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Key Points:10

• Attention-based machine vision models and methodological enhancements are de-11

veloped to improve solar wind speed forecasts from solar images12

• Attention-based architectures outperform convolutional models, motivating their13

use in future studies and production systems14

• The models perform best in the declining phase of the solar cycle when activity15

is driven by coronal holes16
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Abstract17

Extreme ultraviolet images taken by the Atmospheric Imaging Assembly on board the18

Solar Dynamics Observatory make it possible to use deep vision techniques to forecast19

solar wind speed - a difficult, high-impact, and unsolved problem. At a four day time20

horizon, this study uses attention-based models and a set of methodological improvements21

to deliver an 11.1% lower RMSE error and a 17.4% higher prediction correlation com-22

pared to the previous work testing on the period from 2010 to 2018. Our analysis shows23

that attention-based models combined with our pipeline consistently outperform con-24

volutional alternatives. Our model has learned relationships between coronal holes’ char-25

acteristics and the speed of their associated high speed streams, agreeing with empir-26

ical results. Our study finds a strong dependence of our best model on the position in27

the solar cycle, with the best performance occurring in the declining phase.28
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Plain language summary29

Solar images contain rich information that can be used to forecast conditions at Earth.30

This study develops a robust methodology for processing solar images and trains ma-31

chine learning models that can use them to predict the solar wind speed. Combined, these32

deliver a very significant 17.4% improvement in the correlation between the prediction33

and the ground truth over previous works. The models perform better during the qui-34

eter, declining phase of the solar cycle when the solar activity is driven by coronal holes.35

Finally, the trained models learn properties of coronal holes that agree with prior em-36

pirical studies.37

1 Introduction38

The solar wind is a stream of charged particles that is emitted from the upper atmosphere39

of the Sun. The speed, density, temperature and the magnitude and direction of the as-40

sociated magnetic field of the solar wind are constantly varying affecting the way in which41

it ultimately interacts with the Earth’s magnetosphere. High speed solar wind streams42

(HSS) emanating from coronal holes are particularly effective at coupling with the Earth’s43

magnetosphere. The weak storms they produce tend to have long-lasting recovery phases44

which often result in prolonged and enhanced substorm activity (Tsurutani et al., 1995;45

Meredith et al., 2011). This results in repeated injections of suprathermal electrons into46

the inner magnetosphere and significant increases in the fluxes of relativistic electrons47

in the outer radiation belt, increasing the risk to satellites via surface charging and in-48

ternal charging respectively (e.g., Borovsky and Denton (2006)). Indeed, it has been sug-49

gested that satellites at geostationary orbit are more likely to be at risk from an extreme50

HSS-driven storm than a Carrington type event (Horne et al., 2018). Furthermore, pro-51

longed and enhanced substorm activity associated with HSS-driven storms results in in-52

creased thermospheric densities and satellite drag (Chen et al., 2012). Consequently, ac-53

curately forecasting the solar wind speed associated with coronal holes is very impor-54

tant for our modern society.55

Coronal holes are large dark areas on the Sun as seen in extreme ultraviolet (EUV) and56

soft X-ray images (Cranmer, 2009). They are regions of open magnetic field and cooler57

plasma, leading to the production of high speed solar wind streams. Coronal holes are58

long-lasting features that can persist from one solar rotation to the next, giving rise to59

a 27 day periodicity in the arrival of HSS at Earth. The occurrence rate of coronal holes60

peaks during the declining phase of the solar cycle (Burlaga & Lepping, 1977) and high61

speed streams observed at Earth during these intervals tend to be coronal-hole driven.62

The distribution of speeds in high speed streams associated with coronal holes ranges63

from 400 to 800 kms−1 (Kilpua et al., 2017). While these streams do not result in ma-64
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jor geomagnetic storms (Richardson et al., 2006), they have extensive recovery phases,65

typically lasting from 5–10 days, and, as a result, may deposit more energy in the mag-66

netosphere than larger storms (Kozyra et al., 2006; Turner et al., 2006).67

Coronal holes are not the only source of high speed solar wind at Earth. Coronal mass68

ejections (CMEs) also cause high speed solar wind, although not all CMEs are associ-69

ated with high solar wind speeds (Kilpua et al., 2017). CME’s are large explosions on70

the Sun that hurl vast amounts of plasma into space. The occurrence rate of CMEs peaks71

at solar maximum (St. Cyr et al., 2000) so that most periods of high solar wind speed72

observed during these periods tend to be CME-driven. The distribution of speeds in in-73

terplanetary coronal mass ejections (ICMEs) and sheath regions associated with CMEs74

on the Sun ranges from 250 to 950 kms−1 (Kilpua et al., 2017). Unlike coronal holes,75

CMEs are not associated with long lasting features on the Sun. In contrast they are best76

observed in coronagraph images where they appear as expanding shells of material.77

