XIS-PM2.5: A daily spatiotemporal machine-learning model for PM2.5 in the contiguous United States
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Abstract
Air-pollution monitoring is sparse across most of the United States, so geostatistical models are important for reconstructing concentrations of fine particulate air pollution (PM2.5) for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution PM2.5 machine-learning model covering the contiguous US from 2003 through 2021. XIS uses aerosol optical depth from satellites and a parsimonious set of additional predictors to make predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of address-level exposures. We built XIS with a computationally tractable workflow for extensibility to future years, and we used weighted evaluation to fairly assess performance in sparsely monitored regions. Averaging across all years in site-level cross-validation, the weighted mean absolute error of predictions (MAE) was 2.13 μg/m3, a substantial improvement over the mean absolute deviation from the median, which was 4.23 μg/m3. Comparing XIS to a leading product from the US Environmental Protection Agency, the Fused Air Quality Surface Using Downscaling (FAQSD), we obtained a 22% reduction in MAE. We also found a stronger relationship between PM2.5 and social vulnerability with XIS than with the FAQSD. Thus, XIS has potential for reconstructing environmental exposures, and its predictions have applications in environmental justice and human health.
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Synopsis
Improved estimates of air-pollution concentration where people live will improve future analyses on the health impacts of air pollution and exposure disparities across the United States.
Introduction
Particulate-matter air pollution comprises a mixture of solid and liquid particles that are suspended in the air. Concentrations of fine particulate matter (PM2.5; having a diameter of less than 2.5 μm) are widely monitored and studied due to associations of short- and long-term exposure to PM2.5 with disease1. Long-term ambient PM2.5 was the leading environmental risk factor and ranked sixth among all modifiable risk factors in the 2019 Global Burden of Disease Study2, with additional health impacts attributable to short-term PM2.5 exposure.
A primary difficulty for such health studies is the geographically sparse monitoring of PM2.5, especially over large areas with complex emissions patterns, such as the contiguous United States (CONUS). Regulatory monitoring networks can provide high temporal resolution, with hourly or daily samples3, but sparse spatial coverage can lead to substantial measurement error on the exposure side of epidemiological analyses4. Hence, in place of merely assigning cases the PM2.5 concentration measured at the nearest monitor, researchers increasingly use a variety of methods to model and interpolate PM2.5, from chemical-transport models5 to land-use regression6 to machine-learning approaches (reviewed in Diao et al)7. Even then, however, PM2.5 epidemiology has focused on urban areas, where monitoring is most intense8,9. This is a critical limitation, since many people across CONUS live in rural or suburban areas, which have a different source profile of air pollution. Especially necessary are evaluation metrics that give rural areas appropriate weight, instead of mostly reflecting performance in intensely monitored areas10,11.
Machine-learning models for PM2.5 typically use predictors of sources (e.g., roadways), topography, and meteorological conditions that relate to PM2.5 concentrations. The advent of remotely sensed Earth observations have led many to include satellite aerosol optical depth (AOD) into modeling efforts, including those from our group12. Since AOD is a quantitative estimate of the amount of light absorbed or scattered by suspended particles along the vertical atmospheric column, it is a useful proxy for surface PM2.5 concentrations13. We have developed multiple AOD-based models at various geographical scales (state, region, and country) integrating satellite data with land use regression predictors using linear mixed models to calibrate the satellite-to-surface relationship14–16.
