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Introduction  

 The first part of supplementary material includes a detailed description of WMFire and 
fire effect model. The second part includes results of RHESSys model calibration and WMFire 
validation. The third part are supplementary figures to support results and discussion.    
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Text S1. Model descriptions 
S1.1 Fire spread model 
WMFire is a stochastic fire-spread model designed to be coupled with RHESSys (Kennedy 

et al., 2017). It takes output variables from RHESSys and uses them to predict fire spread. 
Because it is an intermediate-complexity stochastic model, WMFire is not designed to predict 
the perimeters and timing of individual fires. Instead, the model can be used to predict 
aggregate spatial and temporal characteristics of fire spread across basins over time (i.e., the 
fire regime). A successful ignition occurs when there is an ignition source on the landscape, and 
it successfully starts a wildfire. The successful start of fire (Pi(l,d), Eqn 1) is calculated from the 
probabilities associate with litter load and relative deficit (Pi(l)) and Pi(d), respectively), where 
deficit is calculated as 1-ET/PET (here, we use relative deficit as a surrogate for fuel aridity). The 
probability of a successful spread (Ps(l,d,S,w)) is calculated based on the probabilities associate 
with litter load (l), relative deficit (d), topographic slope (S) and the orientation of spread 
relative to wind direction (W), giving Ps(l), Ps(d), Ps(S), and Ps(w), respectively (Eqn 2). The 
probability of spread (Ps) increases with increasing fuel load and relative deficit, is highest in 
the direction of wind, increases in the uphill direction, and decreases in the downhill direction. 
After a successful ignition, WMFire tests the orthogonal neighbors of that patch against the 
probability of spread to determine if there is a successful spread. WMFire model has 
demonstrated accuracy in the Santa Fe (New Mexico) and HJ Andrews (Oregon) watersheds 
(Kennedy et al., 2017).   

                                                Pi (l,d)=Pi (l)×Pi (d)                                                            Equation (S1) 
                                 Ps (l,d,S,w)=Ps (l)×Ps (d)×Ps (w)×Ps (S)                                   Equation (S2) 
 
S1.2 Fire effects model 
The fire effects model is built to match the complexity of the coupled RHESSys-WMFire 

model (Bart et al., 2020). The fire effects model uses the probability of spread (Ps) as an index 
of fire intensity but also accounts for canopy structure, which links fire intensity and spread with 
fire severity. Fire consumes C in the litter and coarse woody debris (CWD) pools based on the 
CONSUME model (an empirical model developed using statistical relationships derived from 
measured woody fuel consumption data; Ottmar et al., 1993). Passive crown fire is spread from 
the understory to the overstory. For the understory, Ps is a proxy for fire intensity, and the fire-
caused mortality is a function of intensity (currently it is a 1:1 linear relationship, but can be 
changed to account for different landscapes). For the overstory, mortality and consumption of 
fuel are based on how much litter and understory fuel are consumed. There is also a set of 
parameters to account for the understory height threshold, overstory height threshold, and 
functional form representing the relationship between mortality and consumption. The fuel 
that is not consumed moves into the litter and CWD pools.  

  

Text S2. Model parameterization 
We used a Monte Carlo approach to calibrate six groundwater-related parameters: 

saturated hydraulic conductivity (Ksat), decay of Ksat with depth (m), air-entry pressure (φae), 
pore size index (b), bypass flow to deeper groundwater stores (gw1) and groundwater drainage 
rates to the stream (gw2). We selected the best parameter set for Trail Creek by comparing 
observed and modeled streamflow using the Nash-Sutcliffe efficiency metric (NSE), R2 for the 
correlation between daily observed and modeled flow, and percent error in annual flow 
estimates as well MODIS ET and NPP (Mu et al., 2011). The Monthly NSE is 0.94 with a percent 
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error of 2.6 for calibration period. The model estimates ET and NPP in a reasonable range. A 
detailed description of hydrologic calibration is described by Ren et al., (2021). 

