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Abstract 

Air-pollution monitoring is sparse across most of the United States, so geostatistical 

models are important for reconstructing concentrations of fine particulate air pollution (PM2.5) 

for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution 

PM2.5 machine-learning model covering the contiguous US from 2003 through 2021. XIS uses 

aerosol optical depth from satellites and a parsimonious set of additional predictors to make 

predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of 

address-level exposures. We built XIS with a computationally tractable workflow for 

extensibility to future years, and we used weighted evaluation to fairly assess performance in 

sparsely monitored regions. Averaging across all years in site-level cross-validation, the 

weighted mean absolute error of predictions (MAE) was 2.13 μg/m3, a substantial improvement 

over the mean absolute deviation from the median, which was 4.23 μg/m3. Comparing XIS to a 

leading product from the US Environmental Protection Agency, the Fused Air Quality Surface 

Using Downscaling (FAQSD), we obtained a 22% reduction in MAE. We also found a stronger 

relationship between PM2.5 and social vulnerability with XIS than with the FAQSD. Thus, XIS 
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has potential for reconstructing environmental exposures, and its predictions have applications in 

environmental justice and human health. 
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Synopsis 

Improved estimates of air-pollution concentration where people live will improve future 

analyses on the health impacts of air pollution and exposure disparities across the United States. 

Introduction 

Particulate-matter air pollution comprises a mixture of solid and liquid particles that are 

suspended in the air. Concentrations of fine particulate matter (PM2.5; having a diameter of less 

than 2.5 μm) are widely monitored and studied due to associations of short- and long-term 

exposure to PM2.5 with disease1. Long-term ambient PM2.5 was the leading environmental risk 

factor and ranked sixth among all modifiable risk factors in the 2019 Global Burden of Disease 

Study2, with additional health impacts attributable to short-term PM2.5 exposure. 

A primary difficulty for such health studies is the geographically sparse monitoring of 

PM2.5, especially over large areas with complex emissions patterns, such as the contiguous 

United States (CONUS). Regulatory monitoring networks can provide high temporal resolution, 

with hourly or daily samples3, but sparse spatial coverage can lead to substantial measurement 

error on the exposure side of epidemiological analyses4. Hence, in place of merely assigning 
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cases the PM2.5 concentration measured at the nearest monitor, researchers increasingly use a 

variety of methods to model and interpolate PM2.5, from chemical-transport models5 to land-use 

regression6 to machine-learning approaches (reviewed in Diao et al)7. Even then, however, PM2.5 

epidemiology has focused on urban areas, where monitoring is most intense8,9. This is a critical 

limitation, since many people across CONUS live in rural or suburban areas, which have a 

different source profile of air pollution. Especially necessary are evaluation metrics that give 

rural areas appropriate weight, instead of mostly reflecting performance in intensely monitored 

areas10,11. 

Machine-learning models for PM2.5 typically use predictors of sources (e.g., roadways), 

topography, and meteorological conditions that relate to PM2.5 concentrations. The advent of 

remotely sensed Earth observations have led many to include satellite aerosol optical depth 

(AOD) into modeling efforts, including those from our group12. Since AOD is a quantitative 

estimate of the amount of light absorbed or scattered by suspended particles along the vertical 

atmospheric column, it is a useful proxy for surface PM2.5 concentrations13. We have developed 

multiple AOD-based models at various geographical scales (state, region, and country) 

integrating satellite data with land use regression predictors using linear mixed models to 

calibrate the satellite-to-surface relationship14–16. 

There is a clear trend for recent PM2.5 models to use methods from machine learning, 

including random forests14,17,18, gradient boosting10,19, neural networks20, and heterogeneous 

ensembles21. While these more flexible models can improve predictive accuracy, we (and others) 

have shown that without adequate care for the structure of the data, they are prone to overfitting, 

and data leakage (inadvertent inclusion of test data in model training) can optimistically bias 

assessments of model performance10. Importantly, a flexible model will appear to be much more 
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accurate when evaluated without consideration of the spatial structure of the underlying 

phenomenon, and this effect on apparent performance is evidence of overfitting10. Another issue 

with machine learning is the temptation to build huge models that demand extensive 

computational resources, run slowly, and use hundreds of predictors that would all need to be 

updated for future years. Such models sound very impressive, but are difficult to scale, update, 

and reproduce, and are not necessarily more accurate than more conservative models. 

