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Key Points:  17 

 Fire activity in a semiarid ecosystem is projected to increase in the 2040s (i.e., 2031 – 2060) 18 

and decrease in the 2070s (i.e., 2061 – 2090).  19 

 While climate change (without CO2 fertilization) decreases fire activity by reducing fuel 20 

load, CO2 fertilization counteracts this effect to some extent. 21 
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 For a given vegetation type, there are temporally stable thresholds—specifically, the ratio of 22 

changes in fuel loading to changes in fuel aridity—that determine whether a location is fuel 23 

or flammability limited.  24 

  25 
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Abstract  26 

Fire regimes are influenced by both exogenous drivers (e.g., increases in atmospheric 27 

CO2 and climate change) and endogenous drivers (e.g., vegetation and soil/litter moisture), 28 

which constrain fuel loads and fuel aridity. Herein, we identified how exogenous and 29 

endogenous drivers can interact to affect fuels and fire regimes in a semiarid watershed in the 30 

inland northwestern U.S. throughout the 21st century. We used a coupled ecohydrologic and fire 31 

regime model to examine how climate change and CO2 scenarios influence fire regimes over 32 

space and time. In this semiarid watershed we found that, in the mid-21st century (2040s), the 33 

CO2 fertilization effect on vegetation productivity outstripped the effects of climate change-34 

induced fuel decreases, resulting in greater fuel loading and, thus, a net increase in fire size and 35 

burn probability; however, by the late-21st century (2070s), climatic warming dominated over 36 

CO2 fertilization, thus reducing fuel loading and fire activity. We also found that, under future 37 

climate change scenarios, fire regimes will shift progressively from being flammability to fuel-38 

limited, and we identified a metric to quantify this shift: the ratio of the change in fuel loading to 39 

the change in its aridity. The threshold value for which this metric indicates a flammability 40 

versus fuel-limited regime differed between grasses and woody species but remained stationary 41 

over time. Our results suggest that identifying these thresholds in other systems requires 42 

narrowing uncertainty in exogenous drivers, such as future precipitation patterns and CO2 effects 43 

on vegetation. 44 

Plain Language Summary 45 

Many studies have projected increases in wildfire under future climate change. However, 46 

in addition to changes in fuel aridity, this also depends on how the fuel loading change in 47 

response to warmer temperatures and increasing atmospheric CO2 concentrations. We used a 48 
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coupled ecohydrological and fire model to simulate how wildfire changes in a semiarid 49 

watershed of the northwestern U.S. throughout the 21st century. We found that wildfire is 50 

projected to increase in the mid-21st century due to increases in fuel loading and fuel aridity. 51 

However, wildfire is projected to decrease in the late-21st century due to drought-induced 52 

decreases in fuel loading, even when fuels are drier. We demonstrated that future wildfire 53 

regimes are dynamic, and we cannot simply extrapolate fire activity from the baseline and 2040s 54 

scenarios to the 2070s. Furthermore, we found there was a clear threshold in the ratio of the 55 

change in fuel loading to the change in its aridity at which fire regimes shift from being 56 

flammability to fuel-limited. Predicting future wildfires will require reducing key uncertainties in 57 

future precipitation patterns and our understanding of how CO2 fertilization affects plant growth. 58 

Key words: fire regimes, climate change, fuel aridity, fuel loading, vegetation, fire regime 59 

modeling, fire prediction, semiarid watersheds.  60 

1 Introduction 61 

  While frequent low-intensity fires are an important component of many forest 62 

ecosystems, e.g., contributing to the regulation of energy, water, and carbon cycling (Flitcroft et 63 

al., 2016; Liu et al., 2013), large, stand-replacing wildfires are becoming more common in 64 

locations that historically burned at low intensity (Abatzoglou & Williams, 2016; Westerling, 65 

2016; Williams et al., 2019). These fire regime shifts can transform ecosystem dynamics and 66 

structure, increase air and water pollution, cause flood and landslide hazards, and threaten human 67 

property and lives (Abatzoglou et al., 2014; Smith et al., 2016). Climate change is a major factor 68 

pushing fire regimes in flammability-limited forested systems outside their historical range of 69 

variability (Abatzoglou & Williams, 2016). Thus, mitigating future fire hazard requires 70 

understanding how climate change and wildfire interact at the scales where management actions 71 
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are implemented. However, this is challenging at fine scales because climate-wildfire 72 

interactions can vary with local environmental conditions, including topography and vegetation 73 

cover (Hanan et al., 2021; Littell et al., 2018; Pausas & Paula, 2012).  74 

While climate change is playing an essential role in facilitating large fires in the western 75 

U.S. (Abatzoglou & Williams, 2016), the effects of climate change are location-dependent. For 76 

example, climate change (i.e., warming) can increase the frequency, duration, and intensity of 77 

drought, which can in turn increase fuel aridity and fire hazard (Abatzoglou & Kolden, 2013). 78 

This is especially true in mesic landscapes where wildfire regimes are flammability-limited. In 79 

more arid locations, on the other hand, climate change may ultimately decrease wildfire hazard 80 

by reducing net primary productivity (NPP) and, therefore, fuel loads (Hanan et al., 2021; Littell 81 

et al., 2016, 2018).  Thus, the effects of climate change on future fire regimes depends in large 82 

part on how vegetation (and fuels) respond.  83 

Understanding how climate change influences vegetation, fuel aridity, and fuel loading is 84 

further complicated by the role of rising atmospheric CO2 concentrations, which can modify 85 

plant (and therefore fuel) responses to drought (Becklin et al., 2017; Warren et al., 2011). For 86 

example, increasing CO2 concentrations can increase plant productivity by increasing 87 

photosynthetic and water-use efficiency, thereby partially offsetting the suppressive effects of 88 

drought (Becklin et al., 2017; Lewis et al., 2009; Sullivan et al., 2020). Because rising CO2 89 

concentrations and warming influence vegetation, fuel loading, and fuel moisture in opposite 90 

ways, it is important to disentangle which drivers dominate in different locations.   91 

Many recent studies have focused on understanding how climate, ecosystem structure, 92 

and fuel conditions interact to drive wildfire regimes at different scales (Abatzoglou & Kolden, 93 

2013; Halofsky et al., 2020; Hicke et al., 2012; McCarley et al., 2017; Williams et al., 2019). 94 
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However, many of these observational studies are limited in their ability to isolate specific 95 

drivers or project into the future (Hicke et al., 2012; McCarley et al., 2017). Alternatively, 96 

empirical models have been used to predict future fire regimes (e.g., Abatzoglou et al., 2019; 97 

Bradstock, 2010; Littell et al., 2018; Liu et al., 2013; McKenzie et al., 2004). However, empirical 98 

models do not consider dynamic vegetation and changes in fuel loading that occur under climate 99 

change (Pausas & Paula, 2012). Process-based models are a key tool for complimenting field-100 

based and empirical modeling studies; they can bridge spatial and temporal scales while also 101 

accounting for feedbacks among climate change, rising CO2, vegetation productivity, and fire. 102 

They also enable researchers to manipulate drivers to isolate their individual and combined 103 

effects (Hanan et al., 2021).  104 

 In this study, we addressed the overarching question: What role does vegetation play in 105 

influencing the effects of climate change on fire regimes in a semiarid watershed? We 106 

applied the coupled ecohydrological, fire regime modeling platform RHESSys-WMFire (Bart et 107 

al., 2020; Kennedy et al., 2017; Tague & Band, 2004) in a semiarid watershed in the U.S. Inland 108 

Northwest. We used a range of possible future scenarios to assess how climate change and 109 

increasing atmospheric CO2 interact to influence vegetation and, thus, the roles of fuel loading 110 

and fuel aridity in determining future fire regimes. Specifically, we addressed the following 111 

questions: 112 

(1) What are the relative and opposing roles of two key exogenous drivers in driving fire 113 

regimes: climate change (warming and changes in precipitation) and increasing CO2 114 