In this study we build a machine learning model to use solar images to forecast the so-78

lar wind speed at Earth. This technique is expected to perform best when there are as-79

sociated visible features on the Sun. The method is thus expected to work well for coro-80

nal holes, which are large features on the solar disk. In contrast, coronal mass ejections81

are barely noticeable within EUV images and so the ML model would not be expected82

to work well for these events.83

The field of machine learning has built a lot of momentum over the last 10 years. This84

has largely been the result of improvements in algorithmic capability, availability of data,85

funding and hardware. Not to be overlooked though is the creation of field benchmarks86

like ImageNet (Deng et al., 2009) and open-source software such as PyTorch (Paszke et87

al., 2019) which dramatically shortened the development cycle in the field and greatly88

increased its standardization.89

Deep (Machine) Learning excels where rich data exists in large quantities, because mod-90

els with deep structures and therefore many parameters need to consume richly varied91

data sources to build complex internal representations of the data generating system.92

This is the essence of deep learning. Recently, curated solar image datasets have been93

created such as the SDOML dataset (Galvez et al., 2019) which contains images of the94

Sun taken at various EUV wavelengths. These data allow the rapid application of ma-95

chine learning algorithms to consume solar images.96

In this paper we use the EUV images taken by the Solar Dynamics Observatory (SDO)97

using the Atmospheric Image Assembly (AIA) (Lemen et al., 2011) to forecast the so-98
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lar wind speed at the Lagrangian L1 point. We present results for forecasting at a four99

day lag from a single 211 Å image - but this forecast could be used for any lag up to four100

days. We also explore the model’s learned behaviour by examining relationships between101

the peak solar wind speed and the coronal hole area and intensity. Previous works and102

the datasets are presented in Sections 2 and 3 respectively. In Section 4, we discuss our103

general methodology and model architectures. Our results are presented and discussed104

in 5. Finally, our conclusions are summarised in Section 6.105

2 Previous Works106

The works of Wintoft and Lundstedt (1997) and Wintoft and Lundstedt (1999) were the107

first to use neural networks to forecast the solar wind speed. These are small, so-called108

fully connected, models that could learn non-linear relationships between a limited set109

of pre-computed feature inputs, such as the flux tube expansion factor, and the solar wind110

speed. More recently, similar studies were performed by D. D. Liu et al. (2011), Yang111

et al. (2018), Chandorkar et al. (2019), and Bailey et al. (2021) using similar non-image-112

based inputs to the models, albeit with more advanced models than the earlier works.113

Upendran et al. (2020) was the first study aiming to forecast solar wind speed from so-114

lar EUV images using deep learning techniques. The work uses images from both 193115

and 211 Angstrom wavelengths to forecast the solar wind speed at a one day resolution.116

Upendran uses GoogleNet (Szegedy et al., 2014), trained on the ImageNet dataset (Deng117

et al., 2009), as a feature extractor for each image. The extracted per-image features are118

then passed into an LSTM Recurrent Neural Network (Hochreiter & Schmidhuber, 1997)119

to produce the predicted solar wind speed. The study achieves a best performing model120

at a lag of 3 days and a history of 4 days, with a correlation of 0.55 and an RMSE 80.28121

km/s. This study will build on this insightful initial work.122

Next, Raju and Das (2021) proposed a smaller three-layer convolutional feature extrac-123

tor, which they train on the 193 Angstrom wavelength solar EUV images. Their method124

targets a subtly different task than that of Upendran et al. (2020). While Upendran et125

al. (2020) forecast future solar wind speeds based on images at a fixed distance in the126

present, Raju and Das (2021) backcast current solar wind speed based on flexible-lag past127

images. Specifically, Raju and Das (2021) use the current solar wind speed to infer which128

past image was likely to have caused the recorded solar wind speed, and then pass this129

image into their model with the expectation that the model will be able to correctly re-130

construct the observed solar wind speed. The key difference between the two approaches131

is that in the forecasting setup the model needs to use the image information to both132

infer the speed of the caused solar wind and make a judgement on whether the parti-133

cle stream at the given speed will be geo-effective. In the Raju and Das (2021) backcast-134
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ing setup, the observed features are guaranteed to have been geo-effective, as the image135

was chosen based on this criterion, and thus the model needs to infer only the speed, not136

the geo-effectiveness too. Its task is thus made easier. When used in prediction it is as-137

sumed that the predicted solar wind speed will be used to infer the time when it will ar-138

rive at Earth. The difference becomes clearer when the models are to be deployed as so-139

lar wind speed predictors. Under the forecasting setup, today’s images can be used to140

produce the predicted solar wind speed 4 days from now. In contrast, under the back-141

casting setup not all time stamps would receive a prediction. Indeed, the inference pro-142

cess by which images are paired with time stamps does not guarantee a unique predic-143

tion for each time stamp, and so some time stamps can be expected to receive multiple144

solar wind speed predictions, while others would get none. Furthermore, any error in the145

speed prediction will be significantly magnified when the time offset is made dependent146

on this prediction. Thus this model is not comparable to Upendran et al. (2020). Nev-147

ertheless, they provide results for a model specially trained at a fixed 4 day forecast hori-148

zon (their Table 4), with the year 2018 held out as a test set. They report 78.3 km/s RMSE149

and a prediction correlation of 0.55. This would be comparable to Upendran et al. (2020),150

except they provide no results for 2018 alone. Their test results are from across multi-151

ple years. Therefore, our study will compare to Upendran et al. (2020) for dates across152

an 8.5 year range and then run a separate training run to compare to Raju and Das (2021)’s153

fixed 4-day model, just evaluating on the year 2018.154

3 Data155

3.1 Solar Images156

The image dataset consists of EUV images from NASA’s Solar Dynamics Observatory157