We aimed to develop a new computationally efficient national model based on 

integrating a machine-learning method, namely extreme gradient boosting (XGBoost)10,22, with 

inverse-distance weighting (IDW). Predictors included a parsimonious set of satellite, land-use, 

meteorological, and topographical variables. We call our general modeling framework, which 

can be used to model not only PM2.5 but also other environmental variables such as air 

temperature, XGBoost-IDW Synthesis (XIS); the adaptation of XIS for PM2.5 is named XIS-

PM2.5. Our model covers CONUS for each day of 2003 through 2021, with planned updates as 

new data become available. The strengths of XIS include an ungridded core that can make 

predictions at arbitrary points in the study region; good computational efficiency, with a 

geospatial data pipeline that dramatically cuts down on time and processing requirements; 

recency, with pre-planned ability to update the model for new years; a weighted evaluation 

scheme that fairly considers model performance across the entire region; and interpretability of 

results. We provide detailed evaluation of predictive performance in site-wise cross-validation, 

with stratification by year and climate region. We use interpretable machine-learning approaches 

to better understand the predictor-to-PM2.5 relationships learned by our model. We also compare 

our model with the EPA FAQSD daily tract-level PM2.5 predictions, highlighting the value of 
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point-based predictions. An environmental-justice application shows that XIS, versus EPA 

FAQSD, produces substantially different estimates of exposure disparities across CONUS. 

Method 

Study area and time period 

We modeled PM2.5 for each year from 2003 to 2021. Our study area was CONUS 

excluding some large water bodies, as defined by the US Census’s state-wise cartographic 

boundary files23; it covers 7,798,188 km2 in all. For some analyses, we show results divided into 

the 9 standard NOAA climate regions24,25. We treat Washington, DC, as part of the Northeast 

region. 

Although XIS represents time as discrete days, in Central Standard Time (UTC−6), it 

does not discretize space into a grid. Rather, it represents locations as floating-point longitude–

latitude pairs. 

Data 

Particulate Matter 

The outcome variable for XIS-PM2.5, fine particulate matter mass concentration, is 

represented as PM2.5 measurements recorded in the Environmental Protection Agency’s Air 

Quality System (AQS)3. We included monitors using the federal reference method or federal 

equivalent methods (parameter code 88101) as well as other monitors reporting “acceptable 

PM2.5” (parameter code 88502), including mass concentrations from speciation networks. 

Overall, 38% of the observations we used came from “acceptable” instruments, and 18% of 

monitoring sites only became available for this analysis because they include such an instrument. 

We filtered the outcome as follows:  

1. Select observations inside the study area that are based on 24-hour measures. 
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2. Drop observations with an event type of “Excluded”; use the corresponding “Included” 

observations instead. 

3. Group observations into sites on the basis of longitude and latitude (disregarding AQS 

site identifiers). 

4. Handle each observation of negative PM2.5 by either setting it to 0 or discarding it 

entirely. A negative observation is discarded if it is more than 1 standard deviation (SD) 

away from the mean of other observations at the same site within the past 3 days and the 

next 3 days. 

5. Reduce the data to at most one observation per site and day. Rank the observations as 

follows: prefer the designated primary monitor if there is one; prefer parameter code 

88101 to 88502; prefer integrated 24-hour measures over 24-hour block averages; prefer 

lower AQSIDs; and prefer lower parameter occurrence codes. 

6. Buddy-check the observations: for each site and day, compute the mean of the 

observations at all other sites within 30 km, weighted by the inverse square of the 

distance. If there is at least one such buddy and the interpolation differs from the 

interpolated-to observation by 20 μg/m3 or more, flag the observation for removal. Once 

all observations have been checked, remove the flagged observations. 

Across all years, the result comprised 5,445,462 station-days of observations, 10,655 of 

which (1 in 511) had the value 0 μg/m3. 

Predictors 

XIS-PM2.5 uses the following 22 variables as predictors. Further details of data 

processing are given below. 