(Figure 1)? 115 

(2) What are the relative and opposing roles of two key endogenous drivers in driving fire 116 

regimes: fuel load and fuel aridity (Figure 1)? 117 
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Climate change and increasing CO2 can either compete or compound one another to influence 118 

fuel aridity, fuel loading, and resultant fire regimes. The extent to which a particular ecosystem is 119 

affected by either mechanism depends on whether or not fire is limited by fuel (biomass 120 

available for burning) or flammability (environmental conditions that enable the fuel to burn, 121 

which are partially controlled by climate, Abatzoglou et al., 2019; Littell et al., 2018; Werf et al., 122 

2008). We hypothesize that climate change can affect fuel loading and fuel aridity through 123 

changes in vegetation productivity, evapotranspiration (ET), and litter decomposition. At finer 124 

scales, historical aridity gradients across the watershed (PET/P) also play an important role in 125 

determining the spatial distribution of how fire regimes respond to climate change (Hanan et al., 126 

2021). Thus, it is essential to account for these biophysical and biogeochemical processes in 127 

projections of future fire regimes in order to improve our understanding of how fire regimes are 128 

changing in semiarid landscapes and support policy and other decision-making processes at 129 

management-relevant scales.  130 
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  131 

Figure 1. Exogenous (external) and endogenous (internal) drivers of fire regimes. Question 1 132 
(Q1) focuses on the role of exogenous drivers while Question 2 (Q2) focuses on endogenous 133 
drivers.  134 

2 Methods 135 

2.1 Study area 136 

 Trail Creek is a 167-km2 sub-catchment of the Big Wood River Basin located in Blaine 137 

County, Idaho, between the Salmon-Challis National Forest and Sawtooth National Forest 138 

(43.44N, 114.19W; Figure 2). The mean annual precipitation in the area is around 980 mm, of 139 

which 60% is snow (Frenzel, 1989). Trail Creek is characterized by cold, wet winters and warm, 140 

dry summers. Elevations range from 1760 to 3478 m, and there is a vegetation and aridity 141 

gradient following changes in elevation. To describe the spatial variation of atmospheric aridity 142 

(which is different from fuel aridity), we use the ratio of multi-year average annual potential 143 

evapotranspiration (PET) to multi-year average annual precipitation (P) as an index. We define 144 

areas with PET/P>2 as water-limited, PET/P<0.8 as energy-limited, and PET/P between 0.8 and 145 

2 as balanced (McVicar et al., 2012). As Figure 2depicts, lower to middle elevation slopes are 146 
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water-limited and covered by sagebrush (Artemisia tridentata ssp.), mixed riparian species, and 147 

grasslands; middle to higher elevation areas are water-energy balanced and are covered by 148 

Douglas fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta varlatifolia), subalpine fir 149 

(Abies lasiocarpa), and mixed shrub and herbaceous vegetation (Buhidar, 2001). Soils in Trail 150 

Creek are mainly coarse, permeable alluvium (Smith, 1960). No wildfires have occurred in the 151 

last 40 years.  The soils, vegetation and topography, however, are comparable to several sub-152 

catchments on the western side of the Big Wood River Basin, which were burned in the 2013 153 

Beaver Creek Fire (total 45,036 ha burnt area, Skinner, 2013).  154 

Table 1. Fire regime groups and corresponding characteristics  (Rollins, 2009).  155 
Fire Regime Group Characteristics 

Fire Regime Group I <= 35-year fire return interval, low and mixed severity 

Fire Regime Group II <= 35-year fire return interval, replacement severity 

Fire Regime Group III 35 to 200-year fire return interval, low and mixed severity 

Fire Regime Group IV > 200-year fire return interval, any severity 

 156 
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 157 

Figure 2. Study site – Trail Creek. (a) fire regime from LANDFIRE data ( Rollins, 2009; Table 158 
1); the gridded areas show different long-term aridity indices; (b) land cover overlapped with 159 
topography (elevations range from 1760 to 3478 m). 160 
 161 
 The aridity index generally correlates with the fire regime classifications from 162 

LANDFIRE, which are based on vegetation cover, ecological and vegetation simulation, and 163 

successional modeling (Fig. 2; Rollins, 2009). In the lower part of the basin, the mean 164 

LANDFIRE fire return interval (FRI) is short (i.e., 35 years) and fires are generally low or mixed 165 

severity. This is a fuel-limited fire regime (the fuels are dry enough to burn in most years, but 166 

there is rarely enough fuel to carry fire). The upper part of the basin, on the other hand, has a 167 

long mean FRI (i.e., 200 years) and typically burns at high severity. This is a flammability-168 

limited fire regime (there is enough fuel present, but fuels are generally too moist to burn; 169 

LANDFIRE, Rollins 2009, Figure 2, Table 1). The central part of the basin is a transitional zone, 170 
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with some fuel-limited patches located in relative mesic areas, and some flammability-limited 171 

patches located in more water-limited areas. Within the northern part of the basin there is also a 172 

small water-limited area due to slightly lower precipitation.  173 

2.2 Model description 174 

We used the coupled ecohydrologic-fire regime modeling platform RHESSys-WMFire 175 

(Kennedy et al., 2017; Bart et al., 2020) to model fire and vegetation responses under a range of 176 

climate and CO2 scenarios.  The Regional Hydro-ecologic Simulation System (RHESSys, Tague 177 

& Band, 2004) is a mechanistic model designed to simulate the effects of climate and land use 178 

change on ecosystem carbon (C) and nitrogen (N) cycling and hydrology. RHESSys fully 179 

couples hydrology (streamflow, ET, soil moisture), C (photosynthesis, respiration, net primary 180 

productivity=NPP, mortality) and N fluxes (mineralization, nitrification, denitrification, plant 181 

uptake, and leaching) at a hierarchy of scales (e.g., patch, zone, sub-basin, basin). Photosynthesis 182 

is calculated based on the Farquhar model, which is a function of nitrogen, radiation, stomatal 183 

conductance, atmospheric pressure, atmospheric CO2 concentration, and daily average 184 

temperature (Farquhar & von Caemmerer, 1982). Higher atmospheric CO2 concentrations can 185 

increase photosynthesis rates (i.e., CO2 fertilization). Stomatal conductance is based on the Jarvis 186 

model of stratum conductance (Jarvis, 1976), which accounts for the effects of light, atmospheric 187 

CO2 concentration, leaf water potential, and vapor pressure deficit (Running & Coughlan, 1988; 188 

Tague & Band, 2004). Recent empirical studies have shown that higher CO2 concentration can 189 

increase plant water use efficiency but with large uncertainties (Becklin et al., 2017; Duursma et 190 

al., 2014). Therefore, we did not include the effect of CO2 augmentation on stomatal 191 

conductance and only considered the CO2 fertilization effect on photosynthesis. Litter 192 

decomposition models are based on the method developed by Thornton, (1998), which is related 193 
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to the C:N ratio and potential decay rate. The potential decay rate is limited by soil moisture, 194 

temperature, and nitrogen, and a higher temperature may cause a higher decay rate. RHESSys 195 

has been widely tested and applied in many mountainous watersheds (Garcia & Tague, 2015; 196 

Hanan et al., 2017, 2018, 2021; Lin et al., 2019; Ren et al., 2021; Son & Tague, 2019). A more 197 

detailed description of the RHESSys model can be found in Tague & Band, (2004).  198 

