled 397 

streamflow using monthly Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970) and percent 398 

error in annual flow estimates. NSE is used to evaluate peak flows and can range from -∞ to 1, 399 

where 1 represents a perfect fit between modeled and observed data. Percent error is used to 400 
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compare differences between the total quantity of modeled and observed streamflow; values 401 

closer to zero represent better fit.  402 

2.6 Sensitivity analyses and simulation scenarios: 403 

After model initialization and calibration, we used the new model framework to build in 404 

microscale hotspots. We assumed the hotspots were evenly distributed across the landscape and 405 

converted one bare ground patch inside of every patch family to an aspatial hotspot patch. Note 406 

that this does not mean that there was only one hotspot in a patch family, but one aspatial patch 407 

was used to represent the distribution (or percent cover) of microscale hotspots. If no bare 408 

ground patches existed in the patch family, we instead converted a chaparral patch to an aspatial 409 

hotspot patch. Because there were approximately 11 patches in each patch family, this setup 410 

resulted in approximately 9% of each patch family (and of the overall basin) consisting of 411 

microscale hotspots. We also assigned a loam soil texture to hotspot patches to represent the soil 412 

physical properties that may also increase moisture retention. The default parameters used to 413 

represent hotspot hydrological and biogeochemical dynamics are shown in Table 2. 414 

Table 2. Default parameters for hotspots. Sh_l and sh_g control water diffusion in the 415 
unsaturated zone between hotspot and non-hotspot patches, the default values promote strong 416 
seasonality in hotspot soil moisture. The soil moisture threshold controls water flow in the 417 
saturated zone between hotspot and non-hotspot patches; the default value promotes the 418 
maximum peak streamflow N. We defined one aspatial patch as a hotspot inside of each family. 419 
This leads to 9.1% cover of hotspot patches evenly distributed across the landscape. 420 

Parameters  Value 

Sharing coefficient of losing water in unsaturated zone from 
hotspots (sh_l) 

Dry season: 0.9 
Wet season: 0.05 

Sharing coefficient of gaining water in unsaturated zone of 
hotspots (sh_g) 

Dry season: 0.05 
Wet season: 0.9 

Soil moisture threshold of non-hotspot above which water 
in saturated zone flows from hotspots to non-hotspot ( 𝜃௧௛) 

21% 

Percentage cover of hotspots 9.1% 
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Sharing coefficient of litter from non-hotspot patches to 
hotspot patches (coef_litter) 

1 

 421 

 To evaluate the uncertainties related to model structure and parameters, we conducted a 422 

set of virtual experiments, or sensitivity analyses. For each sensitivity analysis, we ran RHESSys 423 

for 60 years by looping the available climate data from 1979-2020. Results are presented as 424 

simulation years and capture the climate variability from the available record. First, we examined 425 

how the percentage cover of hotspots can influence N export. We built hotspot patches from zero 426 

percent to 13.7 percent at 2.3 percent increments (i.e., 0%, 2.2%, 4.5%, 6.8%, 9.1%, 11.4%, 427 

13.7%). When the hotspot percentage was equal to 9.1%, there were exactly one aspatial hotspot 428 

patch in each patch family. When the hotspot percentage was larger than 9.1%, we needed to 429 

convert two aspatial patches in some patch families to hotspot patches. For example, the scenario 430 

with 11.4% hotspot cover at the watershed scale, required 2.3% of patch families to have two 431 

aspatial hotspot patches. We emphasize this does not mean that there were only one or two 432 

hotspots in a patch family, but one or two aspatial patches were used to represent their 433 

distribution. 434 

Second, we investigated how the saturation status of hotspots influences nitrate export. 435 