• Longitude and latitude 
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• The integer day of the year 

• An IDW feature, which is an interpolation of same-day particulate measurements at sites 

within 500 km, weighted by the cube of the distance (thus, the IDW exponent is 3) 

• Daily AOD at 470 nm, from the MAIAC algorithm for Terra and Aqua (one variable per 

satellite)26 

• Daily modeled surface PM2.5 concentrations, from the Modern-Era Retrospective analysis 

for Research and Applications, Version 2 (MERRA-2)27 

• Monthly vegetation, quantified as the enhanced vegetation index from Aqua28 

• The daily height of the planetary boundary layer (PBL) from the 5th generation 

reanalysis of the global climate dataset (ERA5)29 

• The distance from the nearest fire on the same day, using fire locations from Aqua and 

Terra30 

• The distance from the nearest primary road, using the US Census’s 2019 national road 

geodatabase31 

• Two variables for surface imperviousness (from the National Land Cover Database32): 

one for the imperviousness at a single 30-m grid cell and one for the Gaussian-filtered 

imperviousness in a 1-km square around the query point 

• Population density, from the Gridded Population of the World33 

• Elevation, from the US Geological Survey’s 3D Elevation Program34 

• Hilliness, or local relative topography, quantified as the multi-scale topographic 

dissection index computed from elevation35 
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• 6 meteorological variables from the North American Land Data Assimilation System-2 

(NLDAS-2): temperature, specific humidity, air pressure, zonal wind speed, meridional 

wind speed, and precipitation36 

Additional data processing 

The population-density product we used is available in intervals of 5 years, and the 

imperviousness product is available for irregularly spaced years. For each year of our data, we 

used the latest update of these products that was not in the future; for example, there is one 

Gridded Population of the World dataset for 2000 and another for 2005, so we used the 2000 

dataset for our 2004 analyses and the 2005 dataset for our 2005 analyses. 

ERA5 PBL height from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) was downloaded from the Copernicus Climate Change Service (C3S) Climate Data 

Store29. PBL height, MERRA-2 surface PM2.5 concentrations (calculated using the formula 

from37), and NLDAS-2 meteorological variables are available on an hourly basis, so we 

computed the mean for each day in Central Standard Time. 

Elevation data for CONUS were aggregated from 1-arcsecond (~30 m) to 300-m 

resolution for computational speed. Hilliness was constructed from this aggregated raster as a 

multi-scale topographic dissection index (using window sizes of 3, 6, 9, 12, and 15 km) 

following the topoclimatic temperature modeling of Oyler et al.35. 

Where multiple overpasses from the same MODIS instrument occurred over the same 1-

km grid cell per day, we selected the non-missing AOD with the lowest associated theoretical 

AOD uncertainty (based on surface brightness) and restricted to “best quality” or “AOD within 

+-2km from the coastline” or “Land, research quality” based on the field AOD_QA38. 

Models 
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XIS uses a machine-learning algorithm called extreme gradient boosting (XGBoost)22. 

XGBoost grows a forest of regression trees, fitting each tree to the error of prior trees, and 

applies several kinds of regularization, allowing it to strike a balance between flexibility, 

avoidance of overfitting, and computation time. XGBoost also automatically handles missing 

values: for each split, it chooses a default direction to use when the split variable is missing. 

Hence, XIS does not need to separately impute missing predictors. 

Although the dependent variable for XIS-PM2.5 is fine particulate concentration, we don’t 

provide this directly to XGBoost. Instead, we compute the IDW interpolations first, and 

XGBoost models the observed concentration minus the IDW. For prediction, the IDW is added 

back. This strategy serves two purposes: it allows XIS to benefit from our prior knowledge that 

IDW is by far the most important feature, and it produces smoother predictions than raw 

XGBoost output, which comes in discrete steps because of the use of trees. The IDW is still 

provided to XGBoost as a feature in case XGBoost can benefit by altering the prediction based 

on its value. Lastly, although extremely rare, all negative predictions are set to 0, because real 

particulate concentrations are always nonnegative. 

To tune XGBoost’s hyperparameters, which control the learning process and model 

complexity, we first chose 50 hyperparameter vectors at random with a maximin Latin-

hypercube algorithm39 to ensure broad coverage of the hyperparameter space. We conducted 

cross-validation (see below) on each of two years of our data, 2004 and 2018, with each of these 

hyperparameter vectors. We used only two years to ensure we had plenty of data to test the 

models on that we had not already used for tuning hyperparameters. On the basis of computation 

time and performance in both years and across regions, we chose these hyperparameter values: 
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nrounds 500, max_depth 6, colsample_bytree 0.5, eta 0.073, gamma 0.0093, lambda 130, 

alpha 0.0012. 