There is a clear trend for recent PM2.5 models to use methods from machine learning, including random forests14,17,18, gradient boosting10,19, neural networks20, and heterogeneous ensembles21. While these more flexible models can improve predictive accuracy, we (and others) have shown that without adequate care for the structure of the data, they are prone to overfitting, and data leakage (inadvertent inclusion of test data in model training) can optimistically bias assessments of model performance10. Importantly, a flexible model will appear to be much more accurate when evaluated without consideration of the spatial structure of the underlying phenomenon, and this effect on apparent performance is evidence of overfitting10. Another issue with machine learning is the temptation to build huge models that demand extensive computational resources, run slowly, and use hundreds of predictors that would all need to be updated for future years. Such models sound very impressive, but are difficult to scale, update, and reproduce, and are not necessarily more accurate than more conservative models.
We aimed to develop a new computationally efficient national model based on integrating a machine-learning method, namely extreme gradient boosting (XGBoost)10,22, with inverse-distance weighting (IDW). Predictors included a parsimonious set of satellite, land-use, meteorological, and topographical variables. We call our general modeling framework, which can be used to model not only PM2.5 but also other environmental variables such as air temperature, XGBoost-IDW Synthesis (XIS); the adaptation of XIS for PM2.5 is named XIS-PM2.5. Our model covers CONUS for each day of 2003 through 2021, with planned updates as new data become available. The strengths of XIS include an ungridded core that can make predictions at arbitrary points in the study region; good computational efficiency, with a geospatial data pipeline that dramatically cuts down on time and processing requirements; recency, with pre-planned ability to update the model for new years; a weighted evaluation scheme that fairly considers model performance across the entire region; and interpretability of results. We provide detailed evaluation of predictive performance in site-wise cross-validation, with stratification by year and climate region. We use interpretable machine-learning approaches to better understand the predictor-to-PM2.5 relationships learned by our model. We also compare our model with the EPA FAQSD daily tract-level PM2.5 predictions, highlighting the value of point-based predictions. An environmental-justice application shows that XIS, versus EPA FAQSD, produces substantially different estimates of exposure disparities across CONUS.
Method
Study area and time period
We modeled PM2.5 for each year from 2003 to 2021. Our study area was CONUS excluding some large water bodies, as defined by the US Census’s state-wise cartographic boundary files23; it covers 7,798,188 km2 in all. For some analyses, we show results divided into the 9 standard NOAA climate regions24,25. We treat Washington, DC, as part of the Northeast region.
Although XIS represents time as discrete days, in Central Standard Time (UTC−6), it does not discretize space into a grid. Rather, it represents locations as floating-point longitude–latitude pairs.
Data
Particulate Matter
The outcome variable for XIS-PM2.5, fine particulate matter mass concentration, is represented as PM2.5 measurements recorded in the Environmental Protection Agency’s Air Quality System (AQS)3. We included monitors using the federal reference method or federal equivalent methods (parameter code 88101) as well as other monitors reporting “acceptable PM2.5” (parameter code 88502), including mass concentrations from speciation networks. Overall, 38% of the observations we used came from “acceptable” instruments, and 18% of monitoring sites only became available for this analysis because they include such an instrument. We filtered the outcome as follows: 
1. Select observations inside the study area that are based on 24-hour measures.
2. Drop observations with an event type of “Excluded”; use the corresponding “Included” observations instead.
3. Group observations into sites on the basis of longitude and latitude (disregarding AQS site identifiers).
4. Handle each observation of negative PM2.5 by either setting it to 0 or discarding it entirely. A negative observation is discarded if it is more than 1 standard deviation (SD) away from the mean of other observations at the same site within the past 3 days and the next 3 days.
5. Reduce the data to at most one observation per site and day. Rank the observations as follows: prefer the designated primary monitor if there is one; prefer parameter code 88101 to 88502; prefer integrated 24-hour measures over 24-hour block averages; prefer lower AQSIDs; and prefer lower parameter occurrence codes.