We built three soil moisture conditions for hotspots by changing the sharing coefficients for local 436 

routing, which influenced connectivity between hotspot and surrounding patches (Figure 3b): 437 

wet (sh_l was 0.05  and sh_g was 0.9 throughout the year; water diffused slowly from hotspots), 438 

dry (sh_l and sh_g were set to default values, hotspots diffused water quickly during the dry 439 

season), and intermediately-moist (sh_l was 0.1 and sh_g was 0.8 during the dry season but used 440 

default values in the wet season; water diffused from hotspots at an intermediate rate). The 441 

hotspots in the wet scenario were saturated almost all the time and had small interannual 442 
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 Following the sensitivity analyses, we used available data and literature to estimate the 456 

most likely value for these parameters. We selected hotspot abundance of 9.1% assuming every 457 

patch family had the same hotspot coverage (using the default value in Table 2). We then 458 

selected the “dry” hotspot scenario in order to most closely match the seasonality of N dynamics 459 

observed in dryland ecosystems (Parker & Schimel 2011). Finally, as a simple calibration 460 

strategy, we selected a value for the soil moisture threshold parameter that enabled us to best 461 

capture observed peak N export (as a function of the NSE). Then using these values, we 462 

conducted modeling scenarios to investigate how biogeochemical hotspots influence N export.   463 

Modeling scenarios were based on the presence or absence of biogeochemical hotspots. 464 

For the hotspot scenario, we used the optimized soil moisture threshold determined using the 465 

approach described above, along with default parameters shown in Table 2, which created “dry” 466 

hotspots (i.e., with rapid water diffusion) that had distinct seasonality in denitrification, with very 467 

low denitrification during the dry summer, as observed in field data (Li et al., 2006; Parker & 468 

Schimel, 2011). In this scenario, the hotspot patches received litter and soil C and N from 469 

vegetated patches and both biogeochemical and hydrologic processes still occurred within the 470 

hotspot patches. For the non-hotspot scenario, we used unvegetated patches in place of the 471 

hotspot patches, in which the soil and vegetation C and N pools were initialized to zero. 472 

However, in these unvegetated patches, we did not route litter and passive soil C and N from the 473 

vegetated patches. As a result, only hydrologic processes occurred there. We ran these two 474 

scenarios for 120 years, 60 years to stabilize the hotspot patches, and another 60 years to 475 

compare differences between scenarios. 476 
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3 Results 477 

3.1 Initialization and calibration results 478 

Using the target-driven initialization method of Hanan et al. (2018), we were able to 479 

capture the spatial distribution of leaf area index (LAI) and associated C stores across the Bell 4 480 

watershed, with some minor underestimates in riparian areas (covered by live oak) and 481 

overestimates in a small percentage of patches, which occurred because RHESSys allocates C to 482 

LAI at the end of each growing season. Therefore, when the simulated LAI reached its target 483 

value in the middle of a growing season, continued growth prior to updating the model stores led 484 

to minor overestimation. Overall, the initialized and remotely sensed LAI were a strong match 485 

(Figure S1). 486 

During the calibration period, the monthly NSE (a metric to evaluate the extent to which 487 

models capture peak streamflow; values close to 1 represent the best correspondence between 488 

modeled and observed values) was 0.88. Percent error (a metric to evaluate total flow; values 489 

close to 0 represent low error in the total amount of streamflow for modeled vs. observed data) 490 

was 5.45%. For the evaluation period, the monthly NSE was 0.8 with a percent error of -3.92%. 491 

In general, the model captured the seasonality, recession, and low flow patterns observed in the 492 

streamflow record.  493 

3.2 Sensitivity of N fluxes to the abundance of hotspots  494 

 As expected, increasing the abundance of hotspots in the model increased N fluxes. The 495 

magnitude of increases was generally greatest for nitrification and denitrification, but streamflow 496 

N also increased. N flux estimates were sensitive to climate trajectories and key parameters 497 

including hotspot abundance, parameters that control hotspot soil moisture, and hotspot 498 

connectivity to the surrounding patches. We discuss these in more detail below.  499 
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 Increasing the abundance of hotspots increased the rate of N fluxes (Figure 6). 500 