Evaluation 

Predictive models are often evaluated in terms of squared error, leading to the SD as a 

metric of variability and root mean square error (RMSE) as a metric of performance. However, 

PM2.5 observations are strongly positively skewed: they are all nonnegative and most values are 

small, while a minority are very large. For example, among the 350,216 AQS observations from 

2019, even after the aforementioned filtering steps, the quartiles were 4, 6.2, 9.2 μg/m3, and the 

.95 quantile was 15.6 μg/m3, but the 50 greatest values ranged from 54 to 113 μg/m3. Squared 

error would emphasize performance for this handful of large values, incentivizing models to 

create sufficiently large predictions to support large values while overestimating the majority of 

values. Thus, we quantified performance with mean absolute error (MAE), and baseline 

variability with mean absolute deviation from the median (MAD). In the same way that the SD 

equals the RMSE that is obtained by predicting every value with the mean, the MAD equals the 

MAE that is obtained by predicting every value with the median. For XGBoost’s objective 

function, we used log-cosh error, an everywhere twice-differentiable approximation to absolute 

error, defined by f(x) = ln cosh x. 

We estimated MAE in new data with ten-fold site-wise cross-validation, as follows. In 

each year, we randomly partitioned all sites with at least one observation into ten equally sized 

folds. We separately fit XIS on each set of nine folds and made predictions to the held-out fold. 

During cross-validation, we computed IDW interpolations while holding out sites from both the 

test fold and the fold of the interpolated-to site. 
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Were we to take the raw cross-validated MAE as our measure of model performance, a 

problem would arise due to the spatial distribution of sites. AQS sites are spread unevenly 

throughout the CONUS, with high concentrations of sites in some places and only a few sites in 

others. Hence, the unweighted MAE would emphasize performance wherever there happens to 

be more sites. We weighted observations (in evaluation, but not in training) so as to give equal 

weight to each unit of spacetime covered by XIS. The method was, for each day and region, to 

draw a Voronoi diagram40 for all sites with an observation, and use the areas of the Voronoi tiles, 

in km2, as weights for the observations; thus, observations that were relatively isolated were 

assigned greater weight. 

Results 

Cross-validation 

Table 1 shows the weighted MAD, MAE, and bias (mean signed error) for each year of 

cross-validated predictions. Each MAE is one or more μg/m3 lower than its corresponding MAD, 

showing that XIS has meaningful predictive ability. Averaging across all years, the mean MAD 

is 4.23 μg/m3 and the mean MAE is 2.13 μg/m3. The MAD decreases over the years, and so does 

the MAE, albeit not as fast, so in later years, accuracy is better but the improvement over 

baseline is not as impressive. The consistent negative bias is likely due to the skewed distribution 

of observations, which has a minority of large values. Figure 1 shows the same weighted-MAD 

and weighted-MAE metrics, but computed separately for each NOAA region. Overall, MAEs are 

less variable between regions and over time than the MADs are. Averaging across all years, we 

have the lowest mean MAE in the South region (1.69 μg/m3), and the greatest in the Northwest 

(2.84 μg/m3) and West (3.28 μg/m3), where there is also the greatest variation in PM2.5. 
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Table 1: Results from each yearly cross-validation, in μg/m3. 
Year Observations Sites MAD MAE Bias 
2003 181,665 1,309 5.20 2.27 -0.29 
2004 197,176 1,262 5.08 2.22 -0.16 
2005 215,484 1,326 5.49 2.27 -0.07 
2006 217,863 1,291 4.82 2.20 -0.12 
2007 248,887 1,282 5.14 2.30 -0.16 
2008 256,187 1,283 4.59 2.21 -0.08 
2009 274,383 1,309 4.13 2.11 -0.19 
2010 288,247 1,298 4.22 2.13 -0.17 
2011 285,769 1,255 4.30 2.24 -0.17 
2012 295,172 1,245 3.88 2.21 -0.31 
2013 302,008 1,248 3.92 2.11 -0.21 
2014 308,797 1,271 3.80 2.09 -0.28 
2015 317,884 1,288 3.76 2.05 -0.23 
2016 321,951 1,261 3.26 1.93 -0.24 
2017 332,150 1,274 3.72 2.11 -0.26 
2018 342,160 1,283 3.66 1.99 -0.30 
2019 350,216 1,280 3.18 1.73 -0.20 
2020 353,320 1,262 3.92 2.09 -0.28 
2021 356,143 1,274 4.22 2.15 -0.32 
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Figure 1: Weighted MAD (squares) and MAE (circles) from cross-validation for each 

region and year.  
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Across all years, cross-validation produced 2,385 predictions of 0 μg/m3 (1 in 2,283 out 

of all predictions). 