6. Buddy-check the observations: for each site and day, compute the mean of the observations at all other sites within 30 km, weighted by the inverse square of the distance. If there is at least one such buddy and the interpolation differs from the interpolated-to observation by 20 μg/m3 or more, flag the observation for removal. Once all observations have been checked, remove the flagged observations.
Across all years, the result comprised 5,445,462 station-days of observations, 10,655 of which (1 in 511) had the value 0 μg/m3.
Predictors
XIS-PM2.5 uses the following 22 variables as predictors. Further details of data processing are given below.
· Longitude and latitude
· The integer day of the year
· An IDW feature, which is an interpolation of same-day particulate measurements at sites within 500 km, weighted by the cube of the distance (thus, the IDW exponent is 3)
· Daily AOD at 470 nm, from the MAIAC algorithm for Terra and Aqua (one variable per satellite)26
· Daily modeled surface PM2.5 concentrations, from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)27
· Monthly vegetation, quantified as the enhanced vegetation index from Aqua28
· The daily height of the planetary boundary layer (PBL) from the 5th generation reanalysis of the global climate dataset (ERA5)29
· The distance from the nearest fire on the same day, using fire locations from Aqua and Terra30
· The distance from the nearest primary road, using the US Census’s 2019 national road geodatabase31
· Two variables for surface imperviousness (from the National Land Cover Database32): one for the imperviousness at a single 30-m grid cell and one for the Gaussian-filtered imperviousness in a 1-km square around the query point
· Population density, from the Gridded Population of the World33
· Elevation, from the US Geological Survey’s 3D Elevation Program34
· Hilliness, or local relative topography, quantified as the multi-scale topographic dissection index computed from elevation35
· 6 meteorological variables from the North American Land Data Assimilation System-2 (NLDAS-2): temperature, specific humidity, air pressure, zonal wind speed, meridional wind speed, and precipitation36
Additional data processing
The population-density product we used is available in intervals of 5 years, and the imperviousness product is available for irregularly spaced years. For each year of our data, we used the latest update of these products that was not in the future; for example, there is one Gridded Population of the World dataset for 2000 and another for 2005, so we used the 2000 dataset for our 2004 analyses and the 2005 dataset for our 2005 analyses.
ERA5 PBL height from the European Centre for Medium-Range Weather Forecasts (ECMWF) was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store29. PBL height, MERRA-2 surface PM2.5 concentrations (calculated using the formula from37), and NLDAS-2 meteorological variables are available on an hourly basis, so we computed the mean for each day in Central Standard Time.
Elevation data for CONUS were aggregated from 1-arcsecond (~30 m) to 300-m resolution for computational speed. Hilliness was constructed from this aggregated raster as a multi-scale topographic dissection index (using window sizes of 3, 6, 9, 12, and 15 km) following the topoclimatic temperature modeling of Oyler et al.35.
Where multiple overpasses from the same MODIS instrument occurred over the same 1-km grid cell per day, we selected the non-missing AOD with the lowest associated theoretical AOD uncertainty (based on surface brightness) and restricted to “best quality” or “AOD within +-2km from the coastline” or “Land, research quality” based on the field AOD_QA38.
Models
XIS uses a machine-learning algorithm called extreme gradient boosting (XGBoost)22. XGBoost grows a forest of regression trees, fitting each tree to the error of prior trees, and applies several kinds of regularization, allowing it to strike a balance between flexibility, avoidance of overfitting, and computation time. XGBoost also automatically handles missing values: for each split, it chooses a default direction to use when the split variable is missing. Hence, XIS does not need to separately impute missing predictors.
Although the dependent variable for XIS-PM2.5 is fine particulate concentration, we don’t provide this directly to XGBoost. Instead, we compute the IDW interpolations first, and XGBoost models the observed concentration minus the IDW. For prediction, the IDW is added back. This strategy serves two purposes: it allows XIS to benefit from our prior knowledge that IDW is by far the most important feature, and it produces smoother predictions than raw XGBoost output, which comes in discrete steps because of the use of trees. The IDW is still provided to XGBoost as a feature in case XGBoost can benefit by altering the prediction based on its value. Lastly, although extremely rare, all negative predictions are set to 0, because real particulate concentrations are always nonnegative.