 RHESSys-WMFire couples RHESSys with a model for fire spread (WMFire, Kennedy et 199 

al., 2017) and a model for fire effects (Bart et al., 2020), which capture fuel and climate controls 200 

on fire spread and severity. RHESSys-WMFire computes key processes at a daily time-step and 201 

partitions the landscape into patches (the smallest spatial unit, typically 30-120 m). The model 202 

therefore accounts for spatial differences in energy and precipitation conditions on soil moisture, 203 

evapotranspiration, vegetation growth, and fire dynamics. Notably the model accounts for the 204 

lateral downslope redistribution of water. WMFire is a stochastic model that requires several 205 

replicate simulations (200 in the current study) to attain a representative result (Kennedy, 2019). 206 

Additional details on the model framework and parameter calibration are provided in 207 

supplementary material text S1 and S2.  208 

2.3 Input data 209 

2.3.1 Selection of GCM models (storylines) and CO2 data 210 

Because RHESSys-WMFire is computationally intensive, we selected four General 211 

Circulation Models (GCM) based on changes in climate variables that are most related to fire 212 

activity between the historical (1971 – 2000) and future (2040 – 2069) periods. For selecting 213 

GCM models, we used three variables: 1) a measure of annual water deficit (DEF), calculated as 214 

potential evapotranspiration (PET) minus actual evapotranspiration (AET), 2) a measure of 215 

annual plant available moisture (i.e., AET), and 3) 100-hour dead fuel moisture (FM100) in 216 



 13

summer, defined as a biomass volume that takes 100 hours to lose or gain 2/3 of the difference 217 

between the dead fuel itself and the surrounding atmosphere. Note that for the purpose of GCM 218 

selection, PET and AET was estimated at monthly time scales (Abatzoglou & Rupp, 2017). The 219 

first variable (DEF) is a proxy of changes in vegetation moisture stress that enable flammability 220 

and is most important in modulating burned area in flammability-limited forests. The second 221 

variable (AET) is a proxy for potential changes in plant productivity and fuel accumulation and 222 

is therefore more important for modulating fire occurrence in fuel-limited environments. The 223 

differences in standard deviation (SD) of PET and AET between the future and the historical 224 

climate is also important because climate variability can exacerbate or temper fire return 225 

intervals. FM100 is calculated based on the National Fire Danger Rating System using climate 226 

data from GCMs (Cohen & Deeming, 2006). 227 

We started with 20 GCMs from the Coupled Model Inter-comparison Project 5 (CMIP5; 228 

Taylor et al., 2012) that have been statistically downscaled across the contiguous U.S. using the 229 

Multivariate Adaptive Constructed Analogs (MACA, Abatzoglou & Brown, 2012) with 1/24 230 

degree resolution (~4-km) covering the time period from 1950 to 2100. Then, we used six 231 

metrics based on the assessment criteria described above to select future climate scenarios: the 232 

change in mean AET and DEF (i.e., 2040 – 2069 mean vs. 1971 – 2000 mean); the standard 233 

deviation of monthly AET and DEF; and the number of days per year where FM100 in the future 234 

(i.e. 2040-2069) is less than the 3rd percentile value for the historical period (i.e. 1971 – 2000), 235 

and the 10th percentile. Based on the ranking shown in Figure S1, we selected four models to 236 

cover the range of all 20 GCMs, as well as a model representing the mean behavior (IPSL-237 

CM5A-LR, MultiMean): one with a large increase in aridity that may promote drought (CSIRO-238 

Mk3-6-0, ProDrought), one that promotes increased productivity but limits fire (GFDL-239 
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ESM2G, ProVeg), and one with a significant fluctuation of fire-related metrics (INMCM4, 240 

ProFire). For forcing RHESSys-WMFire, we select representative concentration pathway (RCP) 241 

8.5 due to its close agreement with historical total cumulative CO2 emissions during the 242 

historical time period (Meinshausen et al., 2011; Schwalm et al., 2020).  243 

Table 2. Lists of four selected GCM model based on fire-related characteristics. 244 

GCM # Storyline Name Model Name Characteristics 

1 ProDrought CSIRO-Mk3-6-0 
A large increase in summer aridity 

that may promote drought 

2 ProVeg GFDL-ESM2G 
Promotes increased productivity and 

limits fire 

3 ProFire INMCM4 
A significant increase in fire-related 

metrics (FM100) 

4 MultiMean IPSL-CM5A-LR Close to the multi-model mean 

 245 

 To evaluate the effect of rising CO2 concentrations, we used observed and projected CO2 246 

concentrations from 1900 to 2099 produced by Meinshausen et al., (2011) based on the 247 

Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). For the 248 

“with CO2 fertilization effect”, we use transient CO2 concentration from AR4; and for the 249 

“without CO2 fertilization effect”, we use constant CO2 concentration, i.e. 353 ppm-the 250 

concentration in year 1990 251 

2.3.2 Model calibration and initialization 252 

 For soil parameter calibration, we used daily, high-resolution (1/24 degree or ~ 4 km) 253 

gridded meteorological data from GridMET (Table 3 A), including minimum and maximum 254 

temperatures, precipitation, relative humidity, shortwave radiation, and wind speed covering the 255 
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time period from 1895 to 2017. We used raw gridMET data from 1980 to 2017 (Abatzoglou, 256 

2013) to reconstruct the historical record from 1895 to 1979 (Hanan et al., 2021) based on 257 

Parameter-elevation Relationships on Independent Slopes Model data (PRISM, Daly et al., 1994) 258 

and the European Center for Medium-Range Weather Forecast (ECMWF) reanalysis data 259 

(Simmons & Gibson, 2000).  260 

After model calibration, we initialized vegetation and soil C and N pools using a target-261 

driven spin-up approach (Hanan et al., 2018). During the vegetation initialization period, we 262 

used the same observed climate data from model calibration, but with the anthropogenic climate 263 

change signal removed (Table 3 B) per Hanan et al., (2021). We ran the model for 300 years 264 

with this modified climate data and with the fire model “on” to initialize the landscape 265 

vegetation.  From this we obtained the pre-industrial and pre-suppression condition as a starting 266 

point for running different climate change scenarios. The vegetation initialization was conducted 267 

once for all scenarios, i.e. they have same initial state of vegetation, litter, and soil C & N 268 

storage. 269 

Table 3.  Climate forcing data, atmospheric CO2 concentration, and their usage for this study.  270 
Label Forcing data name Data period Data source Manipulations Purpose 

A 
Observed climate 

data 
1895 - 2017 

gridMET, 
ECMWF and 

PRISM 

gridMET 
reconstructed with 

PRISM 
 

Calibration 
 
 

B 

Observed climate 
data with 

anthropogenic 
signal removed 

1895 - 2017 
gridMET, 

ECMWF and 
PRISM 

Use ensemble of 
20 MACA 

downscaled GCMs 
to remove the 

historical climate 
signal from 

observed data 

Vegetation 
initialization 

(looped the data 
over 300 years) 
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C Baseline climate 1950 - 2005 CMIP5 
MACA 

downscaled  
Future fire 

scenarios spin-up 
and fire 

assessment 
 

D 
RCP8.5 climate 

data 
2006 - 2099 CMIP5 

MACA 
downscaled 

E 
Transient CO2 

concentrations 
1900-2099 IPCC AR4 NA 

 271 

2.3.3 Other biophysical and land cover data 272 

 We aggregated a 10-m resolution digital elevation model (DEM) from the US Geologic 273 

Survey National Elevation Database to 100-m resolution (USGS, NED 2016) to generate the 274 

topographic properties and watershed structure of Trail Creek, which include elevation, slope, 275 

aspect, patches, sub-basins, and basin boundaries. In total, we delineated 72 sub-basins and 276 