Specifically, during wet years, the median nitrification rate was 2.48 g N m-2 year-1 in the non-501 

hotspot scenario while it increased to 4.25 g m-2 year-1 with 13.7% hotspot cover, representing a 502 

70% increase (Figure 6a). The denitrification rate increased from 0.001 g m-2 year-1 in the no-503 

hotspot scenario to 0.057 g m-2 year-1 with 13.7 % hotspot cover, showing a 57-fold increase 504 

(Figure 6b). Streamflow nitrate export increased by 76% from 0.816 g m-2 year-1 to 1.44 g m-2 505 

year-1 (Figure 6c). When considering cumulative N fluxes over a 60-year period, nitrification 506 

increased by 73%, there was a 16-fold increase in denitrification and streamflow nitrate 507 

increased by 32% under the 13.7% cover scenario. Thus, the abundance of hotspots had a 508 

substantial effect on N processes, particularly denitrification.    509 

 Total N export increased with increasing hotspot cover and then reached an asymptote 510 

when hotspot cover was greater than 9.1% (Figure 6 b&c). Denitrification rates were very low in 511 

the zero percent hotspot cover scenario and increased with an increasing percentage of hotspot 512 

patches. However, the rate of increase declined when hotspot cover was greater than 9.1%. 513 

Median streamflow nitrate export began increasing when hotspot cover was above 4.5% but 514 

reached an asymptote at 9.1%. Maximum streamflow nitrate export also increased with 515 

increasing hotspot cover, but the rate of increase declined when cover was above 9.1%. The 516 

variability, represented as interquartile ranges, in denitrification and streamflow nitrate both 517 

increased and reached an asymptote with increasing percent cover of hotspots (Table S1). This 518 

occurred because the total number of patches was the same across different abundance scenarios. 519 

Therefore, an increase in hotspot cover corresponded to a concomitant decrease in vegetation 520 

cover, which reduced carbon and nitrogen inputs from vegetation to soil. As a result, N cycling 521 

processes became limited by plant productivity in a patch family. Although this result was partly 522 
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hotspots diffused slowly to non-hotspot patches and hotspots retained their soil moisture 539 

throughout the year (i.e., a wet hotspot scenario), and a scenario where the diffusion speed was 540 

intermediate (i.e., an intermediately-moist hotspot scenario), and a scenario where soil moisture 541 

diffused relative quickly from hotspot to non-hotspot patches (i.e., a dry hotspot scenario).  542 

 We found that basin-scale nitrification rates can decrease with the moisture content of 543 

hotspots (Figure 7 b&g). Higher moisture content in hotspots led to relatively lower moisture 544 

content in non-hotspot patches (based on water balance). In the wet-hotspot scenario, basin-scale 545 

nitrification was lower than in the dry-hotspot scenario where water slowly diffused to non-546 

hotspot patches. This occurred because in the wet-hotspot scenario, soil moisture in non-hotspot 547 

patches was lower, which reduced total nitrification, even though nitrification rates increased in 548 

the hotspots. Basin-scale denitrification increased with higher moisture content in hotspots since 549 

denitrification mainly occurs in those locations (Figure 7 d&g). For denitrification, the 550 

differences between the three scenarios were most pronounced during dry years when soil 551 

moisture differences between hotspots and non-hotspot patches were higher (Figure 7 b&d).  552 

During dry and average years, streamflow nitrate export was higher in the scenarios 553 

where hotspots remained saturated or close to saturated (i.e., the wet- and intermediately-moist- 554 

hotspot scenarios) than in the dry-hotspot scenario where water diffused rapidly during dry 555 

periods. This led to more soil N accumulation in the dry-hotspot scenario. However, there was a 556 

higher total annual streamflow nitrate export during the wet years in the dry-hotspot scenario 557 

especially after multiple dry years (Figure 7c, year 40). Altogether, the closer hotspots are to 558 

being water-saturated, the more quickly N is exported to streamflow. During multiple dry years, 559 

for the dry hotspot (rapid diffusion) scenario, nitrate accumulated in the saturated zone. Once a 560 