To tune XGBoost’s hyperparameters, which control the learning process and model complexity, we first chose 50 hyperparameter vectors at random with a maximin Latin-hypercube algorithm39 to ensure broad coverage of the hyperparameter space. We conducted cross-validation (see below) on each of two years of our data, 2004 and 2018, with each of these hyperparameter vectors. We used only two years to ensure we had plenty of data to test the models on that we had not already used for tuning hyperparameters. On the basis of computation time and performance in both years and across regions, we chose these hyperparameter values: nrounds 500, max_depth 6, colsample_bytree 0.5, eta 0.073, gamma 0.0093, lambda 130, alpha 0.0012.
Evaluation
Predictive models are often evaluated in terms of squared error, leading to the SD as a metric of variability and root mean square error (RMSE) as a metric of performance. However, PM2.5 observations are strongly positively skewed: they are all nonnegative and most values are small, while a minority are very large. For example, among the 350,216 AQS observations from 2019, even after the aforementioned filtering steps, the quartiles were 4, 6.2, 9.2 μg/m3, and the .95 quantile was 15.6 μg/m3, but the 50 greatest values ranged from 54 to 113 μg/m3. Squared error would emphasize performance for this handful of large values, incentivizing models to create sufficiently large predictions to support large values while overestimating the majority of values. Thus, we quantified performance with mean absolute error (MAE), and baseline variability with mean absolute deviation from the median (MAD). In the same way that the SD equals the RMSE that is obtained by predicting every value with the mean, the MAD equals the MAE that is obtained by predicting every value with the median. For XGBoost’s objective function, we used log-cosh error, an everywhere twice-differentiable approximation to absolute error, defined by f(x) = ln cosh x.
We estimated MAE in new data with ten-fold site-wise cross-validation, as follows. In each year, we randomly partitioned all sites with at least one observation into ten equally sized folds. We separately fit XIS on each set of nine folds and made predictions to the held-out fold. During cross-validation, we computed IDW interpolations while holding out sites from both the test fold and the fold of the interpolated-to site.
Were we to take the raw cross-validated MAE as our measure of model performance, a problem would arise due to the spatial distribution of sites. AQS sites are spread unevenly throughout the CONUS, with high concentrations of sites in some places and only a few sites in others. Hence, the unweighted MAE would emphasize performance wherever there happens to be more sites. We weighted observations (in evaluation, but not in training) so as to give equal weight to each unit of spacetime covered by XIS. The method was, for each day and region, to draw a Voronoi diagram40 for all sites with an observation, and use the areas of the Voronoi tiles, in km2, as weights for the observations; thus, observations that were relatively isolated were assigned greater weight.
Results
Cross-validation
Table 1 shows the weighted MAD, MAE, and bias (mean signed error) for each year of cross-validated predictions. Each MAE is one or more μg/m3 lower than its corresponding MAD, showing that XIS has meaningful predictive ability. Averaging across all years, the mean MAD is 4.23 μg/m3 and the mean MAE is 2.13 μg/m3. The MAD decreases over the years, and so does the MAE, albeit not as fast, so in later years, accuracy is better but the improvement over baseline is not as impressive. The consistent negative bias is likely due to the skewed distribution of observations, which has a minority of large values. Figure 1 shows the same weighted-MAD and weighted-MAE metrics, but computed separately for each NOAA region. Overall, MAEs are less variable between regions and over time than the MADs are. Averaging across all years, we have the lowest mean MAE in the South region (1.69 μg/m3), and the greatest in the Northwest (2.84 μg/m3) and West (3.28 μg/m3), where there is also the greatest variation in PM2.5.
	Table 1: Results from each yearly cross-validation, in μg/m3.