16,705 patches. We use the National Land Cover Database (NLCD 2016, Dewitz, 2019) to 277 

classify five vegetation types. Of these, 49.6% were evergreen, 24.9% were shrub, 22.0% were 278 

grass, 0.3% were deciduous, and 3.1% were not vegetated. Soil type was assigned using a spatial 279 

continuous probability soil map (POLARIS) created by Chaney et al. (2016).  280 

2.4 Modeling scenarios and climate forcing 281 

We conducted model simulations using RHESSys-WMFire over three major timeframes 282 

for each GCM, both with and without CO2 fertilization: baseline, 2040s, and 2070s. The 2040s 283 

and 2070s timeframes were simulated with the RCP8.5 (Meinshausen et al., 2011). For each 284 

timeframe there was a 55-year spin-up and a 30-year assessment time period (Figure 3) for a 285 

total 85-year simulation with the fire model turned on. Each spin-up period was initialized with 286 

the same initial conditions generated in the vegetation initialization described above.  287 
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For the baseline scenario, we first ran the model for 55 years using historical GCM 288 

forcing inputs from each of the 4 chosen GCMs (1950-2005; Table 3). We then repeated the 289 

climate data over the years 1950-1964 and 1991-2005 to generate the 30-year baseline 290 

assessment period. Climate change effects were assessed against the patterns seen in the baseline 291 

time period.  292 

For the future scenarios, we simulated a 55-year spin-up period using each of the 4 293 

GCMs and starting with the same vegetation initialization described above. We then repeated the 294 

last 15 years of the climate data and combined it with the next 15 years to produce the 295 

assessment period. For example, for the 2040s simulation we spun the model up for 55 years 296 

using climate data from 1991-2045, then simulated an additional 30-year assessment period 297 

using climate data from 2031-2060. For the 2070s simulation we spun the model up for 55 years 298 

using climate data from 2021-2075, then simulated an additional 30-year assessment period 299 

using climate data from 2061-2090. All simulations were repeated with and without CO2 300 

fertilization for each of the 4 GCMs.  301 

 302 
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 303 

Figure 3. Future fire simulation scenarios using the ProDrought GCM as an example.  304 
b, e, and h show the assessment of the 2040s (2031 to 2060); c, f, and i show the assessment of 305 
2070s (2061 – 2090); a, d, and g are for baseline scenarios. There are three simulation periods: 306 
the vegetation initialization period (not shown), the scenario spin-up period, and the assessment 307 
period. For the scenario spin-up period, there were two different climate inputs: baseline and 308 
RCP8.5; and two different CO2 fertilization scenarios (with and without). We used the historical 309 
output from individual GCMs as a baseline for calculating future climate change effects. For the 310 
scenario spin-up period, the baseline scenario used historical data from 1951 to 2005. For the 311 
assessment period (30 years), the baseline scenario used data that concatenated the first 15 312 
years of the historical record (1950 -1964) to its last 15 years records (1991 -2005). We 313 
considered the future climate and CO2 fertilization scenarios in isolation and together to build 314 
different landscape fuel conditions for the subsequent assessment periods. For the CO2 315 
fertilization effect, we used transient CO2 concentrations from IPCC as the model input; for the 316 
no CO2 fertilization scenarios, we used a constant CO2 concentration (i.e., 353 ppm). For the 317 
assessment period (30 years), we use the spun-up fuel conditions as initial conditions and ran the 318 
fire model to assess the relative contribution of different factors in driving fire regimes.   319 
 320 

 321 

 322 

 323 
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Table 4. Summary of model simulation scenarios. “Climate change” refers to the climate change 324 
effect with no CO2 fertilization (using constant CO2 concentration - 353 ppm as the model input). 325 
“Climate change and increasing CO2” refers to their combined effects (using both RCP8.5 326 
climate data and transient CO2 concentrations as inputs. Meinshausen et al., 2011).  327 

ID 
 

Scenarios 
 

 
Representing period 

 

Forcing data 

Climate data CO2 data 

1 Baseline Baseline (30 years) 
Historical 

(Table 3 C) 
353 ppm 

 

2 Climate change (2040s) 2040s (2031-2060) 
 

RCP8.5 
(Table 3 D) 

353 ppm 
 

3 
Climate change and increasing 

CO2 (2040s) 
2040s (2031-2060) 

 
RCP 8.5 

(Table 3 D) 
transient CO2 
(Table 3 E) 

4 Climate change (2070s) 2070s (2061-2090) 
 

RCP8.5 
(Table 3 D) 

353 ppm 
 

5 
Climate change and increasing 

CO2 (2070s) 
2070s (2061-2090) 

 
RCP 8.5 

(Table 3 D) 
transient CO2 
(Table 3 E) 

For evaluating the changes in fire regimes, we only analyzed outputs for the 30-year 328 

assessment period. We calculated 4 main fire characteristics for each of the 200 independent 329 

Monte Carlo replicates for each scenario: mean number of patches burned per fire, 95th percentile 330 

fire size in 30 years’ assessment period, annual area burned (mean number of patches burned 331 

each year), and number of fire starts (fires that surpass 30 burned patches in 30 years’ assessment 332 

period). We then compared distributions of these variables among the model scenarios.  333 

We also considered patch-level summaries of burn probability (Pburn), fuel aridity, and 334 

fuel loading. For each patch, the burn probability (Pburn) was calculated as:  335 

௕௨௥௡݌             =
ݏ݊݋݅ݐ݈ܽݑ݉݅ݏ ݈݈ܽ ݏݏ݋ݎܿܽ ݀݁݊ݎݑܾ ݏ݁݉݅ݐ ݂݋ ݎܾ݁݉ݑ݊

ݏݎܽ݁ݕ ݊݋݅ݐ݈ܽݑ݉݅ݏ ݂݋ ݎܾ݁݉ݑ݊ ∗ ݏ݊݋݅ݐ݈ܽݑ݉݅ݏ ݂݋ ݎܾ݁݉ݑ݊
 Equation 1 

 336 
Fuel aridity is calculated by WMFire as relative deficit and was calculated monthly as: 337 

ݕݐ݅݀݅ݎܽ ݈݁ݑܨ = 1 −  Equation 2 ܶܧܲ/ܶܧ

 338 



 20

We calculated patch-level mean burn probability, fuel loading, and fuel aridity to understand the 339 

relationships among these variables in the different model scenarios.  340 

 341 

3 Results  342 

In the following descriptions we use “overall effect” to represent both the climate change 343 

and CO2 fertilization effects on fire activity, while “climate change effect” represents the climate 344 

change effects without CO2 fertilization. 345 

3.1 Effects of climate change and CO2 fertilization on fire starts and size 346 

During the 2040s assessment period, the climate change effect decreased fire size and 347 

activity relative to baseline (Figure 4).  In contrast, the overall effect increased or only slightly 348 

decreased fire activity and fire size (Figure 4 a). These patterns correspond to climate change 349 

and CO2 effects on fuel and vegetation. Climate change alone decreased overall fine fuel loading 350 

through increases to soil respiration (Figure S5), whereas CO2 fertilization increased fire activity 351 

by enhancing vegetation productivity and thus fuel loading (Figure S6).  352 

Fire responses differed among GCM storylines. When considering the climate change 353 

effect, the ProDrought storyline exhibited the greatest decreases in fire activity and the ProVeg 354 

storyline the smallest decrease (Figure 4). This occurred because the ProDrought storyline had 355 

the largest decrease in fuel loading, which outstripped the effects of increasing fuel aridity 356 

(Figure S2 and Figure S3). When considering the overall effect (climate change and CO2), the 357 

ProVeg storyline predicted the largest increase in fire size and AAB with no noticeable increase 358 

in the number of fire starts (fire that burned more than 30 patches). This occurred because the 359 

storyline promoted productivity and, therefore, increases in fuel loading (Figure S2 and Figure 360 