(SDO) taken by the Atmospheric Imaging Assembly (AIA) (Lemen et al., 2011) that have158

been processed by performing various instrumental corrections, downsampled to usable159

spatial and temporal resolutions and synchronised both spatially and temporally to form160

the SDOML dataset (Galvez et al., 2019). The resulting dataset contains 8 and a half161

years of images every 6 minutes from June 2010 to December 2018. These images are162

monochromatic and the pixel values represent the intensity of light. This study uses the163

EUV images at 211 Angstroms.164

3.2 Solar Wind Speed165

The solar wind speed data are taken from the OMNIWeb service. Specifically, we use166

the solar wind speed, measured in km/s, at a 1 minute time resolution for the period of167

the SDOML dataset. The data come from WIND and the Advanced Composition Ex-168

plorer (ACE) spacecraft, both positioned at the L1 point, about 1.5 million km from Earth.169
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The solar wind speed is highly auto-correlated with itself over hourly time periods and170

is still at 0.7 after 1 day. By four days, the correlation has dropped to negligible amounts.171

Notably, at 27 days, there is a spike in the auto-correlation. This is because the Sun has172

a synodic rotation period of approximately 27 days and some longer lasting features, such173

as coronal holes, come around again causing similar solar wind speed conditions at L1.174

This auto-correlation is important since it has implications for which images are included175

in training and test sets due to their dependence on each-other. This is further discussed176

in Section 4.1.7.177

4 Methodology178

4.1 Methodological Improvements179

Here we discuss changes in our methodology to the only previous work, (Upendran et180

al., 2020), covering all the date ranges available from the SDOML dataset.181

4.1.1 Image pre-processing182

The EUV images at their provided resolution are too large to practically process on stan-183

dard computing hardware. Previous works elected to down-sample the full 512 by 512184

pixel image to 224 by 224 by max pooling. Instead, we take a 300 by 300 pixel square185

who’s corners are approximately at the edges of the solar disk, and then down sample186

this cropped image to the desired 224 by 224 image size. This results in lower loss of in-187

formation content in the relevant section of the Sun because 1) the cropped solar poles188

are unlikely to be geo-effective, 2) the cropped features at the western limb take about189

7 days to be geo-effective and so are outside of the max 4 day forecasting horizon, 3) this190

allowed us to down-sample the central, relevant, portion of the image less aggressively.191

Figure 1 shows an example of our cropping technique.192

Regarding scaling the cropped image images, the same method as used in Upendran et193

al. (2020) is employed by clipping the pixels to have values between a minimum of 25194

and a maximum of 2500 and taking the natural logarithm. However, after this we rely195

on a batchnorm layer to learn an optimal scaling, as opposed to fixing it (further detailed196

in Section 4.2).197

4.1.2 Sampling frequency198

We replace the previously used daily sampling resolution with a 30 minute schedule, be-199

cause solar wind speeds can change significantly even on a 30 minute time scale.200

4.1.3 Carrington rotation201

The Sun rotates on average every 27.28 days as viewed from Earth, this is one Carring-202

ton rotation(Ridpath, 2012). As such, the solar features that affected the solar wind speed203
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Figure 1: SDO AIA 211Å image taken on 2021-06-27 (Lemen et al., 2011)

at a given point come back approximately 27 days later and produce similar effects. Thus,204

the solar wind speed is also auto-correlated at the Carrington rotation periodicity with205

a value of 0.42 at 27 days. As this value is available to all forecasters operating at lower206

than 27 days forecast horizon, it should be used as an input to our models.207

4.1.4 North-south augmentation208

We augment the dataset by randomly flipping the training images north to south, as fea-209

tures, such as coronal holes, produce a similar increase in solar wind speed regardless of210

which side of the solar equator they are on. Although it is not claimed these are valid211

physical suns.212

4.1.5 Single image versus sequence213

The previous work relies on a convolutional feature extractor pre-trained on ImageNet214

in combination with an LSTM cell and a fully connected layer (Upendran et al., 2020).215

Up to 4 images were sequentially passed through the convolutions. Separate for each im-216

age, the model’s activations at multiple layers were extracted, concatenated, and passed217

into the LSTM as individual time steps. The convolutions remained parametrized by the218

weights obtained on ImageNet and only the other layers’ parameters were trained. The219

high auto-correlation of solar images is likely to, again, exaggerate the model’s multi-220

collinearity in hidden features while providing little additional context. Thus we replaced221

the LSTM feeding into a fully connected output layer with two consecutive fully con-222

nected layers.223
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4.1.6 Feature extractor re-training224