	Year
	Observations
	Sites
	MAD
	MAE
	Bias

	2003
	181,665
	1,309
	5.20
	2.27
	-0.29

	2004
	197,176
	1,262
	5.08
	2.22
	-0.16

	2005
	215,484
	1,326
	5.49
	2.27
	-0.07

	2006
	217,863
	1,291
	4.82
	2.20
	-0.12

	2007
	248,887
	1,282
	5.14
	2.30
	-0.16

	2008
	256,187
	1,283
	4.59
	2.21
	-0.08

	2009
	274,383
	1,309
	4.13
	2.11
	-0.19

	2010
	288,247
	1,298
	4.22
	2.13
	-0.17

	2011
	285,769
	1,255
	4.30
	2.24
	-0.17

	2012
	295,172
	1,245
	3.88
	2.21
	-0.31

	2013
	302,008
	1,248
	3.92
	2.11
	-0.21

	2014
	308,797
	1,271
	3.80
	2.09
	-0.28

	2015
	317,884
	1,288
	3.76
	2.05
	-0.23

	2016
	321,951
	1,261
	3.26
	1.93
	-0.24

	2017
	332,150
	1,274
	3.72
	2.11
	-0.26

	2018
	342,160
	1,283
	3.66
	1.99
	-0.30

	2019
	350,216
	1,280
	3.18
	1.73
	-0.20

	2020
	353,320
	1,262
	3.92
	2.09
	-0.28

	2021
	356,143
	1,274
	4.22
	2.15
	-0.32


[image: ]
Figure 1: Weighted MAD (squares) and MAE (circles) from cross-validation for each region and year. 
Across all years, cross-validation produced 2,385 predictions of 0 μg/m3 (1 in 2,283 out of all predictions).
See the Supporting Information for additional results including a stratification by season and the cross-validation performance at isolated sites.
Feature contributions
To examine how individual predictors relate to XIS’s predictions, we show SHapley Additive exPlanations (SHAPs)41. SHAPs can be interpreted analogously to the terms of a linear-regression model: a SHAP of +2.5 for a given predictor and case means that the model attributes a +2.5 increase in its prediction for that case to that predictor. We generated SHAPs for predictions corresponding to each observation while it was held out in cross-validation.
[image: ]
Figure 2: Mean absolute SHAP of each predictor in 2010 (the IDW feature, which has much greater absolute SHAP than everything else, is omitted). Small dots show per-region means. Diamonds show overall means. 
Figure 2 shows per-feature mean absolute SHAPs for one year, which can be interpreted as showing the typical impact of the feature on the prediction. Except for the IDW feature, which has a mean absolute SHAP of 9.3 μg/m3 (when computed accounting for its initial inclusion outside of XGBoost), each feature has a relatively small contribution, effectively constituting fine adjustments to the IDW interpolation. About half of the features have a mean absolute SHAP greater than 0.1 μg/m3.
[image: ]
Figure 3: SHAP of road distance as a function of road distance in 2010. A trendline is fit with locally estimated scatterplot smoothing (LOESS). 
Figure 3 plots the mean SHAP of the road-distance feature for each AQS site (restricted to those sites within 1 km of a major roadway). As one would expect, low distances are associated with a higher concentration of PM2.5. SHAPs shrink towards 0 as the distance increases, indicating that our model finds the distance from the nearest road less predictively useful as it increases. See the Supporting Information for analyses demonstrating the relation of hilliness with SHAPs and the contribution of MERRA-2 as a function of site isolation.
Comparison with a downscaler
The EPA provides a PM2.5 product with one prediction per day and per US Census tract called the Fused Air Quality Surface Using Downscaling (FAQSD), which is currently available through 201842,43. The FAQSD uses a subset of AQS sites for a bias adjustment of surfaces generated from a 12-km resolution Community Multiscale Air Quality (CMAQ) model. We sought a direct comparison of XIS performance to the tract-level output of the FAQSD, taking advantage of the clear delineation of which AQS sites were and were not used by FAQSD43.
For each year, we denoted all observations from sites that the FAQSD used for training (identified by AQS ID in the FAQSD input files) as the training set, and all remaining observations as the test set. To get an FAQSD prediction for each test observation, we used the nearest FAQSD value (based on tract centroids) on the same day. We retrained XIS yearly using only AQS data from the training set and made two sets of predictions for the test set: one at the same locations as the FAQSD values, and one at the true locations of the test observations. By looking at XIS at both the FAQSD locations (nearest tract centroid) and the true locations of test monitors, we can see how much of the improvement of XIS over FAQSD is due to the improvement in spatial resolution from using point-based predictions.
Table 2 shows for each year the weighted MAD among the test set and the weighted MAEs of the three kinds of predictions. XIS achieved substantially lower MAE than the FAQSD despite how the FAQSD uses the CMAQ and XIS doesn’t. There is substantial improvement when the model is changed from FAQSD to XIS without changing prediction locations, and another, generally smaller improvement when XIS makes predictions for the true locations. Averaging across years, XIS achieves a 16% reduction in MAE compared to FAQSD without changing prediction locations, and a 22% reduction for true locations. Similarly, also averaging across years, XIS achieves a 37% reduction in absolute yearly bias compared to FAQSD without changing prediction locations, and a 57% reduction for true locations.
	Table 2: Results of the comparison between XIS and the FAQSD, in μg/m3. The observation and site counts include only the test set. We only analyze as far as 2018 because that’s the latest year available for the FAQSD.