S4). The MultiMean storyline also predicted an increase in fire size for the overall effect but the 361 
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increase was smaller in magnitude than ProVeg. ProFire and MultiMean predicted the most 362 

significant increases in the number of fire starts for the overall effect, but differed in their fire 363 

size responses (Figure 4c).  364 

 365 

Figure 4. Box plot of projected fire characteristics in 2040s under each climate change and 366 
increasing atmospheric CO2 storyline for the assessment period: (a) mean fire size, (b) 95th 367 
percentile fire size, (c) number of fire starts (fires that burned more than 30 patches), and (d) 368 
annual area burned. Red lines represent the median value for the baseline scenario. Box plots 369 
show medians, 25th and 75th percentiles and 95% confidence intervals. “Climate change 370 
(2040s)” refers to the climate change effect without CO2 fertilization, and “climate change and 371 
increasing CO2 (2040s)” refers to the overall effect. All four fire characteristics were calculated 372 
first within each independent simulation replicate (there were 200 simulation replicates for each 373 
scenario). Then their distribution across 200 simulations is shown for each scenario.   374 
 375 



 22

 Fire activity had a non-monotonic response to exogenous drivers over the 21st century 376 

(i.e., in the 2070s; Figure 5). When only considering climate change (for all four GCM 377 

storylines), there was a dramatic decrease in all fire metrics in the 2070s compared to the 378 

historical scenario, consistent with the simulated decrease for the 2040s. The effect of CO2 379 

fertilization, however, differed between the two timeframes. The overall effect of climate change 380 

and CO2 fertilization was predicted to increase fire activity in the 2040s, but either did not 381 

change or decreased predicted fire in the 2070s (Figure 5). Warming increased aridity and 382 

reduced vegetation productivity (Figure 8 b&d), which reduced fuel accumulation. It also 383 

increased decomposition rates, which further reduced fuel loading (Figure S6 and Figure S9). 384 

Faster decomposition of litter and reduced vegetation productivity are the dominate driver than 385 

fire-caused fuel combustion in reducing fuel loading. CO2 fertilization however, increased fuel 386 

loading by enhancing vegetation productivity (Figure S8), which counteracted warming-induced 387 

decreases in fuel loading in 2040s. However, by the 2070s, climate change-driven decreases in 388 

fuel loading outstripped any compensatory effects of CO2 fertilization (Figure S2 Figure S6). 389 

This led to an overall decrease in fire activity from the 2040s to the 2070s (e.g., Figure 5a).   390 
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 391 

Figure 5. Same as Figure 4, but for the period of 2070s  392 
 393 
3.2 Effects of exogenous and endogenous drivers on burn probability (Pburn) 394 

 Fuel conditions varied among vegetation cover types (Figure 6). For example, region A 395 

(grass-dominated) was very fuel-limited (fuel load < 0.3 kg/m2, Figure S10 and Figure 6 b) and 396 

had a broader range of fuel aridity conditions; region B (shrub-dominated) was fuel-limited (fuel 397 

load < 0.5 kg/m2, Figure S10 and Figure 6 b) and very arid (fuel aridity > 0.6); and region C 398 

(evergreen forest) was fuel abundant (fuel load > 0.4 kg/m2) and relatively humid (0.5 < fuel 399 

aridity < 0.85, Figure S10 and Figure 6 b).  400 



 24

In the 2040s, climate change reduced Pburn (Equation 1) across the watershed by 401 

reducing fuel loading. However, increasing CO2 tempered that effect, and in many locations even 402 

changed its direction (except for in region B, which is shrub-dominated). The counteracting 403 

effects of climate change and CO2 fertilization depended on location and vegetation cover type. 404 

Region B (shrub-dominated) had the largest decreases in Pburn due to climate change (except 405 

under the ProVeg storyline). This occurred because warming reduced shrub productivity (Figure 406 

2 & Figure 8 d) and enhanced litter decomposition, which synergistically reduced fuel loading 407 

(Figure S2). 408 
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  409 

Figure 6. Relationships among fuel load (i.e., litter carbon), fuel aridity, and percent changes in 410 
burn probability (relative to the baseline scenario) under various climate change and 411 
atmospheric CO2 fertilization scenarios in the 2040s. Panels (a), (b), (c), (d) show the 412 
distribution of burn probability against fuel load and fuel aridity with the baseline scenario as 413 
the reference. Other panels show bivariate effects of fuel load and fuel aridity on percentage 414 
changes in burn probability (climate change scenario minus baseline scenario). Data are binned 415 
with 0.05 window length for both fuel load and fuel aridity. The value is the median of percent 416 
changes within each bin. Panels (e), (f), (g), and (h) show the climate change effect and (i), (j), 417 
(k), and (l) show combined climate change and CO2 fertilization effects (i.e., the overall effect). 418 
Region A has low fuel load with a broader range of aridity, representing grasses, region B is dry 419 
with low fuel loading, where shrubs dominate, and region C is relatively humid with high fuel 420 
loading, where forests dominate. For more information about vegetation distribution of each 421 
scenario see Figure S10.  422 
 423 
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In the 2070s, changes in Pburn were more consistent across storylines and fuel conditions. 424 

With climate change, the fuel conditions in Region B (shrub-dominated) and C (evergreen forest) 425 

converged with Region A (grass-dominated), where the watershed as a whole became intensely 426 

fuel-limited (caused by climate change effect on vegetation growth and litter decomposition). 427 

The CO2 fertilization effect tempered the magnitude of decreasing fuel loads in the 2070s but 428 

was not sufficient for changing the direction of Pburn, with a few exceptions (e.g., in region A 429 

and C under the MultiMean climate change storyline, Figure 7 i). However, in Region B, where  430 

shrubs were distributed broadly across the whole basin (Figure 2), the dominant mechanism 431 

differed among climate change storylines.  432 

In all cases, the CO2 fertilization effect had an upper limit (i.e., around 610 ppm, which 433 

was the concentration at the beginning of assessment period for the 2070s) at which it can no 434 

longer compete with climate change; as the climate continues to warm and the fuel load 435 

continues to decrease, which shifts the system from flammability limited to fuel limited, the 436 

mitigating effects of CO2 fertilization appear to diminish.  437 
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 438 

Figure 7. Relationships among fuel load (i.e., litter carbon), fuel aridity, and percentage changes 439 
in burn probability (relative to baseline) under various climate change and atmospheric CO2 440 
fertilization effect scenarios in the 2070s. Panels (a), (b), (c), (d) show the distribution of burn 441 
probability against fuel load and fuel aridity for baseline scenario as the reference (the same 442 
baseline as 2040s). Other panels show bivariate effects of fuel load and fuel aridity on 443 
percentage changes in burn probability (climate change scenario minus baseline scenario). For 444 
more information about the vegetation distribution of each bin see Figure S11.  445 
 446 
 To better understand why the ProDrought and ProVeg storylines exhibit different Pburn 447 

responses, we analyzed spatial distributions of Pburn, fuel aridity, fuel load, and net primary 448 

productivity (NPP) for the baseline and the 2040s scenarios (Figure 8 and Figure 9). Recall that 449 
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ProDrought was the only storyline with a mix of increases and decreases in Pburn for the overall 450 

effect, whereas ProVeg exhibited strong increases across the watershed (Figure 6). For the 451 

climate change scenario, both GCM storylines decreased fuel loading, but had opposite effects 452 

on fuel aridity (i.e., fuel aridity increased under ProDrought, Figure 8 b; and decreased under 453 

ProVeg, Figure 9 b). Therefore, under ProVeg, decreases in both fuel loading and aridity 454 

compounded to decrease Pburn (Figure 9 a). Under ProDrought on the other hand, decreases in 455 

fuel load and increases in fuel aridity counteracted one another; however, the effects of 456 

decreasing fuel loads outstripped increasing fuel aridity to decrease Pburn (Figure 8 a). While both 457 

storylines exhibit decreases in Pburn across the watershed, this occurred for different reasons. The 458 