This study will use pre-trained vision models at the core of the model architecture (see225

Section 4.2 for more details). Rather than to use the fixed pre-trained ImageNet weights,226

the model will be initialised with these weights but they will not be fixed. This we be-227

lieve to be strictly necessary due to the wide gap between the EUV and the ImageNet228

datasets.229

4.1.7 Training, validation and test sets230

For this study, 5-fold cross-validation is employed to evaluate the models. Solar wind speed231

is auto-correlated up to a period of about 4 days. For the period of June 2010 to Decem-232

ber 2018, the auto-correlation is as high as 0.70 at one day. This means that if times-233

tamps are too close to each-other between training, validation and test sets, it is not a234

fair reflection of the performance of a model, since the Sun has not changed much in for235

example 30 minutes. Furthermore, this will mean that the model overfits on the valida-236

tion sets, meaning they will not generalise as well. In order to create more independent237

training and test sets, a method similar to that used in Upendran et al. (2020) is em-238

ployed whereby the timestamps from 2010-2018 are split into chunks of 20 days. How-239

ever, a buffer period of 4 days between each chunk is thrown out to ensure the indepen-240

dence of the training, validation and test sets. It is noted that this throws out approx-241

imately one fifth of all the data. However, this is justified to ensure the independence242

of datasets while also covering as many parts of the solar cycle as possible. These chunks243

are then put into training, validation and test buckets. This process is repeated 5 times244

to ensure that each 20 day chunk serves a turn in the training set 3 times, the valida-245

tion set once and the test set once. This creates 5 folds of training, validation and test.246

For each fold, a model is trained on the training set and evaluated on the validation set247

for 100 epochs (1 epoch is a full pass over the data). The model is saved every epoch.248

The version of the model that performs best on the validation set is the final model. This249

final model is then applied and evaluated on the unseen test set. Figure 2a shows the250

training sets in orange, the validation sets in blue and the test sets in yellow. White buffer251

sets of 4 days are included between the 20 day chunks.252
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(a) 5-fold cross validation with buffer data thrown out. Pattern is repeated across the May 2010

to December 2018 range.

(b) Dataset split with 2018 as hold-out test set for comparison with Raju and Das (2021)

Figure 2: Training, Validation and Test sets

4.2 Model Architectures253

For this study, the architectures for the different models will follow the format in Fig-254

ure 3. The image will pass through a batch norm layer that will rescale it. Then it is passed255

into the candidate architecture, be it a CNN or a vision transformer. The outputs from256

this model as well as the solar wind speed from one Carrington rotation ago are then passed257

into two final consecutive non-linear projections that produce the model’s solar wind speed258

prediction.259
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In all cases the models are trained in their entirety on the EUV data. That is, after their260

parameters are initialized using either random, or when available, pre-set weights the al-261

gorithm iteratively updates them with the goal of incrementally decreasing the mean squared262

error of its prediction.263

Figure 3: The Solar model architecture

4.2.1 Benchmark CNN-based models264

In general every deep model can be seen as a layered composition of non-linear projec-265

tions, each forming a separate layer. Model inputs, solar images in our case, can be seen266

as the zero-th layer, while, model outputs, the predicted solar wind speed, can be treated267

as the last layer. Each layer in between is a non-linear projection that receives inputs268

from the preceding layer, and that outputs its value to the next layer. Commonly, sev-269

eral layers are grouped into modules and used as a type of meta-layer. Modern archi-270

tectures are defined by the features that build on and expand this basic structure.271

Previous work used convolutional models in the forecasting of solar wind, (Upendran et272

al. (2020); Raju and Das (2021)). These models are designed to process images, each of273

which has three dimensions - the height, the width, and the number of channels. A stan-274

dard colour image has 3 channels: red, green, and blue. Convolutions are operations that275

split the image into a grid of patches and then use a three dimensional kernel to com-276

pute weighted averages per each patch. The same kernel is used on each patch and the277

averages it produces become the pixel values the layer outputs. Multiple kernels may be278
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employed, in which case their outputs are treated as separate channels of the outputted279

image.280

GoogleNet, also known as InceptionNet v1, is the convolutional architecture at the heart281

of Upendran et al. (2020)’s work. It is a convolutional architecture that replaces layers282

with modules. Each module computes several, rather than just one convolution. These283

are computed in parallel, and are meant to complement each other. The desired effect284

is to make the model’s computation more parallelizable, thus faster, while improving the285

model’s ability to fit complex patters in the data (Szegedy et al., 2014).286

InceptionNet v2 is a second generation and a refinement of the GoogleNet. The ar-287

chitecture builds on GoogleNet’s inception modules by decomposing their convolutions288

serially. Specifically, more computationally expensive, that is larger-kernel convolutions,289

are replaced by a series of much cheaper smaller-kernel convolutions carried out one af-290

ter the other. The desired effect is to make the working set of this algorithm smaller, while291

further improving the model’s capacity, i.e. its ability to fit complex data patterns (Szegedy292

et al., 2016).293

ResNet is a predecessor of GoogleNet. ResNet’s modules consist of two consecutive con-294

volutions, and a so called residual connection. The residual connection is a bypass that295

circumvents the two convolutions. In effect this results in a block that outputs both its296

convolution’s output as well as the original inputs to the block. This trick helps to prop-297

agate the training gradients through the network, mitigating the vanishing gradient prob-298

lem. The architecture was the first one to breach the 20 layer depth ceiling (He et al.,299