	Year
	Observations
	Sites
	MAD
	FAQSD
	XIS,
tract centroids
	XIS,
true locations

	
	
	
	
	MAE
	Bias
	MAE
	Bias
	MAE
	Bias

	2003
	28,342
	208
	5.09
	3.14
	0.78
	2.53
	0.09
	2.30
	-0.08

	2004
	38,863
	238
	4.68
	3.14
	1.14
	2.52
	0.26
	2.30
	0.25

	2005
	54,222
	283
	4.70
	3.38
	1.60
	2.44
	0.43
	2.16
	0.30

	2006
	63,832
	315
	4.54
	3.01
	1.18
	2.44
	0.58
	2.16
	0.40

	2007
	76,641
	338
	4.70
	2.97
	0.72
	2.52
	0.30
	2.27
	0.16

	2008
	83,365
	360
	4.21
	2.95
	0.93
	2.39
	0.36
	2.16
	0.19

	2009
	95,946
	405
	3.88
	3.03
	1.07
	2.41
	0.30
	2.25
	0.22

	2010
	107,284
	433
	3.97
	2.77
	0.66
	2.35
	0.19
	2.19
	0.12

	2011
	121,353
	486
	4.16
	2.88
	0.28
	2.44
	-0.19
	2.24
	-0.19

	2012
	129,135
	496
	3.79
	2.68
	0.17
	2.40
	-0.42
	2.21
	-0.31

	2013
	132,387
	504
	3.83
	2.70
	0.13
	2.36
	-0.08
	2.16
	-0.12

	2014
	80,717
	341
	3.72
	2.61
	0.74
	2.30
	-0.10
	2.12
	-0.11

	2015
	78,731
	342
	3.66
	2.58
	0.99
	2.11
	0.04
	2.02
	0.05

	2016
	76,454
	319
	3.19
	2.38
	0.65
	2.09
	-0.07
	1.90
	-0.06

	2017
	76,273
	316
	4.06
	2.78
	0.17
	2.54
	-0.36
	2.49
	-0.10

	2018
	76,220
	310
	3.77
	2.42
	0.33
	2.22
	-0.46
	2.10
	-0.30


New predictions
Figure 4 shows the predicted PM2.5 concentrations throughout the study region for one year. Figure 5 shows one day in the greater New York City area; here, we plot approximately one prediction per 187 m.
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Figure 4: Mean predicted PM2.5 across the study area from 1 Dec 2018 through 30 Nov 2019, grouped by season. We use December from 2018 instead of 2019 so as to plot a contiguous winter. Colors are scaled according to quantiles, such that color changes more rapidly around values that are more common in the map. 
[image: ]
Figure 5: Predicted PM2.5 on 10 Jul 2021 in the New York City area. We chose this date by computing the mean PM2.5 at all stations in this area for each day in 2021, then taking the median day. 
Social vulnerability
We examined how predicted PM2.5 at the centroids of 71,619 Census tracts in CONUS, averaged across all days of 2018, related to the CDC’s per-tract Social Vulnerability Index (SVI)44. 2018 was the latest available year for both FAQSD and SVI. SVI scores range from 0 (least vulnerable) to 1 (most vulnerable). We fit two linear mixed models, one with PM2.5 estimates from XIS as the outcome and one with estimates from FAQSD. The models had a fixed effect for vulnerability as well as per-county random intercepts and slopes of vulnerability (modeled as correlated). The fixed effect of vulnerability was estimated as 0.081 μg/m3 (95% CI [0.056, 0.105]) for FAQSD and 0.655 μg/m3 (95% CI [0.606, 0.703]) for XIS.
Discussion
We modeled daily PM2.5 across CONUS from 2003 through 2021. Our model, XIS, uses a streamlined geospatial processing and machine-learning pipeline to facilitate regular updates with new data. XIS is trained on a broad information base of ground concentrations from the AQS, comprising both federal reference method/federal equivalent method monitors as well as other acceptable PM2.5 monitors. While there are many potential uses for this exposure model, particularly in epidemiology and environmental justice, we focus our discussion on metrics of predictive accuracy, comparison with a leading EPA product (the FAQSD), and the interpretation of individual predictors.
We took special care in our evaluation of predictive accuracy. Our site-wise cross-validation scheme, in which we split data spatially before computing the IDW predictor or fitting XGBoost, can estimate accuracy without being optimistically biased by data leakage or overfitting. Thus our performance metrics were evaluated at sites for which the model has seen no prior ground truth, indicating what the performance would be when, for example, estimating exposure at a person’s home where there isn’t already a monitor. We used MAE as our primary metric, to suitably reflect overall accuracy in the presence of a small number of extreme PM2.5 concentrations, and we used a log-cosh objective function to help minimize MAE. Given the goal of covering sparsely monitored suburban and rural regions, we weighted the MAE to reflect the land area covered rather than the number of monitors. The result was overall good accuracy, substantially better than the MAD. Accuracy increased, and the gap between the MAD and MAE shrank, in later years as ambient PM2.5 decreased. We also examined unweighted MAE at isolated monitors to further assess XIS’s performance in sparsely monitored regions. Here we again found good accuracy, comparable to that of our overall weighted MAEs.