ProDrought and ProVeg storylines demonstrate the competing and/or compounding effects of 459 

exogenous (climate change vs CO2 fertilization) and endogenous (fuel load vs fuel aridity) 460 

drivers.  461 

3.3 Mechanisms driving fire regime changes in the dry future storyline (e.g., ProDrought) 462 

Under the climate change only scenario and ProDrought storyline, fuel loading and 463 

fuel aridity had counteracting effects on fire regimes and those effects varied among locations. 464 

What are the mechanisms that result in fuel load and fuel aridity competing with each other in 465 

the ProDrought storyline? Fuel Load: warming increased NPP and fuel loading in the relatively 466 

humid, forested areas and decreased NPP and fuel loading in water-limited areas (Figure 8 d). 467 

However, at the same time, warming decreased fuel loading by increasing decomposition rates in 468 

both dry and humid areas (Figure S5). Overall decreases in fuel load suggest that decomposition 469 

dominates over the increase of NPP in forested area. While some studies corroborate this finding 470 

in semiarid systems (Matthews et al., 2012), future decomposition rates are a key source of 471 

uncertainty in C cycling models (Luo et al., 2015; Tang & Riley, 2020). Given our current 472 
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understanding and representation of decomposition under climate change, the net effect, 473 

therefore, is a decrease in fuel loading across the basin. Fuel aridity: warming increases fuel 474 

aridity across the whole basin because it increases PET but not AET since the watershed is 475 

largely water-limited (Bradstock, 2010; Littell et al., 2016). Net Effect: the decrease in Pburn 476 

shows that the decrease of fuel load dominates over the increase in fuel aridity. 477 

What are the mechanisms that result in climate change and CO2 fertilization competing 478 

with each other in the ProDrought storyline for the Overall Effect? Climate Change: this 479 

decreases Pburn for the reasons described above. CO2 fertilization, on the other hand, increased 480 

NPP and fuel loading, especially in arid areas (Figure 8 h) because the vegetation became more 481 

energy- and water- efficient under greater ambient CO2 concentrations (Becklin et al., 2017). By 482 

reviewing evidences from different approaches (field observation and vegetation models), Lewis 483 

et al., (2009) also found rising CO2 concentration is the most likely driver of increased NPP. Net 484 

Effect: fuel loading decreased overall, suggesting that the climate change effect dominates over 485 

the CO2 fertilization effect (Figure 8 g). CO2 fertilization also further increased fuel aridity by 486 

increasing LAI in water-limited areas (Figure 8 f). This occurred because greater LAI can 487 

intensify the difference between PET and AET for water-limited ecosystems (Tague et al., 2009; 488 

Warren et al., 2011). With the overall effect, Pburn increased in the relatively humid areas and 489 

decreased in the arid area (Figure 8 i). This suggests that, in the relatively humid areas that are 490 

historically flammability-limited, increases in fuel aridity can increase fire activity even with 491 

reduced fuel loading. However, in arid areas, fire activity is more sensitive to changes in fuel 492 

load than fuel aridity (Figure 8 i). 493 
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 494 

Figure 8. The individual and combination effect of climate change and CO2 fertilization on burn 495 
probability, mean annual fuel aridity, mean annual fuel load (i.e., litter carbon), and mean 496 
annual NPP over the 30 years’ assessment period in the 2040s under the ProDrought climate 497 
change storyline (effects are calculated as the difference between future scenario and baseline). 498 
Red colors represent increases; blue colors represent decreases. Panels (a), (e), and (i) are 499 
changes in burn probability; panels (b), (f), and (j) are changes in fuel aridity; panels (c), (j), 500 
and (k) are changes in fuel load; and panels (d), (h), and (i) are changes in NPP.  501 
 502 

3.4 Mechanisms driving fire regime changes in the wet future storylines (e.g., ProVeg)   503 

 What are the mechanisms that result in climate change and CO2 fertilization competing 504 

with each other in the ProVeg storyline for the Overall Effect? Climate Change: both fuel 505 
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loading and fuel aridity decreased (Figure 9 b & c). Fuel loading decreased in response to 506 

warming while more precipitation decreased aridity (Figure S12). CO2 Fertilization: as with all 507 

storylines, CO2 fertilization increased fuel loading. However, it had a mixed effect on fuel 508 

aridity, with slight increases occurring in more the arid areas and slight decreases occurring in 509 

the more humid areas (Figure 9 f). Net Effect: We observed a net increase in fuel loading, 510 

suggesting that CO2 fertilization can dominate over climate change-induced drought under wetter 511 

future scenarios (Figure 9 k). For fuel aridity, CO2 fertilization only outstripped the climate 512 

change effect in very arid areas (at the bottom part of the basin, CO2 fertilization changed the 513 

fuel aridity from a decrease to an increase, Figure 9 j). Pburn increased across the entire basin 514 

(even with less arid fuel), indicating that increasing fuel load was the main driver of Pburn for the 515 

overall effect, under the ProVeg storyline (Figure 9 i).  516 
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 517 

Figure 9. The individual and combined effects of climate change and CO2 fertilization on burn 518 
probability, mean annual fuel aridity, mean annual fuel load (i.e., litter carbon), and mean 519 
annual NPP over 30 years’ assessment period in the 2040s under the ProVeg climate change 520 
storyline. The red colors indicate increases; blue colors indicate decreases. Panel (a), (e), and 521 
(i) are changes in burn probability; panels (b), (f), and (j) are changes in fuel aridity; panels (c), 522 
(j), and (k) are changes in fuel load; and panels (d), (h), and (i) are changes in NPP.  523 
 524 

4 Discussion 525 

 Vegetation productivity and litter decomposition are critical processes that integrate 526 

exogenous and endogenous drivers (e.g., climate and fuels) to shape wildfire activity. For 527 

example, we found that in the mid-21st century (2040s), CO2 fertilization increased NPP to a 528 

greater extent than it was reduced by climate change-induced drought, resulting in a net increase 529 
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in fuel loading and resultant fire activity. However, by the late-21st century (2070s), climatic 530 

warming (and associated drought) outstripped the effects of CO2 fertilization, leading to a 531 

decrease in fire activity. The timing and magnitude of these trade-offs were modified by local 532 

aridity gradients and vegetation composition. This local-scale variability, combined with the 533 

non-monotonic responses we observed, suggest that we cannot linearly or empirically extrapolate 534 

fire activity from the baseline and 2040s scenarios to the 2070s (Balshi et al., 2009; Westerling et 535 

al., 2011). Projecting future fire regimes requires accounting for complex feedbacks among 536 

climate, hydrology, vegetation productivity and biogeochemical processes. 537 

 Climate change and increasing CO2 are the main drivers of future fire regimes, through 538 

their direct impact on biophysical processes and indirect effects on vegetation dynamics and 539 

biogeochemical processes. Below, we summarize the main drivers of fire regimes, how they 540 

interact to influence future fire regimes, and how these interactions vary with precipitation 541 

patterns and local aridity gradients (Figure 10).  542 

4.1 The role of exogenous drivers in influencing future fire regimes 543 

4.1.1 The role of climate change and CO2 fertilization in influencing future fire regimes 544 

 Exogenous drivers affect fire regimes through their effects on vegetation productivity, 545 

litter decomposition, and endogenous fire drivers (i.e., fuel loading and fuel aridity; Kennedy et 546 

al., 2021). Climate warming and CO2 fertilization are two key exogenous drivers that can either 547 

compete with or compound one another to influence fire regimes. For example, given sufficient 548 

moisture, climate warming can increase vegetation growth and fuel loading by increasing 549 

photosynthetic activity (Kurz et al., 2008). However, warming can also accelerate litter 550 

decomposition, which can counteract such increases (Bradstock, 2010; Keane et al., 1999; Kurz 551 
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et al., 2008). We found that in Trail Creek, this model system predicts that litter decomposition 552 

dominated over increases in vegetation productivity (Figure 8 c and Figure 9 c).  553 