2016).300

DenseNet is a generalization of ResNet that adds multiple residual connections to each301

module. The beginning of a block of convolutions, is connected not only to the output302

of that same module, but also to the outputs of all modules down-stream from it (Huang303

et al., 2017).304

4.2.2 Attention-based Models305

This paper proposes using attention, rather than convolution, as the core model feature.306

Attention is a deep learning mechanic that, rather than learn a weight per each input307

pixel or a patch of pixels, learns a method for generating these weights from the input308

data. Consequently, the models can weight each patch based on what its position is and309

what the rest of the image depicts (Vaswani et al., 2017). In contrast, convolutions are310

designed to analyze each patch of each input image using the same kernel of weights, re-311

gardless of what the image depicts outside of the patch and what its position is. Formally,312
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convolutions enforce transition invariance, while attention models do not. Transition in-313

variance in computer vision is achieved when the model maintains the same output even314

if the objects in the image are moved around.315

Attention’s ability to judge each image patch in the context of its position in the image316

and the contents of the rest of the image is critical for making sound solar wind speed317

predictions from the EUV data. First, the attention mechanism allows the model to as-318

sign higher importance to features on the Sun’s surface if they appear in the equatorial319

region. Moreover, the model is able to learn to distinguish between situations when an320

active region interferes with a coronal hole, and when it does not. The weights it places321

on the patches of the image with the coronal hole in it will depend not only on its po-322

sition in the image, but also on whether the model identified an interference from an ac-323

tive region. In contrast, convolution-based models were designed to identify an object324

anywhere in the input image field. Therefore, they place equal weight on each image patch325

as they process it using the same fixed-weight convolution kernel. It was assumed that326

multiple layers of convolutions would learn increasingly complex representations by de-327

riving higher-layer features from simple lower-layer ones. Recently, however, it was shown328

that convolutional models do not recognize complex features, instead they aggregate low329

level texture features from across the input image and then make their prediction based330

on which texture prevails in the input image (Geirhos et al., 2018). Consequently, attention-331

based models will make better and more theory-sensible predictions as it, for example,332

will account for and internalize the higher importance of features in the equatorial re-333

gion and the interference of active regions with coronal holes while convolution will fail334

to do so.335

The Vision Transformer was the first transformer architecture successfully used in im-336

age recognition (Dosovitskiy et al., 2020). The architecture combines large image patches337

with the attention mechanism. Each patch is first individually passed through a linear338

projection, then the attention mechanism applies context-derived weights on each. The339

result is then passed into two consecutive non-linear projections, sometimes called fully340

connected layers, before being outputted. An important point of comparison is the size341

of the model’s patches. While all benchmark models only consider patches of no more342

than 5x5 pixels, our Vision Transformer works with patches of 16x16. This is meant to343

allow it a larger receptive field and to steer clear of focusing on textures.344

The Transformer in Transformer follows the same general architecture as the original345

Vision Transformer, the crucial difference is that the linear projection at the beginning346

of the outer transformer is replaced by an inner transformer that is modelled as a smaller347
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version of the same original Vision Transformer (Han et al., 2021). Therefore, the input348

image is first split into 16 by 16 patches. Each of these patches is then passed into the349

inner Vision Transformer, as if they were images in their own right. This splits them into350

smaller (4 x 4) patches still, derives the attention weight for each sub-patch based on the351

rest of each patch, and outputs the processed image back to the outer transformer. The352

outer transformer then uses these processed patches to derive its attention weights per353

each patch based on what the rest of the full image’s processed patches are like. Then354

the outer transformer uses two consecutive non-linear projections to produce the final355

output.356

The Swin Transformer is similar to the Vision Transformer except it builds hierarchi-357

cal feature maps by merging image patches, as opposed to treating image patches sep-358

arately as in the Vision Transformer (Z. Liu et al., 2021). The idea is that the model is359

able to treat features on different scales, whereas the vanilla vision transformer is lim-360

iting itself to a predetermined patch size. Furthermore, a feature of the algorithmic con-361

struction is a linear scale in computational complexity based on image size.362

These pre-trained attention-based models, as well as the benchmark CNN models, all363

accept three-channel RGB images normally. In order to use these powerful models, the364

solar images have to be repeated 3 times to form the three channels. Normally, one would365

use the advised normalisation schedule from the papers that produced these models. In366

this case however, since the models are not RGB in the first case, it was decided that367

an initial batch norm layer is applied before the model, so that the best normalisation368

schedule can be learned and not fixed. The reported RMSE and Correlation is then av-369

eraged over the five folds and reported.370

RMSE =

√
1
nΣn

i=1

(
xi − yi

)2
371

Correlation =

∑n

i=1
(xi−x)(yi−y)√∑n

i=1
(xi−x)2(yi−y)2

372

where yi is the real solar wind speed, xi is the predicted solar wind speed, yi is the mean373

real speed, xi is the mean predicted speed, and n is the total number of data points.374