wet year occurred, that nitrate was flushed out to streams (Figure 7a and Figure S3, year 40). In 561 
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wet hotspot scenario), one where water diffused more rapidly from hotspots during the dry 569 
season (i.e., the rapid diffusion, dry hotspot scenario), and one where diffusion was intermediate 570 
(i.e., the intermediately-moist hotspot scenario). Streamflow is calculated as the average water 571 
depth over the basin area of Bell 4 (0.14 km2). Panels g h and i show the distribution of annual N 572 
fluxes in wet years (precipitation > 710 mm/year), box plots show the 25th, median, and 75th 573 
percentile values, and the black line connects the median of each scenario. 574 

3.4 Sensitivity of N export to the subsurface connectivity parameter 575 

 The soil moisture threshold, which controls the connectivity of hotspots to non-hotspot 576 

patches, had a stronger influence on streamflow nitrate export than on nitrification and 577 

denitrification fluxes (Figure 8). This occurred because streamflow N export is influenced by 578 

both soil moisture content and subsurface lateral transport. Thus, when the threshold was high 579 

(i.e., when more moisture was required to establish hydrologic connectivity), streamflow N 580 

export was close to zero. With a higher soil moisture threshold, hotspots also tended to have 581 

higher moisture content, which increased nitrification and denitrification (Figure 8e), although 582 

the increases were small. The soil moisture threshold affected both the magnitude and timing of 583 

streamflow nitrate export. At a very low threshold of 0.15, there was a slightly higher amount 584 

and similar timing of peak nitrate export to streams compared to the fully connected scenario 585 

(i.e., threshold = 0, Figure 8c). These small increases occurred because soil moisture in the non-586 

hotspot patches was higher than 0.15 most of the time (Figure 8d). A threshold of 0.21, which 587 

was around the median basin-scale soil moisture, caused the largest peak in streamflow nitrate 588 

export. This occurred because connectivity was delayed until the threshold was reached, 589 

allowing nitrate to accumulate. When the threshold was larger than 0.21, peak streamflow nitrate 590 

was smaller and came later because hotspots were disconnected from non-hotspot patches most 591 

of the time.  592 
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3.6 Comparison of hotspot and non-hotspot scenarios  618 

At the basin-scale, there was higher N export in the hotspot scenario than in the non-619 

hotspot scenario (Figure 10 a&f). In the hotspot scenario, higher streamflow nitrate export in wet 620 

years (e.g., Figure 10c, year 40) corresponded with higher soil nitrate accumulation during the 621 

previous dry years (e.g., Figure 10a and Figure S4, year 39). Conversely, less nitrate 622 

accumulated during dry years in the non-hotspot scenario (e.g., Figure S4, year 39). Nitrate 623 

accumulated during dry years and there was substantial nitrate export to streams in wet years, 624 

especially when a wet year followed multiple dry years (e.g., Figure 10c in year 40). We also 625 

found that streamflow nitrate export was further influenced by interannual precipitation patterns. 626 

The differences between the hotspot and non-hotspot scenarios were most evident during wet 627 

years when the basin was more connected (e.g., Figure 10c in years 40 and 53). During wet 628 

years, more nitrate was flushed out from hotspots, which illustrates how subsurface connectivity 629 

can be an important factor driving streamflow N export. Consequently, the differences in 630 

streamflow nitrate between the hotspot and non-hotspot scenarios were less consistent than the 631 

differences in nitrification and denitrification, which had similar temporal patterns but differing 632 

magnitude (e.g., Figure 10 c&d). 633 
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abundance (Figure 6e and f & Figure 11a), but with an asymptotic relationship due to decreasing 665 

N inputs and biogeochemical cycling that occurred when vegetated cover was displaced by 666 

hotspot cover. This reduced both nitrification and energy inputs from soil respiration for 667 

denitrification (see Eq 9). However, in less N-limited and more mesic sites (e.g., under elevated 668 