Aridity and CO2 fertilization can also compete to influence fuel and fire dynamics.  In 554 

water-limited locations for example, climate change can actually decrease fuel loading and fire 555 

activity by promoting drought (Hanan et al. 2021).  CO2 fertilization can enhance vegetation 556 

productivity and resultant fire activity by enabling higher rates of photosynthesis when stomata 557 

are partially closed to reduce transpiration (Becklin et al., 2017; Lewis et al., 2009). 558 

Consequently, drought effects on plant productivity can be tempered by CO2 fertilization, and 559 

the final fuel loading is determined by two competing mechanisms: climate change and CO2 560 

fertilization. We found that the ProVeg and ProDrought storylines led to different fuel loadings, 561 

which suggests precipitation patterns (and aridity) play a strong role in the relative balance 562 

between these mechanisms (Figure 8 k and Figure 9 k).  563 

 Climate warming and CO2 fertilization can also compound one another to influence fuel 564 

aridity. For example, in water-limited ecosystems, climate warming can increase the water 565 

budget deficit (i.e., PET – ET, Bradstock, 2010; Littell et al., 2016), while CO2 fertilization can 566 

increase leaf area index and PET thus making plants more water stressed (Warren, et al. 2011; 567 

Tague, et al. 2009). However, this compounding effect is location-dependent and can be 568 

modified by precipitation patterns, which will be discussed in the next section (Figure 8 j and 569 

Figure 9 j).  570 

Our modeling results suggest that plant responses to CO2 fertilization are an important 571 

factor in predicting future fire regimes in fuel-limited watersheds such as Trail Creek. 572 

Physiological responses to rising CO2 can vary among species and over time and there is still a 573 

great deal of uncertainty in projecting physiological responses to increasing atmospheric CO2 574 
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because empirical studies have produced mixed results (Becklin et al., 2017; Lewis et al., 2009; 575 

Norby et al., 2016; Warren et al., 2011). RHESSys accounts for the direct effect of increasing 576 

water use efficiency on assimilation and the resulting potential increases in growth and biomass 577 

(including LAI). However, other responses such as changes in stomatal functioning under 578 

elevated CO2 (Swann et al., 2016) or changes in allocation or leaf physiology (Warren et al., 579 

2011) were not included, and may dampen or alter projected CO2 fertilization changes. Our no-580 

CO2 vs. CO2 fertilization scenarios account for the two extreme possibilities, when reality may 581 

be somewhere in the middle.  582 

Litter stores are a major control on fire spread. Thus, modeling fire spread requires high 583 

skill in representing litterfall and decomposition. Decomposition in particular is complex and is 584 

affected by temperature, moisture, nitrogen, pH, and microbial dynamics (Lin & Webster, 2014). 585 

Although RHESSys accounts for many of these drivers, it necessarily includes some 586 

simplifications that may ignore important mechanisms in semiarid, fire-prone systems. For 587 

example, spatial partitioning of moisture and nitrogen in litter stores can accelerate or decelerate 588 

decomposition during drying and rewetting cycles (Birch, 1959). Hanan et al., (2021, submitted) 589 

also found that the sensitivity of modeled decomposition rate to parameter and model structure 590 

uncertainties increases with climate warming but decreases with increasing precipitation. This 591 

may be problematic when projecting the future fuel load under climate change. Especially, these 592 

uncertainties can compound each other when the projection period is longer, thus causing more 593 

uncertainties when extends the projections from 2040s to 2070s.  594 



 36

 595 

Figure 10. Conceptual diagram illustrating how exogenous drivers, vegetation, litter 596 
decomposition and endogenous drivers interact to influence wildfire burn probability. “+” 597 
indicates an increase (e.g., increases in productivity cause increases in fuel loading; “-" 598 
indicates a decrease (e.g., increases in litter decomposition lead to decreases in fuel loading). 599 
“Mesic” and “arid” indicates that the specified affect is location dependent and occurs in mesic 600 
or arid locations. Relative deficit is calculated as (1 – ET)/PET. 601 

4.1.2 The role of precipitation in influencing future fire regimes  602 

 Precipitation was also an important factor in predicting future fire regimes in our 603 

relatively fuel-limited watershed. At an annual timescale, increases in precipitation can decrease 604 

fire activity by increasing fuel moisture and decreasing the length of the fire season. However, 605 

over longer timescales, increased precipitation can increase fuel loading and resultant fire 606 

activity. Other studies have also found that precipitation is important in driving fuel load and fire 607 

(Bradstock, 2010; Littell et al., 2016; Pausas & Paula, 2012; Williams et al., 2019).  Recent 608 

research has also shown that, in a drier future, there may be less fire due to decreases in fuel 609 

loading; whereas in a wetter future, there may be more fire activity due to increases in 610 

productivity, Figure 10). Williams et al., (2019) also argue that interannual variability (i.e., the 611 

sequencing of dry and wet extremes) is as important as changes in average precipitation. A 612 
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worst-case scenario for a fuel-limited system would be a high precipitation year followed by a 613 

low precipitation year, in which the wet year increases fuel abundance and the dry year provides 614 

the arid conditions needed to cause large fires (Kennedy, 2019; Williams et al., 2019). This is the 615 

sequence that currently drives large fire growth in the arid southwestern US, and will likely 616 

expand in extent under climate change (Abatzoglou & Kolden, 2011).  617 

Despite its importance, particularly in semi-arid systems, there is considerable 618 

uncertainty in prediction of future precipitation patterns among GCMs (Pendergrass et al., 2017; 619 

Polade et al., 2017). Our study shows that ProVeg increases fire activity in 2040s to the greatest 620 

extent compared to other GCMs. During fire season, ProVeg had a 6% increase in precipitation, 621 

while other storylines had decreases (Figure S12). We found that higher precipitation increased 622 

productivity and fuel loads, thereby increasing fire activity (Figure 10; Kennedy et al., 2021), 623 

and that, for Trail Creek, precipitation is as critical in driving future fire regimes as warming 624 

(e.g., Figure 8 d vs. Figure 9 d).  625 

4.2 The role of endogenous drivers in influencing future fire regimes 626 

 Fuel loading and fuel aridity can also counteract one another driving future fire regimes, 627 

and their interactions are also modified by vegetation type. For example, we found that increases 628 

in fuel aridity could increase fire activity but these increases were tempered by decreases in fuel 629 

loading. This is consistent with conceptual frameworks that describe gradual transitions from 630 

forests and shrub lands to grasslands due to fire-climate feedbacks (e.g.,  Bowman et al., 2020). 631 

Plant functional types (grass, shrub and forest) are generally distributed along gradients in aridity 632 

and productivity leading to differences in their fire regimes, and the sensitivity of fire regimes to 633 

climate change (Bradstock, 2010; Littell et al., 2016; Williams et al., 2019). For example, 634 

woodland fires in dry climates are limited by fuel loads, and forest fires in wet climates are 635 