4.3 Other Experimental Details375

4.3.1 Missing data376

Missing images are substituted with valid observations no more than 30 minutes removed377

from the missing datum. Missing solar wind speed data are interpolated from available378

data no more than 30 minutes removed. Time steps with no valid data for filling in the379

missing observations are discarded.380
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4.3.2 Hyper-parameter selection381

Hyper-parameters are chosen using a Bayesian parameter sweep using the software Weights382

& Biases (Biewald, 2020) based on the performance of the validation set. For cost rea-383

sons, the sweep is conducted at 120 minutes resolution for only 30 epochs.384

4.3.3 Training process385

The loss function of the network is the default implementation of pytorch’s mean squared386

error (squared L2 norm) (Paszke et al., 2019). The optimizer method to update the weights387

of the network is the default implementation of the Adam optimizer in pytorch as well388

(Kingma & Ba, 2014). Batch size is fixed at 64.389

4.3.4 Computation390

All experiments were run on V100 Nvidia GPU, resulting in a total compute of about391

900 GPU hours.392

4.4 Year 2018 Evaluation393

Solar activity can vary significantly based on position in the solar cycle, so only testing394

on 2018 only gives the performance of the model in that part of the solar cycle. It there-395

fore cannot be representative of the generalisation of the model to other periods of the396

solar cycle. However, Raju and Das (2021) provide results for a model trained on solar397

imaging data with the entire year of 2018 held out for evaluation. As an extra exper-398

iment and to compare to their study, a model will be trained with the training and test399

set schedule shown in Figure 2b. Notably, Figure 2b features a 27 day test buffer before400

the start of the 2018 test set. This buffer is present because of Raju and Das’ concern401

of 27 day resurgence causing the training and test sets to not be independent. Our view402

is that since this model is forecasting at a 4 day forecast, any image before that 4 days403

could be used to train a model in a production system to make that 4 day forecast (es-404

pecially using the method of online learning). Despite the dependence, this 27-day old405

image would be one of the most important images you would want to train on. Where406

the dependence matters for forecasting purposes is crucially when the images are less than407

the forecast horizon apart. This explains our choice of 4 day buffer otherwise. However,408

for the point of comparison, this 27 day buffer is kept. Otherwise, all experimental pro-409

cedures as detailed will remain the same as with the 5-fold split.410
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5 Results and Discussion411

5.1 Comparison to Previous Works412

Table 1 shows the comparison of our methodological and modelling pipeline, used with413

a range of feature extractors, against the most recent state of the art forecasting model414

in the field and two naive persistence model benchmarks. Notably, all of the models trained415

under our pipeline improve on the work by Upendran et al. (2020) by at least 8.8% in416

RMSE and 12.7% in correlation. Indeed, our pipeline with the GoogleNet feature ex-417

tractor, which is the same feature extractor as was used in the Upendran et al. (2020)418

model, demonstrated the total improvement our pipeline has delivered. It lowered the419

RMSE by 9.2% and increased the correlation by 14.6%. Furthermore, our best perform-420

ing model, based off the Swin Vision Transformer, improves on the state of the art by421

11.1% in RMSE and 17.4% in correlation. The model also outperforms at the 1, 2, and422

3 day time horizon because the 4 day forecast could also be used for those. Finally, trans-423

former feature extractors outperformed convolutional ones by about 1 to 2% in either424

metric when used in our model pipeline.425

Table 1: Performance of our solar models compared to Upendran et al. (2020) forecasting

solar wind speed using the EUV data at a 4 day forecast horizon in the period May 2010

to December 2018. Upendran et al. (2020).

Model RMSE % Improvement Correlation % Improvement

Persistence(4 day) 127.59 -57.1% 0.080 -85.2%

Persistence(27 day) 100.86 -24.2% 0.426 -21.1%

Upendran et al. (2020) 81.21 - 0.54 -

Our models

Solar InceptionNet v4 74.09 8.8% 0.609 12.7%

Solar DenseNet 73.92 9.0% 0.611 13.1%

Solar GoogleNet 73.71 9.2% 0.619 14.6%

Solar ResNet 73.52 9.5% 0.618 14.4%

Solar TNT 72.70 10.5% 0.629 16.5%

Solar Vision Transformer 72.66 10.5% 0.630 16.7%

Solar Swin Transformer 72.21 11.1% 0.634 17.4%
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Table 2 compares the performance of our best performing model, that is the one based426

on the Swin Transformer feature extractor, and the two persistence benchmarks against427

the predictions Raju and Das (2021) produced for the year 2018. This setup differs from428

that of table 1 in that table 1 tests the models on data examples sampled from the whole429

dataset, and thus across the solar cycle. The present comparison is made solely with re-430

spect to the solar cycle conditions present in the year 2018, as chosen by Raju and Das431

(2021). Our model shows a significant improvement of 8.3% in RMSE and 17.1% in cor-432

relation over the performance achieved by Raju and Das (2021).433

Table 2: Performance of our solar models relative to (Raju & Das, 2021) predicting solar

wind speed using EUV data at a 4 day forecast horizon in for the year 2018.