N deposition and increasing precipitation), N export may be more sensitive to increasing hotspot 669 

abundance.   670 

One limitation of our study is that we did not examine how the spatial distribution of 671 

hotspots influences N export. Previous research has shown that hotspots can be more 672 

concentrated in riparian corridors and wetlands where moisture content is higher (Pinay et al., 673 

2015). We did however find that wet hotspots, which may serve as a surrogate for riparian and 674 

wetland locations, can in some cases increase both denitrification and N export in streams 675 

(Figure 7 c&d). However, because the location and arrangement of hotspots across a landscape 676 

can significantly influence streamflow N export (Laudon et al., 2011; Pinay et al., 2015), more 677 

research is needed to understand these spatial relationships (Haas et al., 2013). For example, 678 

combing high-resolution remote sensing data with field observations may help us better constrain 679 

hotspot distribution and abundance in ecohydrological models (Goodridge et al., 2018; 680 

Groffman, 2012; Tague, 2009; Walter et al., 2000). 681 

4.2 Uncertainties in how rapidly hotspots dry out 682 

 Soil moisture is a major factor regulating denitrification and streamflow nitrate export 683 

(Pinay et al., 2015; Zhu et al., 2012). Our modeling experiments illustrate how the relationships 684 

between soil moisture and N dynamics can be complex and non-linear. Elevated soil moisture 685 

may reduce nitrification, increase denitrification, and ultimately decrease the amount of nitrate 686 

available for hydrologic flushing. Drier soils on the other hand can decrease denitrification and 687 
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increase the amount of nitrate available for flushing (Homyak et al., 2016). We found that during 688 

dry and average years, higher moisture in hotspots increased nitrate infiltration from the 689 

unsaturated zone to the saturated zone, resulting in elevated and more rapid nitrate export to 690 

streams (Figure 7c). However, during wet years, the wet hotspot scenario had less nitrate export 691 

to streams because in prior average years, there was more vertical leaching and therefore less N 692 

accumulating in the saturated zone (Figure 7a and Figure S3, year 38-39). The dry hotspot 693 

scenario captured the observed nitrate-flushing better than the wet scenario, suggesting that 694 

hotspots are not likely to be continuously saturated (Figure 7). Because studies have shown that 695 

very small changes in soil moisture can change N fluxes abruptly (Castellano et al., 2013; Evans 696 

et al., 2016), it is important to improve our representation of soil moisture conditions in hotspots 697 

to accurately predict nitrate export.   698 

 Soil water residence time is an important factor affecting N export (Pinay et al., 2015; 699 

Zarnetske et al., 2011). The slower water diffuses from hotspots, the longer nitrate is exposed to 700 

denitrifying conditions (McClain et al., 2003). Our study shows that when water diffuses more 701 

slowly from hotspots (i.e., in the wet hotspot scenario) both denitrification and total N export to 702 

streams increase (Figure 7 & Figure 11). We used water diffusion coefficients to modify the rate 703 

at which water diffuses from hotspots and we selected coefficients that enabled us to best capture 704 

the plausible timing of denitrification and streamflow N fluxes. While this is a simplified, proxy 705 

approach, adding further complexity by explicitly modeling diffusion may be infeasible since it 706 

would require local, spatially explicit soil parameters (Wood et al., 2011). However, further 707 

investigation into how proxy parameters may be calibrated is recommended for future research. 708 

Stream nitrate export was also affected by precipitation patterns. When there were 709 

multiple dry years in a row, nitrate accumulated to a greater extent than in average years (Figure 710 
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7a). When a wet year followed a multi-year drought, there was higher streamflow nitrate export 711 

in the dry hotspot scenario (Figure 7c). This is corroborated by field observations, which suggest 712 

that severe drought promoted nitrate accumulation in soil due to less denitrification and plant 713 

uptake, resulting in more nitrate available for flushing with the return of precipitation (Winter et 714 

al. 2023). We found that the length of drought and precipitation variability were more important 715 

in driving streamflow N export than the amount of precipitation (Figure 7c&e). For example, 716 

even with similar amount of precipitation in simulation years 26 and 40, N export was much 717 

higher in year 40 due to the legacy of a multi-year drought (Figure 7 c&e). Recent research has 718 

similarly shown that precipitation variability can have positive or negative legacy effects on 719 

dryland productivity, which can in turn influence N cycling and export (Gherardi & Sala, 2015; 720 