Our workflow is reproducible and computationally tractable, allowing us to rerun XIS in order to interrogate performance. For example, we trained a version of XIS using only the AQS sites that the FAQSD is trained on, allowing us to fairly and comprehensively compare XIS to the FAQSD. This comparison demonstrated that XIS had a substantially lower MAE in every available year, even when fit without a substantial subset of ground monitors used in our full model. Had XIS required hundreds of predictors and thousands of processor cores, this kind of rerun would have been impractical. Rather, we chose our predictors parsimoniously, and we searched for hyperparameters in a way that was more efficient than exhaustive.
In XIS, as in our prior XGBoost-based models10,45, we used SHAP to quantify the contribution of individual predictors. SHAPs show that the IDW interpolation of monitor observations is the greatest contributor to predictions at withheld monitors. The IDW interpolation serves as a base prediction (modified by XGBoost) and reuses distance matrices for speed. As an example of XIS’s interpretability using SHAP, Figure 3 shows that the positive effect of being near a primary road smoothly decreases with distance, particularly within 500 m. This figure also shows the value of XIS’s point-based design, incorporating both raster data and continuous fields, in contrast to our previous 1-km gridded models10. Such spatial precision was further justified in the comparison with the FAQSD when we found that using the exact locations of test monitors, compared to tract centroids, increased accuracy and decreased bias (Table 2).
For an environmental-justice application with relevance to human health, we examined the association between social vulnerability and annual PM2.5 concentrations at Census tracts throughout CONUS. We see a striking difference between models in estimates of exposure disparities: XIS’s estimate of the relationship between vulnerability and PM2.5 is nearly an order of magnitude greater than the FAQSD’s. Thus XIS reveals meaningful exposure disparities that would be greatly attenuated by using the FAQSD.
XIS starts in 2003, when MODIS instruments on two satellites (Aqua and Terra) became available, and is updated through 2021. Pairing this long duration (19 years) with such recency is important for health studies in a rapidly changing era. Few other national PM2.5 models for use in health studies are regularly updated. The FAQSD is a notable example, although its dependence on the National Emissions Inventory, which is updated every three years, means that the FAQSD is typically several years out of date. We have developed our geospatial processing workflow to ingest new data (including new types of predictors) and make periodic updates so that we can continue to generate timely exposure estimates. Future developments may incorporate near-real time data streams such as EPA AirNOW and the near-real-time MAIAC AOD46, allowing us to generate predictions up to the past few days and model rapidly evolving air-quality and health conditions. Similarly, we have developed XIS to be adapted for other environmental exposures. Ongoing efforts are generating a suite of complementary exposure estimates (e.g., air temperature and humidity) that are synergistically useful with these PM2.5 estimates for health studies.
A limitation of XIS-PM2.5 is that it only models mass concentrations. The toxicity of particulates is also related to particulate composition, which XIS does not address. Furthermore, since XIS uses the AQS as ground truth, our ability to update XIS is limited by the AQS release schedule. For example, EPA first released complete 2021 AQS summary files in June 2022. Finally, it remains possible that adding some of the complexity we have avoided, such as hundreds of additional predictors or elaborate ensembles of models, would increase XIS’s accuracy. Diminishing returns, however, means that a great deal of XIS’s agility and tractability could be lost for a marginal improvement in accuracy.
In summary, we present a new exposure model, XIS, which generates point-based daily PM2.5 exposures across the conterminous United States 2003-2021. This model is intended to generate ambient exposure estimates in cohort and registry-based epidemiological and exposure disparity studies in order to advance the evidence basis of the health impacts of chronic and acute exposure to PM2.5.
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