See the Supporting Information for additional results including a stratification by season 

and the cross-validation performance at isolated sites. 

Feature contributions 

To examine how individual predictors relate to XIS’s predictions, we show SHapley 

Additive exPlanations (SHAPs)41. SHAPs can be interpreted analogously to the terms of a linear-

regression model: a SHAP of +2.5 for a given predictor and case means that the model attributes 

a +2.5 increase in its prediction for that case to that predictor. We generated SHAPs for 

predictions corresponding to each observation while it was held out in cross-validation. 

 



 15 

Figure 2: Mean absolute SHAP of each predictor in 2010 (the IDW feature, which has 

much greater absolute SHAP than everything else, is omitted). Small dots show per-region 

means. Diamonds show overall means.  

Figure 2 shows per-feature mean absolute SHAPs for one year, which can be interpreted 

as showing the typical impact of the feature on the prediction. Except for the IDW feature, which 

has a mean absolute SHAP of 9.3 μg/m3 (when computed accounting for its initial inclusion 

outside of XGBoost), each feature has a relatively small contribution, effectively constituting 

fine adjustments to the IDW interpolation. About half of the features have a mean absolute 

SHAP greater than 0.1 μg/m3. 

 
Figure 3: SHAP of road distance as a function of road distance in 2010. A trendline is fit 

with locally estimated scatterplot smoothing (LOESS).  

Figure 3 plots the mean SHAP of the road-distance feature for each AQS site (restricted 

to those sites within 1 km of a major roadway). As one would expect, low distances are 



 16 

associated with a higher concentration of PM2.5. SHAPs shrink towards 0 as the distance 

increases, indicating that our model finds the distance from the nearest road less predictively 

useful as it increases. See the Supporting Information for analyses demonstrating the relation of 

hilliness with SHAPs and the contribution of MERRA-2 as a function of site isolation. 

Comparison with a downscaler 

The EPA provides a PM2.5 product with one prediction per day and per US Census tract 

called the Fused Air Quality Surface Using Downscaling (FAQSD), which is currently available 

through 201842,43. The FAQSD uses a subset of AQS sites for a bias adjustment of surfaces 

generated from a 12-km resolution Community Multiscale Air Quality (CMAQ) model. We 

sought a direct comparison of XIS performance to the tract-level output of the FAQSD, taking 

advantage of the clear delineation of which AQS sites were and were not used by FAQSD43. 

For each year, we denoted all observations from sites that the FAQSD used for training 

(identified by AQS ID in the FAQSD input files) as the training set, and all remaining 

observations as the test set. To get an FAQSD prediction for each test observation, we used the 

nearest FAQSD value (based on tract centroids) on the same day. We retrained XIS yearly using 

only AQS data from the training set and made two sets of predictions for the test set: one at the 

same locations as the FAQSD values, and one at the true locations of the test observations. By 

looking at XIS at both the FAQSD locations (nearest tract centroid) and the true locations of test 

monitors, we can see how much of the improvement of XIS over FAQSD is due to the 

improvement in spatial resolution from using point-based predictions. 

Table 2 shows for each year the weighted MAD among the test set and the weighted 

MAEs of the three kinds of predictions. XIS achieved substantially lower MAE than the FAQSD 

despite how the FAQSD uses the CMAQ and XIS doesn’t. There is substantial improvement 
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when the model is changed from FAQSD to XIS without changing prediction locations, and 

another, generally smaller improvement when XIS makes predictions for the true locations. 

Averaging across years, XIS achieves a 16% reduction in MAE compared to FAQSD without 

changing prediction locations, and a 22% reduction for true locations. Similarly, also averaging 

across years, XIS achieves a 37% reduction in absolute yearly bias compared to FAQSD without 

changing prediction locations, and a 57% reduction for true locations. 

Table 2: Results of the comparison between XIS and the FAQSD, in μg/m3. The observation and 
site counts include only the test set. We only analyze as far as 2018 because that’s the latest year 

available for the FAQSD. 