Krichels et al., 2022). However, the direction of N responses vary along long-term precipitation 721 

gradients, such as the response is positive when precipitation is below 300 mm/year and negative 722 

when it exceeds 300 mm/year (Gherardi & Sala, 2015, 2019).  723 

4.3 Uncertainties in hydrologic connectivity 724 

The subsurface flow threshold also plays a role in how much nitrate is transported to 725 

streams. In this study, we found that the optimal volumetric soil moisture to trigger subsurface 726 

flow N export from hotspot to non-hotspot patches was around 21% (Figure 8). Other studies 727 

have similarly shown that to trigger a subsurface flow, the soil moisture needs to reach a 728 

threshold of 18% (Liao et al., 2016). However, this threshold may vary with soil texture and 729 

water potential dynamics. While our new model framework can improve the prediction of 730 

streamflow nitrate with a static soil moisture threshold, topography and vegetation cover can also 731 

influence the connectivity and amount of subsurface flow, suggesting that soil moisture 732 

thresholds should be dynamic (Crow et al., 2012, Zhu et al., 2018). 733 
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Coupling soil biogeochemical models with hydrological models has become increasingly 734 

popular for investigating N cycling and export (Schimel, 2018). To save time, researchers 735 

typically prefer to couple existing models rather than build new ones (Malek et al., 2017; Zhu et 736 

al., 2018). Since most hydrologic models do not account for fine-scale heterogeneity in available 737 

moisture, they may not be able to capture biogeochemical hotspots even when coupled with 738 

biogeochemical models (Chen et al., 2020). Our new model framework provides a relatively 739 

simple way to capture hotspots without having to explicitly represent sub-meter scale spatial 740 

heterogeneity. While this intermediate complexity approach enables us to represent hotspots 741 

across a watershed, it does not fully capture some of the potential controls on hotspot function. 742 

For example, although our model captured the variability and magnitude of streamflow nitrate, 743 

there was some error associated with its timing (Figure 9). Future work can build upon our 744 

simple hotspot model to develop more process-based and dynamic representation of subsurface 745 

flow thresholds. This can be achieved by improving our understanding of hydrology and N 746 

processes in soil through hydrogeochemical observations. 747 

4.4 The role of hotspots and hot moments in watershed models 748 

We found that the catchment-scale denitrification rate in the hotspot scenarios was 749 

significantly higher than that observed in the non-hotspot scenario (Figure 6 & Figure 10), 750 

aligning with the concept that small areas often account for a high percentage of denitrification 751 

activity (McClain et al., 2003). Additionally, denitrification was more sensitive to hotspot 752 

abundance, while N export to streams was more sensitive to the soil moisture threshold that 753 

triggers subsurface flow (Figure 11). Still, both are affected by the speed at which water diffuses 754 

from hotspots, which influences soil moisture levels, water residence time in soil, and vertical 755 

and horizontal transport of water. Our virtual experiments provide information on model 756 
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uncertainty and sensitivity that can inform future studies focused on scaling N processes from 757 

plots to catchments. For example, in areas with high N deposition, managers who are interested 758 

in predicting how much N ends up in streams should focus on reducing model uncertainties in 759 

subsurface flow thresholds and soil moisture retention in hotspots. 760 

In the context of predicting N export, hot moments—defined as wet periods after a 761 

prolonged dry spell (Groffman et al., 2009)—are currently better represented in the RHESSys 762 

model than hotspots. Even in our no hotspot scenario, there was a pulse of streamflow N export 763 

when wet years followed multiple dry years (Figure 7c & Figure 10c). However, models of how 764 