The fire spread model WMFire has previously been shown to replicate expected spatial 
patterns of fire spread for a wildfire in the Pacific Northwest (Kennedy et al., 2017) and fire 
regime characteristics for two different watersheds with contrasting historical fire regimes 
(LANDFIRE, Rollins, 2009). The model is robust to applications in both historically low severity 
frequent-fire regimes in the southwest and mixed to high severity infrequent fire regimes in the 
Pacific Northwest. We selected three criteria (spatial distribution of fire spread, fire seasonality, 
fire return interval (FRI) to validate the fire spread model against LANDFIRE estimates for Trail 
Creek. Spatial distribution and seasonality of fire were not sensitive to ignition rates and agreed 
with LANDFIRE estimates. FRI, on the other hand, was sensitive to ignition rates. We adjusted 
ignition rates according to the size of Trail Creek, which enabled RHESSys-WMFire to simulate 
spatial variation in FRIs that agreed with LANDFIRE estimates. A detailed description of 
WMFire model calibration is described in (Hanan et al., 2021). 
 
 

 

Figure S1. The ranking of fire-related climate change variables among GCM models for Trail 
Creek according to the future greenhouse gas emission RCP8.5 scenarios. These variables 
include the 1971 – 2000 vs. 2040 – 2069 changes in the monthly mean of a) actual evaporation 
(∆AET) and b) water deficit (∆DEF), the standard deviation of monthly c) AET (σAET) and d) 
DEF (σDEF); annual number of days per year where 100-hour dead fuel moisture is below the 
historical (1971 – 2000) value for the e) 3rd percentile and f) 10th percentile. ProDrought had the 
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largest increase in the standard deviation of DEF from the historical (1971 – 2000) period; this 
represents a storyline where drought would be promoted. ProVeg had the smallest increase in 
the mean of DEF, which would increase productivity and limit fire; and ProFire had significant 
variability in fire-related metrics; MultiMean is the GCM model that was closest to the multi-
model mean. 
 
 

 

Figure S2. Basin scale fuel load (i.e., litter carbon) response to climate change and atmospheric 
CO2 fertilization effect under four different GCMs scenarios for 2040s. Baseline scenario used 
historical climate data for the future scenario spin-up. These scenarios are without fire model 
on. 
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Figure S3. Basin scale fuel aridity response to climate change and atmospheric CO2 
fertilization effect under four different GCMs scenarios for 2040s. These scenarios are without 
fire model on.  

 

Figure S4. Basin scale plant carbon response to climate change and atmospheric CO2 
fertilization effect under four different GCMs scenarios for 2040s. These scenarios are without 
fire model on.  
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Figure S5. Basin scale soil respiration response to climate change and atmospheric CO2 
fertilization effect under four different GCMs scenarios for 2040s. These scenarios are without 
fire model on.  

 

Figure S6. Basin scale fuel load (i.e., litter carbon) response to climate change and atmospheric 
CO2 fertilization effect under four different GCMs scenarios for 2070s. These scenarios are 
without fire model on. 
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Figure S7. Basin scale fuel aridity response to climate change and atmospheric CO2 fertilization 
effect under four different GCMs scenarios for 2070s. These scenarios are without fire model 
on. 

 

Figure S8. Basin scale plant carbon response to climate change and atmospheric CO2 
fertilization effect under four different GCMs scenarios for 2070s. These scenarios are without 
fire model on. 
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Figure S9. Basin scale soil respiration response to climate change and atmospheric CO2 
fertilization effect under four different GCMs scenarios for 2070s. These scenarios are without 
fire model on. 

 

 



 
 

9 
 

Figure S10. Relationships among fuel load, fuel aridity, and vegetation distribution under 
various climate change and atmospheric CO2 fertilization effect scenarios in 2040s. Data are 
bind with 0.05 window length for both fuel load and fuel aridity, and the value of each bin is the 
median number of vegetation types. Panel (a), (b), (c), and (d) show the only climate change 
effect and panel (e), (f), (g), and (h) show the overall effect (both climate change and CO2 
fertilization effect). 

 

 

Figure S11. Relationships among fuel load, fuel aridity, and vegetation distribution under 
various climate change and atmospheric CO2 fertilization effect scenarios in 2070s. Data are 
bind with 0.05 window length for both fuel load and fuel aridity, and the value of each bin is the 
median number of vegetation types. Panel (a), (b), (c), and (d) show the only climate change 
effect and panel (e), (f), (g), and (h) show the overall effect (both climate change and CO2 
fertilization effect). 
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Figure S12. Differences between future climate (2006 - 2060) and historical climate (1991 - 
2005) during the fire season (May -September). The top panels are the differences in the annual 
mean, and the bottom are the differences in the standard deviation (SD). 
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