Year Observations Sites MAD FAQSD XIS, 
tract centroids 

XIS, 
true locations 

MAE Bias MAE Bias MAE Bias 
2003 28,342 208 5.09 3.14 0.78 2.53 0.09 2.30 -0.08 
2004 38,863 238 4.68 3.14 1.14 2.52 0.26 2.30 0.25 
2005 54,222 283 4.70 3.38 1.60 2.44 0.43 2.16 0.30 
2006 63,832 315 4.54 3.01 1.18 2.44 0.58 2.16 0.40 
2007 76,641 338 4.70 2.97 0.72 2.52 0.30 2.27 0.16 
2008 83,365 360 4.21 2.95 0.93 2.39 0.36 2.16 0.19 
2009 95,946 405 3.88 3.03 1.07 2.41 0.30 2.25 0.22 
2010 107,284 433 3.97 2.77 0.66 2.35 0.19 2.19 0.12 
2011 121,353 486 4.16 2.88 0.28 2.44 -0.19 2.24 -0.19 
2012 129,135 496 3.79 2.68 0.17 2.40 -0.42 2.21 -0.31 
2013 132,387 504 3.83 2.70 0.13 2.36 -0.08 2.16 -0.12 
2014 80,717 341 3.72 2.61 0.74 2.30 -0.10 2.12 -0.11 
2015 78,731 342 3.66 2.58 0.99 2.11 0.04 2.02 0.05 
2016 76,454 319 3.19 2.38 0.65 2.09 -0.07 1.90 -0.06 
2017 76,273 316 4.06 2.78 0.17 2.54 -0.36 2.49 -0.10 
2018 76,220 310 3.77 2.42 0.33 2.22 -0.46 2.10 -0.30 

 

New predictions 

Figure 4 shows the predicted PM2.5 concentrations throughout the study region for one 

year. Figure 5 shows one day in the greater New York City area; here, we plot approximately 

one prediction per 187 m. 
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Figure 4: Mean predicted PM2.5 across the study area from 1 Dec 2018 through 30 Nov 

2019, grouped by season. We use December from 2018 instead of 2019 so as to plot a 

contiguous winter. Colors are scaled according to quantiles, such that color changes more rapidly 

around values that are more common in the map.  
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Figure 5: Predicted PM2.5 on 10 Jul 2021 in the New York City area. We chose this date 

by computing the mean PM2.5 at all stations in this area for each day in 2021, then taking the 

median day.  

Social vulnerability 

We examined how predicted PM2.5 at the centroids of 71,619 Census tracts in CONUS, 

averaged across all days of 2018, related to the CDC’s per-tract Social Vulnerability Index 

(SVI)44. 2018 was the latest available year for both FAQSD and SVI. SVI scores range from 0 

(least vulnerable) to 1 (most vulnerable). We fit two linear mixed models, one with PM2.5 

estimates from XIS as the outcome and one with estimates from FAQSD. The models had a 

fixed effect for vulnerability as well as per-county random intercepts and slopes of vulnerability 
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(modeled as correlated). The fixed effect of vulnerability was estimated as 0.081 μg/m3 (95% CI 

[0.056, 0.105]) for FAQSD and 0.655 μg/m3 (95% CI [0.606, 0.703]) for XIS. 

Discussion 

We modeled daily PM2.5 across CONUS from 2003 through 2021. Our model, XIS, uses 

a streamlined geospatial processing and machine-learning pipeline to facilitate regular updates 

with new data. XIS is trained on a broad information base of ground concentrations from the 

AQS, comprising both federal reference method/federal equivalent method monitors as well as 

other acceptable PM2.5 monitors. While there are many potential uses for this exposure model, 

particularly in epidemiology and environmental justice, we focus our discussion on metrics of 

predictive accuracy, comparison with a leading EPA product (the FAQSD), and the 

interpretation of individual predictors. 

We took special care in our evaluation of predictive accuracy. Our site-wise cross-

validation scheme, in which we split data spatially before computing the IDW predictor or fitting 

XGBoost, can estimate accuracy without being optimistically biased by data leakage or 

overfitting. Thus our performance metrics were evaluated at sites for which the model has seen 

no prior ground truth, indicating what the performance would be when, for example, estimating 

exposure at a person’s home where there isn’t already a monitor. We used MAE as our primary 

metric, to suitably reflect overall accuracy in the presence of a small number of extreme PM2.5 

concentrations, and we used a log-cosh objective function to help minimize MAE. Given the 

goal of covering sparsely monitored suburban and rural regions, we weighted the MAE to reflect 

the land area covered rather than the number of monitors. The result was overall good accuracy, 

substantially better than the MAD. Accuracy increased, and the gap between the MAD and MAE 

shrank, in later years as ambient PM2.5 decreased. We also examined unweighted MAE at 
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isolated monitors to further assess XIS’s performance in sparsely monitored regions. Here we 

again found good accuracy, comparable to that of our overall weighted MAEs. 