 38

limited by fuel moisture (Bradstock, 2010). To explore the role of vegetation type in affecting 636 

fuel conditions for driving future fire activity, we calculate changes in Pburn in response to 637 

changes in fuel loading (∆fuel loading) and changes in fuel aridity (∆fuel aridity) for each 638 

vegetation type (Figure 11). For all vegetation types, when fuel load and aridity both increased, 639 

they compounded to increase Pburn. However, as fuel load decreased, and fuel aridity increased, 640 

the dominant driver varied among vegetation type. We investigated this difference by drawing a 641 

line in each panel that separated negative and positive changes in Pburn. For conifer and shrub 642 

patches, the line had a negative slope (∆fuel loading:∆ fuel aridity  is 1:1), which represents a 643 

threshold separating the negative and positive changes in Pburn. A sloped line indicates that both 644 

fuel load and fuel aridity drive Pburn therefore conifer stands in Trail Creek (region C in Figure 6) 645 

can be classified as co-limited by fuel and flammability. While many previous studies using 646 

empirical models suggest that forest fire activity will increase under future warming due to 647 

increases in fuel aridity (Bradstock 2010), our process-based model results agrees with 648 

conceptual frameworks and suggest that in semiarid forests, fire activity may ultimately decrease 649 

due to decreasing fuel loads (even without wildfire-driven self-limitation) despite increases in 650 

fuel aridity. These results are corroborated by studies in other dry forests that similarly found fire 651 

activity is likely to decrease in the future due to drought (Halofsky et al., 2020; Littell et al., 652 

2018). In grass-dominated locations, the line that separates Pburn increases or decreases is 653 

vertical, which indicates that this area is fuel-limited and fuel load is the main driver of Pburn (i.e. 654 

Pburn is insensitive to changes in fuel aridity, vertical line in Figure 11 c and f). Each vegetation 655 

type shows its own pattern of fire responses to climate change; fire in dry woodland ecosystem is 656 

limited by fuel loading, while fire in wet forest is limited by fuel aridity and fire weather  657 

(Bradstock, 2010).  658 
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The lines separating the negative and positive changes in Pburn have the same pattern in 659 

the 2070s as for the 2040s, indicating that they represent a consistent characteristic of this 660 

watershed over time (assuming no vegetation type-conversion). In the 2070s, we see the cluster 661 

of patches moves towards lower fuel loading (to the left), and higher fuel aridity (upwards). 662 

Therefore, even though we observed a non-monotonic trend in fire response to climate change 663 

from the 2040s to 2070s (Figure 4 and Figure 5), here we found that the ∆fuel loading:∆ fuel 664 

aridity threshold, above which increases in fuel aridity dominate over decreases in fuel loading 665 

(and vice versa), is stationary, and this stationary threshold varies among vegetation types (pines 666 

and shrubs show a similar pattern while grasses stand out as highly fuel-limited). In evergreen 667 

forest ecosystems, for patches above the threshold line, Pburn increases with higher fuel aridity 668 

meaning that increases in fuel aridity dominated over the decreases in fuel loading (Figure 11 a). 669 

In grass ecosystems, fuel loading was the only factor that separated increases or decreases in 670 

Pburn (Figure 11 c). Because the distribution of plant functional types is shifting in many 671 

locations due to climate change (Batllori et al., 2020), identifying the stationary threshold for 672 

new vegetation types may be useful for predicting future fire regimes.  673 
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 674 

Figure 11. The changes in burn probability in response to changes of fuel load and fuel aridity 675 
(in percentage) relative to the baseline. (a), (b), and (c) illustrate how burn probability changes 676 
in response to changes in fuel load and fuel aridity for 2040s. (d), (e), and (f) show responses for 677 
2070s. Changes are binned by every 5 percent change, and changes in burn probability are the 678 
median of these bins (note that the data for these bins are drawn from all four GCM storylines). 679 
We removed bins that had less than 100 observations. The panels are as follows: a&d: pine; 680 
b&e: shrub; and c&f: grass. All these changes are between future climate change and CO2 681 
fertilization scenarios and the baseline scenario. The red line is the threshold ∆fuel loading:∆ 682 
fuel aridity that separates negative and positive changes in burn probability. 683 
 684 

4.3 The role of aridity gradient in influencing future fire regimes  685 

 Interactions between exogenous and endogenous drivers can vary along aridity gradients 686 

(Figure 10). Although top-down climate warming can be the dominant driver of wildfire at large 687 

scales, local aridity (P/PET, Figure 2) also responds to bottom-up drivers such as topography and 688 

vegetation composition (Hanan et al., 2021; Littell et al., 2018). As a result, climate warming can 689 
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have different effects on fuel loading in arid vs. mesic locations (e.g., Figure 8 d).  In arid 690 

locations, warming can increase drought stress and reduce productivity and resultant fuel 691 

loading, while in more mesic locations warming can increase productivity by increase 692 

photosynthetic activity. Similarly, the effects of CO2 fertilization also differ between arid and 693 

mesic locations (e.g., Figure 9 f). In water-limited locations, CO2 fertilization can increase fuel 694 

aridity by increasing leaf area index and therefore water deficit (as explained in previous section 695 

4.1). In mesic locations, CO2 fertilization is more likely to decrease fuel aridity by increasing ET, 696 

thereby decreasing water deficit (Warren et al. 2011; Duursma et al. 2014; Becklin et al. 2017). 697 

To further complicate matters, aridity gradients are not stationary under climate change. With 698 

warming, some historically mesic areas are likely to become increasingly arid (Abatzoglou & 699 

Kolden, 2011; Goss et al., 2020; McKenzie & Littell, 2017). Thus, interactions between 700 

exogenous and endogenous drivers can vary over space and time. It is worth noting, however, 701 

that as the frequency and mean size of very large fires increases, single fires regularly burn 702 

across these gradients, further challenging the ability to model fire-climate-vegetation feedbacks 703 

that are already difficult to disentangle. 704 

5 Conclusions 705 

We found that climate change and CO2 fertilization effects can counteract one another to 706 

alter fuel loads. Climatic warming reduced fuel loading by decreasing vegetation productivity 707 

and increasing fuel decomposition rates, while CO2 fertilization increased fuel loading by 708 

enhancing vegetation productivity. On the other hand, both climatic warming and CO2 709 

fertilization increased fuel aridity. In the 2040s, CO2 fertilization outstripped climatic warming to 710 

increase fire activity; however, in the 2070s, climatic warming became so intense that the 711 

mitigating effects of CO2 fertilization could no longer keep up and therefore, fire activity 712 
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decreased. This non-monotonic response in fire size and burn probability occurred because 713 

decreases in fuel loading dominated over the increases in fuel aridity. However, the decreases in 714 

fuel loading will outstrip changes in fire weather and causes a 100% reduction in wildfire under 715 

the climate change in the far future (2070s) seems like a radical result. Some important feedback 716 

or threshold may be missing when modeling the effect of climate change on decomposition. But 717 

our simulation study does provide interesting possibilities in how climate and vegetation interact 718 

with wildfire, particularly in the context of increasing atmospheric CO2 concentration. 719 

Vegetation type is an important factor modifying how future fire regimes respond to 720 

tradeoffs between fuel loading and aridity. For example, ∆fuel loading:∆ fuel aridity thresholds 721 

that determine whether fire regimes are influenced more by fuel loading or fuel aridity vary 722 

between grasses (in which fuel load is limiting) and conifer and shrub stands (where fuel load 723 

and fuel aridity can both be limiting depending on underlying aridity gradients). For all 724 

vegetation types, this threshold does not change between the 2040s and the 2070s, suggesting 725 

that thresholds are a stationary characteristic of a given vegetation type. This stationary threshold 726 

can be used as a tool to predict future fire regimes.  727 

Given the catastrophic consequences of wildfire to human infrastructure, identifying 728 

appropriate management actions to reduce vulnerability is a high priority. However, fire regimes 729 

are changing (Littell et al., 2018; Liu et al., 2013; Liu & Wimberly, 2016), and therefore, 730 

allocation of limited resources to reduce fire risks and societal vulnerability will need to take 731 

these changes into account. Our modeling approach demonstrates that fire regimes will likely 732 

change differentially across watersheds, but there is still substantial uncertainty in the models. As 733 

scientists work to reduce key uncertainties—including future precipitation patterns, future 734 
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decomposition rates, and species-specific responses to CO2 fertilization—future projections will 735 

continue to be refined, providing better support to wildfire management decisions.      736 
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