Model RMSE % Improvement Correlation % Improvement

Persistence(4 day) 118.76 -52.3% -0.027 -104.9%

Persistence(27 day) 85.16 -9.2% 0.464 -15.6%

Raju and Das (2021) 78 - 0.55 -

Our model

Solar Swin Transformer 71.65 8.3% 0.644 17.1%

5.2 Ablation Study434

To demonstrate the stand-alone effect of our suggested techniques on the results, we con-435

ducted a study whereby each improvement is removed one at a time and the performance436

reduction reported. In the case of dropping the buffers, the no-buffer condition was im-437

plemented by making those buffers between the validation and training sets become part438

of the validation set, thus removing the separation between the two sets whilst adher-439

ing to a test-validation-train split that is comparable to that of the original condition.440

Figure 4 shows that the dominant improvement has been the adjustment of the sampling441

frequency, excluding it causes 8.51% deterioration in RMSE and 9.70% in correlation.442
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Figure 4: Performance reduction resulting from removing one improvement at a time.

Excluding the other 4 methodological, improvements delivers between 0.58% and 1.63%443

RMSE deterioration, and between 0.6% and 2.16% fall in correlation. While these fig-444

ures are modest in magnitude, it ought to be pointed out that the benefits appear un-445

correlated between the methods, and when they are all combined they deliver a signif-446

icant improvement over the previous works.447

5.3 Prediction Analysis448

Next, we analyze the predictions made by the best performing Swin Transformer model449

to get better understanding what aspects of the solar wind speed prediction task it gets450

right, and where, if at all, lie its systematic biases.451

5.3.1 Distribution452

Figure 5a shows the distributions of the solar wind speeds predicted by the top model453

and the underlying ground truth. Both distributions are roughly centered around the454

same mean with a positive skewness, i.e. they have long right-hand tails. The distribu-455

tions differ significantly in their kurtosis. The real data has lower kurtosis, that is it has456

more observations in both its right and left tails. The model’s predictions have notably457

higher kurtosis, as it has a much more pronounced peak at around its mean and much458

fewer observations in its tails. This is to be expected as the L2 loss function chosen, which459

all models in this domain use, is known to prioritize the average fit of the model over fit-460

ting the extremities. The distributions by themselves, however, do not tell the full story.461

For that we need to look at figure 5b, which shows the confusion matrix of binned speeds.462

Both predicted and actual solar wind speeds are split into 4 distinct class bins incremented463
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by 100 km/s and 2 catch all classes one at each extreme of the distributions. Each block464

of the confusion matrix corresponds to one combination of a predicted class and a ground465

truth, i.e. real, class. The value in the block represents the fraction of that real class that466

were classified as the predicted class. Under a perfect prediction, the blocks would read467

1.0 along the diagonal and 0 everywhere else. This would mean that all speeds were cor-468

rectly predicted in their class. As it is however, our model shows a tendency to over-predict469

the lower real speeds while under-predicting the higher speeds. Indeed, no speeds that470

were in the 700-900 km/s range were correctly predicted as such. Similarly, no speeds471

in the 100-300 range were correctly predicted. This confirms our suspicion that it is the472

tail observations that are being regressed towards the mean that is driving both the er-473

ror in the confusion matrix and the difference in the prediction and ground truth dis-474

tributions.475
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(a) Distribution of predicted and real speeds

(b) Confusion matrix of binned speeds (km/s)

Figure 5: Distribution and confusion matrix of predicted speeds

5.3.2 Coronal hole area476

It has been empirically established that there is a linear relationship between coronal hole477

area at low latitudes and peak solar wind speed (Nolte et al., 1976; Hofmeister et al., 2018).478

In order to test whether our model has learned this relationship we need to devise a way479

of obtaining images with specified coronal hole sizes at the desired latitude. We chose480

to generate our images using a background of enlarged uneventful solar region and a patch481

extracted from a coronal hole that can be sized as desired. Each patch size is moved across482

–21–



manuscript submitted to Space Weather

Figure 6: Peak speed of coronal holes at solar equator versus coronal hole area

the image, and the model’s peak prediction for that size is recorded. Figure 6 plots the483

predicted solar wind speeds against the patch sizes. It shows that our model, indeed, suc-484

ceeded to learn the relationship established by Nolte et al. (1976) and Hofmeister et al.485