Our workflow is reproducible and computationally tractable, allowing us to rerun XIS in 

order to interrogate performance. For example, we trained a version of XIS using only the AQS 

sites that the FAQSD is trained on, allowing us to fairly and comprehensively compare XIS to 

the FAQSD. This comparison demonstrated that XIS had a substantially lower MAE in every 

available year, even when fit without a substantial subset of ground monitors used in our full 

model. Had XIS required hundreds of predictors and thousands of processor cores, this kind of 

rerun would have been impractical. Rather, we chose our predictors parsimoniously, and we 

searched for hyperparameters in a way that was more efficient than exhaustive. 

In XIS, as in our prior XGBoost-based models10,45, we used SHAP to quantify the 

contribution of individual predictors. SHAPs show that the IDW interpolation of monitor 

observations is the greatest contributor to predictions at withheld monitors. The IDW 

interpolation serves as a base prediction (modified by XGBoost) and reuses distance matrices for 

speed. As an example of XIS’s interpretability using SHAP, Figure 3 shows that the positive 

effect of being near a primary road smoothly decreases with distance, particularly within 500 m. 

This figure also shows the value of XIS’s point-based design, incorporating both raster data and 

continuous fields, in contrast to our previous 1-km gridded models10. Such spatial precision was 

further justified in the comparison with the FAQSD when we found that using the exact locations 

of test monitors, compared to tract centroids, increased accuracy and decreased bias (Table 2). 

For an environmental-justice application with relevance to human health, we examined 

the association between social vulnerability and annual PM2.5 concentrations at Census tracts 

throughout CONUS. We see a striking difference between models in estimates of exposure 
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disparities: XIS’s estimate of the relationship between vulnerability and PM2.5 is nearly an order 

of magnitude greater than the FAQSD’s. Thus XIS reveals meaningful exposure disparities that 

would be greatly attenuated by using the FAQSD. 

XIS starts in 2003, when MODIS instruments on two satellites (Aqua and Terra) became 

available, and is updated through 2021. Pairing this long duration (19 years) with such recency is 

important for health studies in a rapidly changing era. Few other national PM2.5 models for use in 

health studies are regularly updated. The FAQSD is a notable example, although its dependence 

on the National Emissions Inventory, which is updated every three years, means that the FAQSD 

is typically several years out of date. We have developed our geospatial processing workflow to 

ingest new data (including new types of predictors) and make periodic updates so that we can 

continue to generate timely exposure estimates. Future developments may incorporate near-real 

time data streams such as EPA AirNOW and the near-real-time MAIAC AOD46, allowing us to 

generate predictions up to the past few days and model rapidly evolving air-quality and health 

conditions. Similarly, we have developed XIS to be adapted for other environmental exposures. 

Ongoing efforts are generating a suite of complementary exposure estimates (e.g., air 

temperature and humidity) that are synergistically useful with these PM2.5 estimates for health 

studies. 

A limitation of XIS-PM2.5 is that it only models mass concentrations. The toxicity of 

particulates is also related to particulate composition, which XIS does not address. Furthermore, 

since XIS uses the AQS as ground truth, our ability to update XIS is limited by the AQS release 

schedule. For example, EPA first released complete 2021 AQS summary files in June 2022. 

Finally, it remains possible that adding some of the complexity we have avoided, such as 

hundreds of additional predictors or elaborate ensembles of models, would increase XIS’s 
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accuracy. Diminishing returns, however, means that a great deal of XIS’s agility and tractability 

could be lost for a marginal improvement in accuracy. 

In summary, we present a new exposure model, XIS, which generates point-based daily 

PM2.5 exposures across the conterminous United States 2003-2021. This model is intended to 

generate ambient exposure estimates in cohort and registry-based epidemiological and exposure 

disparity studies in order to advance the evidence basis of the health impacts of chronic and acute 

exposure to PM2.5. 
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