hot moments influence streamflow N export are still limited by uncertainties in soil moisture 765 

dynamics. For instance, we found that in the wet hotspot scenario, there was an earlier 766 

streamflow N pulse than in the dry hotspot scenario (Figure 7c). Thus, hotspot conditions can 767 

affect the timing of hot moments, which has not been previously explored in modeling studies. In 768 

future studies, it is important to consider interactions between hotspots and hot moments rather 769 

than discussing them in isolation (Bernhardt et al., 2017).  770 

4.5 Implications of future predictions 771 

Our findings highlight the importance of incorporating the role of hotspots when 772 

modeling N loss to the atmosphere and N export to streams in dryland ecosystems. Including 773 

hotspots substantially increased denitrification, up to 10-fold, and increased streamflow N export 774 

by at least 30%. This also improved agreement with stream nitrate data in our study watershed 775 

(Figure 6 b&c). Our results also suggest that current biogeochemical models may underestimate 776 

N export/loss in drylands when hotspots effect are not considered, particularly following 777 

rewetting of dry soils (e.g., Figure 10c, Eberwein et al., 2020; Schimel, 2018).  778 



41 
 

 Denitrification is one of the major sources of greenhouse gas emissions and streamflow N 779 

export can affect downstream drinking water quality. For example, the USEPA standard for the 780 

maximum contaminant level of nitrate in rivers to protect against blue-baby syndrome is 10 mg 781 

L-1, which is equivalent to around 0.5g m-2 when the daily peak streamflow is around 50mm m-2 782 

day-1 (Figure 4a, year 1998; Van Metre et al., 2016). When hotspots were not considered in the 783 

model, streamflow N export was underestimated by 0.05g m-2 in 1998, representing 10% of the 784 

EPA maximum threshold (Figure 9, year 1998). This underestimation could significantly 785 

influence longer-term water quality predictions. Future climate change and expanding 786 

urbanization will intensify N export/loss by increasing precipitation variability and N deposition 787 

(Borer & Stevens, 2022). Therefore, accurate prediction of N export/loss under future 788 

environmental change is crucial for mitigating its effects on the environment and society. Our 789 

new model framework, which explicitly represents hotspots, proves a valuable tool for water and 790 

forest managers to develop strategies aimed at improving water quality and mitigating the effects 791 

of environmental change.  792 

5 Conclusion 793 

Coupling hydrologic processes with biogeochemical processes in watershed-scale models 794 

is challenging due to subsurface heterogeneity and the existence of hotspots and hot moments 795 

that are not well represented in models. We developed a framework for representing hotspots 796 

explicitly in dryland watersheds and using this framework, we demonstrated how hydrologic 797 

connectivity and precipitation can affect N export in a dryland watershed in California. With 798 

increasing hotspot coverage (up to a threshold), both denitrification and N export to streams 799 

increased. The partitioning between denitrification and N-export, and the timing and magnitude 800 

of N-export were largely controlled by hotspot soil moisture dynamics. Specifically, we found 801 
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that when the soil moisture threshold required for reestablishing subsurface flow was 802 

intermediate, nitrate was able to accumulate during drier periods and then be flushed to the 803 

stream upon wet up. This led to the highest peak nitrate export to streams, which tended to 804 

better-capture observed nitrate patterns. To our knowledge, this is the first time biogeochemical 805 

hotspots have been modeled explicitly using a coupled biogeochemical-ecohydrological model in 806 

a dryland watershed. This modeling framework can help better project N export in dryland 807 

watersheds where hotspots may play an increasingly important role in governing water quality as 808 

drought and N deposition continue to increase. 809 
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.



N
 e

xp
or

t

Hotspots abundance (%)

Streamflow nitrate Denitrification

(a)

N
 e

xp
or

t

Soil moisture threshold of Non-hotspot
to trigger subsurface flow (%)

(b)

N
 e

xp
or

t

Rate of water diffusion from hotspots

(c)

High Low


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11