(2018) since its predictions follow very closely the empirically observed linear relation-486

ship with a high degree of correlation.487

5.3.3 Coronal hole intensity488

Obridko et al. (2009) found that the darker the coronal hole, the larger is the peak of489

the associated high speed stream. We test whether our model learned this empirical re-490

lationship by incrementally increasing the minimum brightness of a coronal hole. At each491

step, any pixel value below the minimum threshold is increased to the minimum value.492

Figure 7 shows the predicted speed for a large coronal hole visible on the day of 2016-493

12-06 at 00:00:00 am at various minimum intensities. As we increase the brightness of494

the coronal hole, the model starts to forecast lower solar wind speeds. This suggests that495

the model has learned the Obridko et al. (2009) empirical relationship that the darker496

the hole, the stronger the solar wind.497
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Figure 7: Speed prediction vs minimum pixel intensity for a coronal hole pictured on

2016-12-10

5.3.4 Solar cycle variability498

The performance of the model is highly dependent on position in the solar cycle. Fig-499

ure 8a plots the correlation of the model prediction with the ground truth (blue) at 6500

month intervals against the number of sunspots (red) in that period. The sunspot num-501

ber represents the solar cycle. Notably, the model’s prediction correlation to ground truth502

is much better in the declining phase of the solar cycle, that is in the 2016 to 2018. At503

the same time, it performs much worse around the peak of the solar cycle in 2014. This504

relationship is confirmed when we view the data as correlation-sunspot number couples505

and visualize them in a scatter plot. This is shown in the figure 8b. We observe a strong,506

0.78, negative correlation of the number of sunspots and the model prediction correla-507

tion to the ground truth. Since sunspot number is used to measure the solar cycle, this508

suggests that the model performance is highly dependent on the solar cycle and more509

specifically on the prevalent type of solar activity in a given period.510
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(a) Model prediction correlation and sunspot number vs date

(b) Model prediction correlation and sunspot number

Figure 8: Model performance compared to sunspot number
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Indeed, a key component of the model’s performance across the solar cycle is the type511

of encountered solar features. The top two panels of the figure 9 show the model’s per-512

formance in early 2012, with 80.81 RMSE and 0.45 correlation, and in late 2016, with513

73.32 RMSE and 0.81 correlation. The solar wind behaviour in the later half of 2016,514

was driven by coronal holes and the high speed solar wind streams associated with them.515

Whereas, 2012 had a much higher sunspot number and had far more Earth-directed CMEs.516

(a) January to June 2012 (b) July to December 2016

(c) Coronal Mass ejection, March 2012 (d) Coronal hole, December 2016

Figure 9: Solar Swin Transformer performance in different parts of the solar cycle and on

different solar phenomena

We observe a marked difference in performance between predictions driven by CMEs and517

coronal holes. Figures 9d and 9c show how the model captures the longer lasting, speed518

profile of a coronal hole quite well, while missing the speed profile of the sudden CME.519

This offers an explanation to the pronounced variability in the model’s prediction qual-520

ity. The solar activity in the declining phase is driven by coronal holes. These are more521

easily picked up by the models. Since the Sun in the later half of 2016 was in the declin-522
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ing phase, the models’ performance was much better. In 2012, a year with far more CMEs,523

the model performance was reduced, as the models struggled to catch the CMEs.524

The failure to fit on the more sudden coronal mass ejections is a chief limitation of the525

models developed in this space. It can be ascribed to the lack of significant and persis-526

tent CME-related features in the EUV images, preventing them from being captured by527

the models. We note that ML models using solar EUV images alone to forecast other528

space weather related parameters such as geomagnetic activity as measured by the AE529

or Kp indices or suprathermal electrons at geostationary orbit would most likely suffer530

from the same limitation resulting in a similar pattern of behaviour with the best cor-531

relations during the declining phase of the solar cycle and the worst correlations around532

solar maximum.533

6 Conclusions534

This study uses attention-based machine vision models and a set of methodological and535

modelling improvements to forecast the solar wind speed at L1 using solar images at 211Å536

wavelength. These improvements result in 11.1% lower RMSE and 17.4% higher predic-537

tion correlation with the ground truth when compared to previous works. Additionally,538

this study observed that attention-based architectures in general have about 2-3% per-539

formance edge in both RMSE and correlation over the previously-used convolutional al-540

ternatives. The model’s performance is highly dependent on the position in the solar cy-541

cle. The model performance is strongly negatively correlated with the sunspot number,542

as the model performance is better in the declining phase of the solar cycle when the so-543

lar wind behaviour is dominated by coronal hole activity. Finally, the model has inde-544

pendently learned two empirical relationships between coronal established by previous545

publications. First, it complies with the observed linear relationship between coronal hole546

area and the peak speed associated with it. Second, it learned that the darker the coro-547

nal hole, the stronger the solar wind speed associated with it.548

Open Research549

The SDOML 211 Å image data is available here: https://purl.stanford.edu/vk217bh4910550

The OmniWeb solar wind data is available here: https://omniweb.gsfc.nasa.gov/form/551

omni min.html552

Code for analysing model output is supplied here: https://github.com/eddbrown/solar553

-swin-transformer-output-data554
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